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Abstract. We present a connection between the two nonisomorphic C(6,6,1) de-
signs and the exterior lines of an oval in the projective plane of order four. This connec-
tion demonstrates the existence of precisely four nonisomorphic large sets of C(6,6,1)
designs.

1. Introduction

The problem of selecting a set of n-cycles from the complete graph on = vertices,
K, so that each vertex occurs between each possible pair of vertices in precisely
one n-cycle was first considered by Judson [5] for the case of n = 7. He formu-
lated it as a problem in seating 7 companions at a round table for 15 consecutive
days so that no person sat between the same pair of companions on more than
one day. See Nonay [7], and Heinrich and Nonay [2,3] for the history and current
status of this “round table™ problem for general n.

Judson [6], Safford [8,9], and Dickson [1] all contributed to the complete solu-
tion of the problem for n = 6. There are precisely two nonisomorphic solutions.
In this paper, we will give a connection between these two solutions and the exte-
rior lines of an oval in the projective plane of order four.

Let k > 3. A k-cycle (a1,02,03,...,8¢-1,06;) in K, consists of the edges
{a1,02},{a2,a3},...,{ek-1, 8k}, {ak, a1} where the k vertices are distinct. Note
that there are 2 k ways of writing the same k-cycle. A 2-path (path of length 2)
a — b — c consists of the two edges {a,b} and {b,c} where a and c are distinct
vertices. We take a — b ~ ¢ = ¢ — b — a. The number of 2-paths in K, is
n(n— 1)(n—2)/2. A C(n,k,)\) design on a set of n vertices consists of a
coltection, D, of k-cycles in K, so that each 2-path of K, occurs in precisely A
elements of D.

Thus our initial problem is concerned with the construction of C(n, n, 1) de-
signs. Here |D| = (n— 1)(n—2)/2. A large set of C(n,n,1) designs is a
partition of the (n — 1)!/2 n-cycles of K into (n — 3)! C(n,n, 1) designs.
Our methods establish that there are precisely four nonisomorphic large sets of
C(6,6,1) designs.

In the following, D will always be a C(6,6,1) design (necessarily consisting
of ten 6-cycles).
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2. Preliminaries

We need to review some known results concerning an oval of PG(2,4).

Let I1 = (P, L) be the projective plane of order four, PG(2,4), where P is
the point set and L is the line set. Let O be an oval of I1. (An oval of a plane
of even order n consists of a collection of n + 2 points, no three of which are
contained in a line. Indeed, an oval of an even order plane meets each line in O or
2 points.) In our case, |O] = 6.

Pick a point not on O (a “nonoval” point). It, together with a point of O, deter-
mines a unique line which necessarily meets O in a unique additional point. For
each nonoval point, this process partitions the points of O into three 2-subsets,
which we call a splitting . Since the number of possible partitions of O into three
2-subsets equals the number of nonoval points, which is 15, this process yields a
natural one-to-one correspondence between a nonoval point and a splitting. We
shall often refer to a nonoval point, P, by its corresponding splitting.

There exist |C] — C(]0],2) = 21 — 15 = 6 “exterior” (to the oval) lines,
each made up of five nonoval points. Each nonoval point is on two exterior lines.
Note that any two splittings associated with points on an exterior line have no 2-
subset in common. (Otherwise the two points would determine a line meeting O
in the 2-subset.) There are six ways to partition the fifteen 2-subsets of O into five
splittings, and these correspond to the six exterior lines.

Given a splitting, P, there are eight other splittings that do not meet P in a 2-
subset, and there is a unique way to partition these eight into two collections of
four each which, together with P, determine the five points on each of the two
exterior lines through P.

3. The Oval-Cycle Design Connection

For each splitting (triple of disjoint 2-subsets), there exist four 6-cycles (hexa-
gons) that can be formed so that the elements of each 2-subset are “opposite”
vertices. For example, the splitting {a, b}{c, d}{e, f} results in the four 6-cycles
Hy = (a,c,f,b,d,e), H2 = (a,c,e,b,d,f), H3 = (e,d,f,b,c,e),and Hs =
(a,d,e,b,c, f). We shall call such a collection of four 6-Cycles, arising from a
splitting, a packet of 6-cycles. In this way, the 60 distinct 6-cycles are partitioned
into 15 packets, one packet for each splitting (nonoval point).

Lemma 1. Two 6-cycles belonging to the same packet cannot belong to the same
C(6,6,1) design.
Proof: Suppose a design D contains two 6-cycles resulting from a splitting
{a,bHc,d}He, f}-

Say D contains 6-cycles Hi = (a,c, f,b,d,e) and Hz = (a,c,e,b,d, f). The
2-path e — a — f must be part of some 6-cycle H in D. Since 2-pathd — e — a is
in A, and a — f — dis in H>, vertex d must be opposite to vertex a in H. But this
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is impossible since vertex b would then occur between either vertices e and d, or
fand d, of H, and 2-path e — b — d is already in H, and f — b — d is already in
H;.

Suppose D contains the 6-cycles H; and H3, as given above. This leads to a
similar contradiction by working with the 2-pathc — a — d.

The seemingly different case of supposing D to contain 6-cycles H and Hy,
as given above, again reduces to the same argument by working wlth the 2-path
a— f—b.

Thus by Lemma 1, together with the facts that each 6-cycle is in a unique packet
and there exists a C(6,6,1) design (indeed, precisely two such nonisomorphic
designs exist as was mentioned in the Introduction), we can form a set S consisting
of ten nonoval points whose splittings yield the packets that contain the 6-cycles of
aC(6,6,1) design. In the following theorem we see that any C(6,6,1) design
D of ten 6-cycles will indicate the complement, with respect to the set of nonoval
points, of an exterior line of IT = (P, L), the projective plane of order four.

Theorem 1. Let D be a C(6,6,1) design. Let S consist of the ten nonoval
points whose splittings yield the packets that contain the 6-cycles of D. Then
there is an exterior line L € L such that S = (P — O) — L.

Proof: We wish to show that the five omitted splittings are a partition of the fifteen
2-subsets of 0, and so they form an exterior line. Equivalently, we can show that
each 2-subset must occur in two of the splittings of S. Say this is not the case.
Then some 2-subset, say {a, b}, occurs in at least (and therefore exactly) three
splittings of S. These are the three nonoval points on the line that meets O in
{a,b}. (Note that if any 2-subset fails to occur, or occurs in but one splitting of
S, then an easy counting argument establishes that some 2-subset must occur in
three splittings of S.)

Without loss of generality, we can assume that H, = (a,c, f, b, d, €) is the 6-
cycle in D from the packet of four 6-cycles arising from the splitting {a, b}{c, d}
{e, f} and that H, = (a,c,d, b, e, f) isthe one in D arising from {a, b}{c, e}{d, f}.
(We picked vertex c, rather than e, to be adjacent to vertex @ in Hz. Also,
(a,c, f,b,e,d) is not a valid choice for H since it shares 2-path ¢ — f — b with
Hy))

By our presumption, D must also contain a 6-cycle from the packet arising from
{a,b}{c, fHd,e}.

If H3 = (a,c,e,b, f,d) is in D, then it is impossible to find a 6-cycle in D that
contains 2-path b — a — c, for such a 6-cycle would have d, e, or f adjacent to ¢
and 2-paths a — ¢ — d, a — c — e, and a — ¢ — f already occur in H3, H3,and H,
respectively.

Hs # (a,c,d,b, f,e) since 2-path ¢ — ¢ — d occurs in H,. Also, H; #
(a,d,c,b,e, f) since 2-patha — f — e is in Hj.

235



Finally, if H3 = (a, ¢, ¢, b, d, f), then itis impossible to find a 6-cycle in D that
contains 2- a — b — d, for such a 6-cycle would have c, e, or f adjacent to d
and 2-paths b—d — ¢, b— d — e, and b — d — f already occur in Hz, Hy,and Hs,
respectively.

In each case, we have been unable to form a design. Thus each pair of oval
points must appear as opposite vertices in precisely two 6-cycles of the design,
and the theorem is established.

In addition to thinking of a splitting’s triple of 2-subsets as three pairs of oppo-
site vertices for a 6-cycle, it can also be viewed as a triple of edges for a 6-cycle.
For example, the triple of 2-subsets {a, b}, {c,d}, and {e, f} is a triple of edges
for the 6-cycle (a, b, c, d, e, f). Each of the fifteen splittings is a triple of edges
for eight distinct 6-cycles. Call the eight 6-cycles, built in this way from a nono-
val point’s splitting, an octer of 6-cycles. Note that 8 - 15 is twice the number of
6-cycles since each 6-cycle can be built from two triples of edges.

Lemma 2. Let P be a nonoval point and let L and M be the two exterior lines
containing P. Consider the octet of 6-cycles that can be built by viewing P’s
splitting as a triple of edges. Each of the eight points in (L U M) — {P} con-
tains one of these eight 6-cycles in the packet of four 6-cycles that arises from its
splitting. .
Proof: Let {a,b}{c,d}{e, f} be P’s splitting. Let Q € (LU M) —{P}. Without
loss of generality, we can take {a, c}{b, e}{d, f} as Q’s splitting. Of the four 6-
cycles in the packet arising from Q’s splitting, (a, b, d, c, ¢, f) is the unique one
which contains P’s triple of 2-subselts in its set of edges.

The octet of 6-cycles built from the splitting of a nonoval point P is thereby
naturally partitioned into two quartets of 6-cycles (one for each of the two exterior
lines through P). That is, if L and M are the two exterior lines through P, then
one of P’s quartets is associated with the four points of L — { P} and the other
with those of M — {P}.

Lemma 3. Let L be anexteriorlineof I1 andlet P,R € L. Let Lp and Lg be
the additional exterior lines through P and R, respectively. Let {Q} = LpNLp.
The quartets of 6-cycles associated with Lp — {P} and L — { R} contain the
same 6-cycle from Q s packet.

Proof: Let {a,b}{c, d}{e, f} be P’s splitting and {a, f}{b, d}{c, e} be R’s split-
ting. Since {a, c}{b, e}{d, f} has no 2-subset in common with the splittings for
points P and R, it is either the splitting for an additional point on L, or for point
Q. However, it cannot be on L, for then the 2-subset {a,d} would not be in a
splitting. Thus it is the splitting for point Q. Q’s packet contains (a, b, d, ¢, e, f)
and this 6-cycle is in both quartets.

Lemma 4. Let P be a nonoval point and let L and M be the two exterior lines
containing P. The quartet of 6-cycles associated with the four points of L — {P}
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yields the same collection of 24 distinct 2-paths as does the quartet associated with
M — {P}. Morcover, if {a, b} is in the splitting for point P, then each of the
2-pathsb—a—c,b—a—d,b—a—e,and b— a— f is found in each of the two
quartets built from P s splitting.

Proof: Let {a,b}{c, d}{e, f} be P’s splitting. Without loss of generality, we can
consider the 2-path b — a — c. It is contained in two 6-cycles of the octet. They
are (a, b, ¢, f,d,c) and (a, b, f,e,d,c). These two 6-cycles cannot be in the same
quartet since the 2-subset {b, d} is part of the splitting for each. (Recall that the
splittings for two points on the same exterior line can have no 2-subset in com-
mon.,)

Thus, since vertex a cannot be adjacent to vertex ¢ twice in the same quartet, it
must be adjacent to each of the vertices c, d, e, and f, thereby forming the desired
four 2-paths.

In the next two theorems we will describe two methods of constructing a
C(6,6, 1) design by picking an appropriate 6-cycle from each packet of a nono-
val point in the complement of an exterior line of IT.

Theorem 2. Let L be an exterior line of T1. For each P € L, build the quartet
of 6-cycles that is associated with the four points of Lp — {P}, where Lp is
the unique additional exterior line containing P. The resulting collection of ten
distinct 6-cycles, one from the packet of each nonoval point in the complement of
L, forms a C(6,6,1) design.

Proof: By Lemma 3, this process yields 5 - 4 /2 = 10 distinct 6-cycles. Pick a
2-path, say b— a — £. Since each 2-subset is in one splitting of line L, so is {a, b}.
By Lemma 4, b — a — f will be found in this collection of 6-cycles. Thus these
ten 6-cycles form a C(6,6,1) design.

Theorem 3. Let L and M be two distinct exterior linesof T1. Let {P} = LOM.
Build the same collection of ten 6-cycles, one 6-cycle from the packet of each
nonoval point in the complement of L, as was formed by Theorem 2. Replace
the quartet of 6-cycles that is associated with the four points of M — {P} by
the quartet associated with L — {P}. The resulting collection of ten distinct 6-
cycles, one from the packet of each nonoval point in the complement of M, forms
a(C(6,6,1) design.

Proof: Note that Lp = M. By Lemma 4, each of the 24 distinct 2-paths in a 6-
cycle of the deleted quartet is found in a 6-cycle of the newly added quartet. Thus,
since the original collection of ten 6-cycles formed a C(6,6,1) design, so does
the newly formed collection.

Note that the method of Theorem 2 uses the splittings of a line L to select 6-
cycles from the packets of the nonoval points in the complement of L, whereas
the method of Theorem 3 uses the splittings of a line L to select 6-cycles from
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the packets of the nonoval points in the complement of a line M not equal to L.
Denote the methods described by Theorems 2 and 3 as Method ( L, L) and Method
(L, M), respectively.

We mentioned in the Introduction that there exist precisely two nonisomorphic
C(6,6, 1) designs. In Theorem 4 we show that these two methods yield noniso-
morphic C(6,6,1) designs.

By the intersection of two 6-cycles ina C(6,6,1) design we mean the set of
necessarily disjoint edges that they share.

Lemma 5. Let H be a 6-cycle ina C(6,6,1) design. The sum of the sizes of
the intersections of H with each of the other nine 6-cycles in the design is 18.

Proof: Let {a,b} be an edge of H. Say the 2-path b — a — f is in H. Since each
2-path must be in precisely one of the 6-cycles of the design, the edge {a, b} must
be in precisely three additional 6-cycles. Thus, since H has six edges, the sum of
the intersection sizes of H with the other nine 6-cyclesis 6 -3 = 18.

Theorem 4. Let L and M be two distinct exterior lines of 1. The C(6,6,1)
designs produced by Methods (L, L) and (L, M) are nonisomorphic.

Proof: Let Q be a nonoval point in the complement of L. Q lies on two exterior
lines which meet L in, say, points P and R. Call these lines L p and L g, respec-
tively. Apply Method (L, L). Let H be the 6-cycle selected from Q’s packet.
H intersects each of the remaining three 6-cycles of the quartet associated with
Lp — {P} in the three 2-subsets of P’s splitting. Similarly, H intersects each of
the remaining three 6-cycles of the quartet assoclated with Ly — { R} in the three
2-subsets of R’s splitting. The sum of the sizes of these intersectionsis 6 -3 = 18.
By Lemma 5, H must have an empty intersection with the remaining three 6-
cycles of the design. Thus any 6-cycle of the design produced by Method (L, L)
intersects six other 6-cycles in three edges and the remaining three 6-cycles in zero
edges.

Now, let Q be a nonoval point notin L U M. Let {P} = LN M. Say P =
{a,b}{c,d}{e, f}. Q shares a 2-subset with P’s splitting; say it is {a,b}. Say
Q = {a,b}{c,e}{d, f}. Pick an exterior line containing Q and say it intersects
L in point R. Say {a,c} is in R’s splitting. Then R = {a, c}{b, f}{d, e}. Apply
Method (L, M). R’s splitting selects the 6-cycle (a, c, f, b, e, d) from Qs packet
and P’s splitting selects the 6-cycle (a, b, d, c, f, e) from R’s packet. These two
6-cycles of the design intersect in the one edge {c, f}.

Since two 6-cycles of the design produced by Method ( L, L) never intersect in
just one edge, the two designs are nonisomorphic.

Method ( L, L) produces an isomorphic copy of a C(6,6, 1) design for each
of the six choices for L. Method (L, M) produces an isomorphic copy of the
other C(6,6, 1) design for each of the thirty choices for the ordered pair (L, M).
Actually, it can be shown that the automorphism groups for these two designs
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are isomorphic to Sym(5) and Sym(4), respectively, and so these designs lie in
orbits of size 6! /5! = 6 and 6!/4! = 30. Thus all of the isomorphic copies of a
C(6,6, 1) design have been produced by our methods.

Denote the designs produced by these methodsas D (L, L) and D (L, M). The
automorphism groups of all of these designs are naturally contained in Sym(6). It
can also be shown that

Au(D(L, L)) N Au(D(M, M)) = Au(D(L, M)),

where Aut( D) denotes the automorphism group of the design D.

Flnally, the techniques developed in this section allow one to rather easily show
that there are precisely four nonisomorphic large sets of C(6,6, 1) designs. They
can be constructed in the following way: Apply Methods (L, M) and (M, L) to
0, 1, 2, or 3 disjoint pairs of exterior lines, and apply Method (L, L) to each of
the remaining 6, 4, 2, or 0 exterior lines.

Acknowledgments

The author wishes to thank Professor E. F. Assmus, Jr., for helpful discussions and
his encouragement, and also Professors A. Rosa and G. Nonay for information
relating to the history of the round table problem.

References

1. L. E. Dickson, Solutions of Problems (Algebra), Amer. Math. Monthly 11
(1904), 170.

2. K. Heinrich and G. Nonay, Exact Coverings of 2-Paths by 4-Cycles,J. Com-
binatorial Theory A 45 (1987), 50-61.

3. K. Heinrich and G. Nonay, Packings and Coverings of 2-Paths by 4-Cycles,
Ars Combinatoria 26 (1988), 141-148.

4, C.Huang and A. Rosa, On Sets of Orthogonal Hamiltonian Circuits, in “Pro-
ceedings of the Second Manitoba Conference on Numerical Mathematics”,
Utilitas Math., Winnipeg, Man., 1973.

5. C.H. Judson, Problems for Solution (Algebra), Amer. Math. Monthly 6 (1899),
92.

6. C. H. Judson, Solutions of Problems (Algebra), Amer. Math. Monthly 7 (1900),
72-73.

7. G. Nonay, Results on the Covering of 2-Paths by Cycles, Ph.D. Thesis, Simon
Fraser University (1987).

8. F. H. Safford, Solutions of Problems (Algebra), Amer. Math. Monthly 11
(1904), 87-88.

9.F. H. Safford, Solutions of Problems (Algebra), Amer. Math. Monthly 11
(1904), 169-170.

239



