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Abstract. We define a sequence of positive integers A = (ay,...,85) to be a count-
wheel of length n and weight w = @) + - + a, if it has the following propeny:
Let 4 be the infinite sequence (a;) = (a1,...09,01,...,84,...). Then there is a
sequence 0 = 1(0) < (1) < i(2) < ... such that for every positive integer k,
Gi(k—1)+1+ - -+ Ti(x) = k. There are obvious notions of when a count-wheel is reduced
or primitive. We show that for every positive integer w, there is aunique reduced count-
wheel of weight w, denoted [ w]. Also, [w] is primitive if and only if w is odd. Further,
we give several algorithms for constructing [w], and a formula for its length. (Remark:
The count-wheel [15] = (1,2,3,4,3,2) was discovered by medieval clock-makers.)

Apparently because of the difficulty of cutting notched and toothed wheels pre-
cisely enough, clock-makers in the 14th through 16th centuries used the follow-
ing method to have their clocks strike the hours: They used a count-wheel with
6 positions on it, causing the hour to be struck the following number of times:
1,2,3,4,3,2. Beginning the day positioned at the number 1, the wheel could
strike the hours as follows: 1,2,3,4,3+2,1+2+3,4+3,2+1+2+3,.... At
that time it was common to strike the hours 1,2, ..., 24, fora total of 300 strikes,
so in a day this wheel would have made 20 complete revolutions, and hence at
the end of the day the wheel was properly positioned for the next day, ad infini-
tum?®. In fact, such a count-wheel can not only count the integers from 1 through
24, but can count all positive integers. This raises some interesting mathematical
questions. First we make the notion of a count-wheel precise.

Definition 1. A sequence A = (a1, ...,a,) Of positive integers is a count-wheel
of length n and weight w = a) + --- + ay if it has the following property: Let
A be the infinite sequence (@;)=1,.. = (a1,...,a4,a1,...,0y,...). Then there

exists a sequence 0 = i(0) < (1) < #(2) < ... such that for every positive
integer k,

i(k)
Z gi=k *)
i=i(k—1)+1
Thus (1,2,3,4,3,2) is a count-wheel of length 6 and weight 15. Given this,
we see that (1,2,3,2,2,3,2) is also a count-wheel of weight 15, and indeed
for any w there is a count-wheel of weight w, namely (1,1,1,...,1). Hence, -
instead of simply looking for count-wheels, we should look for reduced count-
wheels, where reduced is defined as follows:

* Partially supported by the National Science Foundation
! This information is taken from an exhibit in the clock room of the British Museum.
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Definition 2. A count-wheel B = (by,...,by) is an amalgam of a count-wheel
A= (ay,...,0,) if B # A and for some j(2),j(3),...

hh=a1=1

bhb=a2+ -+ a;(2)

by = ajer + oo+ ajey)
bm = Gj(m-1)+1 + *++ + Gj(m)

A count-wheel A is called reduced if it has no amalgams.
Our first result is:

Theorem 3. For every positive integer w, there is a unique reduced count-wheel
of weight w, denoted [w). Also, [w] is an amalgam of any other count-wheel of
weight w,

If A=(ai,...,an) and B = (by,...,b,) are sequences, we define their sum
A + B to be the sequence (a1,...am,b1,..., b,) and we let tA be the sequence
A+ ---+ A (t summands). If A and B are count-wheels, there is no reason to
expect that A + B will be one, and usually it is not. Of course, if A is a count-
wheel, so is tA forany ¢, but if A is reduced tA need not be. What we are really
looking for are primitive count-wheels, where primitive is defined as follows:

Definition 4. A count-whecl A is primitive if the equation A = tB only has the
solutiont =1, B = A.

QOur second result is:

Theorem 5.

(a) The reduced count-wheel (w] is primitive if w is odd.
®) Ifw=2%,t>0,then [w] = 2%[v].

(From part (b) we see that we in fact have if and only if in part (a), and that if
w = 2 the only count-wheel of weight wis (1,1,1,...,1).)

We now proceed to the proofs of these results.

We adopt the convention here that the residue classes modware 1, ... ., w (rather
than the usual 0, ..., w — 1).

Proposition 6. The following algorithm produces a reduced count-wheel of weight
w.
Index the positions on a wheel 1, ..., w clockwise and place a 1 in each posi-
tion. Begin with a pointer between positions w and 1.

Stepl:Fork=1,...,w—1forwoddandfork =1,...,2w—1 for w even,
successively rotate the pointer k positions clockwise and place a bar at the point
where the pointer stops, if there is not one there already.
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Step 2: Begin with the empty sequence and the pointer positioned between
positions w and 1. Rotate the pointer clockwise until a bar is reached, and let the
next term of the sequence be the number of 1’s the pointer has passed in doing so.
Do this until the pointer has returned to its original position.

Proof: We first show that the resulting sequence A is a count-wheel, and then that
itis reduced. Setz = w — 1 forw odd and z = 2w — 1 for w even.

Clearly A satisfies () for k = 1,...,z. We must show it satisfies (*) for
all positive integers. Note that at the end of step 1 the pointer has retuned to its
original position as z( z + 1) /2 is divisible by w.

Observe that step 1 would yield identical results (i.e., bars in the same places)
if instead of k& we used any k' = k& (mod w), as rotating &’ positions would be
rotating through & positions followed by (k' — k) /w complete revolutions.

Now performing the procedure of step 1 for k = z+ 1 simply rotates the wheel
through 1 or 2 complete revolutions, so does nothing, and then by the above ob-
servation doing itfork = (z+ 1) + 1,(z+ 1)+ 2,(z+ 1) + 3,... yields no
new bars, so A satisfies (*) for all positive integers and so is a count-wheel.

Let us refer to the procedure of step 2 as decoding, and its inverse as encoding.

Note that if any bar were removed before decoding, the resulting sequence

would not be a count-wheel. We may view the procedure of amalgamation as
beginning with a count-wheel A, encoding it, removing one or more bars, and
decoding the result to obtain a new sequence B. Since such a B cannot be a
count-wheel, A is reduced.
Proof of Theorem 3: Denote the reduced count-wheel constructed in Proposition
6 by [w]. Encode it. Then, as observed above, any count-wheel A, when encoded,
must have bars in the same places as [w], and perhaps others as well. If there are
no others, then A = [w], while if there are others they may be removed and the
result decoded, yielding an amalgamation from A to [w].

We now give an alternate algorithm for producing [ w] which will also lead to
an improvement in the algorithm of Proposition 6.

Proposition 7. The following algorithm produces a reduced count-wheel of weight
w:
Let E = {k(k+1)/2 reduced mod wlk=0,...,v} wherev=(w-1)/2
for w oddand 2w — 2 for w even.

Arrange the elements of E in ascending order:

l=eg1<er2 < <e,=w.
Ifa; = e),0i=¢;—e€_1,i=2,...,n then A = (ay,...,a,) is a reduced
count-wheel of weight w. :
Proof: By comparison with Proposition 6, we see that the following three state-
ments are equivalent:
(a) for1 <e<w,e€E.
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®) k(k+1)/2 =e (mod w) for some k.

(c) Step 1 of the algorithm of Proposition 6 puts a bar following position e.

Note also that the second part of the algorithm of Proposition 7 is just another
description of decoding.

Thus the only difference between the results of these two algorithms arises from
the fact that the ranges of & differ. For w even, we note that taking £ = 0 here
produces a bar at position w, as did taking k = 2w — 1 there. For w odd, we
note that k(k + 1)/2 = ((w - 1) = k)((w — 1) — k+ 1)/2 (mod w), so
again k = 0 here gives the same position w as £ = w — 1 there, and taking
k= (w+1)/2,...,w - 2 just repeats the values of e € E obtained from k =
1,...,(w-1)/2, sois superfluous.

Corollary 8. For w odd, the algorithm of Proposition 6 remains valid if it is
modified as follows:

At the beginning of step 1 put a bar at the current pointer location (i.e., between

positions w and 1) and perform the construction of step 1 for k = 1,...,(w —

1)/2.

Lemma 9. Let A be a reduced count-wheel., Then 2 A is also reduced, but kA
is not reduced forany odd k > 1.

Proof: Let A have weight v.

If the encoding of A has bars following positions ey, ..., e,, then the encoding
of 2 A has bars following positionsej ,...,en,en+1,...,€2q Withege; = v+e;, 1=
1,...,n In view of Proposition 7, to show 2 A is reduced we must find integers
ki,...,k2q with ki(k; + 1) /2 = ¢; (mod 2v). Now again by Proposition 7, as
A is reduced, there are integers j; with 5;(j; + 1)/2 = e; (mod v), i.e., with
Ji(Js + 1) = v + e; (mod 2v), with ¢; = 0 or 1. Since, for any j, (2v -
J=1DQRv-j)/2 =v+j(j+1)/2 (mod 2v), we may take {ki, knei} =
{n2v—ji—1}.

Now suppose that ¢ > 1 is odd. By the same logic, to show that tA is not
reduced it suffices to find integers e and s such that k(k + 1) /2 = e (mod tv)
has a solution but k(k + 1) /2 = e+ sv (mod tv) does not. To this end, let p be
an odd prime factor of ¢, p° the highest power of p dividing ¢t and p® the highest
power of p dividing v. Set

oe (p%oH _ 1) ) <po+b_ 1) (pr_l . l) n.

8 2 2
Then k(k+ 1) /2 = e+ sv (mod tv) yields the congruence
(2k+ 1)2 = p%*Y £ 85y (mod tv)

which reduced mod p°*? is the congruence
(2k+ 12 = (8v'ph)s (mod p**?)
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where v’ = v/p* is prime to p, and if s is chosen so that 8v's is not a square
mad p, this congruence will have no solution.

Proof of Theorem 5: Let w be odd. Suppose [w] = ¢[v]. Then w = tv, sot is
odd. But then [w] is reduced, by assumption, so ¢[ v] must be reduced, sot = 1
and [w] is primitive. Now let w be even, w = 2w’, Then 2[w’'] is a reduced
count-wheel of weight of w, so by uniqueness [w] = 2[w']. The theorem then
follows.

We now give a method of constructing new count-wheels from old. For any
two sequences A and B of the same weight, it is clear that their longest common
amalgam (lca) should be: the longest sequence C which is an amalgam of both
A and B. For two sequences A and B of weights v and w respectively, we define
their product AB to be the sequence C = lca(wA, vB).

Proposition 10. If v and w are relatively prime,
[v][w] = [vw].

Proof: Let A = w[v] = (a1,...,a,) and B = v[w] = (by,...,bym). Itis
clear that their lca, of length r, say, is formed as follows: Take all pairs (n;, m;),
t=1,...,r,witha; + --- + ay = b; + --- + by, and let C be the amalgam
(81,02 + -+ @ny ,Brye1 + -+ 8y,yeen) = (b1, b2+ oot By bmger + - - +
bmy,...) =(c1,...,¢). (Of course,a) = by = 1,50m; =n = 1.)

Now, as in Proposition 7, we see that the c; are precisely the integers, reduced
mod vw, such that the equations k(k+1) = cj+---+¢; (mod v) and (mod w)
both have a solution. But these two congruences are equivalent to the congruence

k(k+1)/2=ci1+---+¢ (mod vw),
as we are assuming v and w relatively prime, and by the same logic we see that

C=(a,...,¢) = [vw], as claimed.
We present one more algorithm for finding [w], for w odd.

Proposition 11. Let z be an integer with 82 = —1 (mod w). Then the set E
of Proposition 7 is given by

E={2j+z (mod w)|j =0 orj aquadratic residue mod w}.
Proof: Immediate from the equation
k(k+1)/2=2((2k + 1) /4)2 —1/8.

We now dispose of the question of the length of reduced count-wheels. We let
A(w) denote the length of [w].
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Proposition 12.

@ M2YH =2tforalit>0.

(b) If wis odd, \M(w) < (w+ 1) /2, with equality if and only if w is prime.
(¢) If v and w are relatively prime, A(vw) = A(v) M(w).

(d) Foranoddprime p, andanyt > 1,

t_
M= Bl

2t
p(p** —1) +1

2ty _
Me) =S+ *h

Proof: As[2%v] = 2%[v] and [1] = (1), a) is obvious and c) is true if A\(vw) =
A(v)A(w) when v and w are both odd and relatively prime.

From Proposition 7 we see that A\(w) < (w+ 1)/2 for w odd, with equality if
J(j+1)/2 = k(k+1)/2 (mod w) hasnosolutionfor0 < j < k < (w—1)/2,
and it is easy to check this holds exactly when w is prime. Indeed, by Proposition
7 we see that \(w) = #{e|]l < e < wandk(k+ 1)/2 = e (mod w) for some
k} and so by the Chinese remainder theorem, A(vw) = A(v)A(w) if v and w are
relatively prime,

Finally, we see that for w odd, A(w) = 1+ ¢g(w), where g(w) is the number
of non-zero quadratic residues mod w. Then g(1) = 0, ¢(p) = (p—1)/2,
and for s > 2, q(p°) = p(p°®)/2 + q(p*~2) with p Euler’s function, p(p®) =
(p*~1)(p—-1). (The term p( p®) /2 counts those quadratic residues prime to p, and
the term g(p*~2) counts those divisible by p and hence by p*.) The proposition
follows.

From Theorem 5 and Proposition 10 we see that it is only necessary to apply the
algorithm of Corollary 8 to calculate [ w] for w an odd prime power. For the edifi-
cation of the reader, we give the values of [ w] for various w below. To explain our
notation, giventhat[5] = (1,2,2),and that[25] = (1,2,2,1,4,1,4,1,4,1,4),
we shall write [25] = ([5],4(1,4)). We then have

B1=(1,2) [211=(1,2,3,1,33,2,6)
[51=(1,2,2) [231=(1,2,2,1,3,1,3,2,5,1,1,1)
[(71=(1,23,1) (251 = ([51:4(1.4))

[91=([3],2(3)) (271 = (2091.33)
[11]1=(1,2,1,2,4,1) [451=(1,2,34,53,3,7,2,3,3.9)
(131=(1,1,1,3,2,2.3) (491 = ([71,6(1,2, 4))
(151=(1,2,3,4,3,2) (81] = (1271,2([91,6(3))
(171=(1,1,1,1,24,1,4,2) [121]=(1,2,3,4,1,[11],9(1,2,34,1))

(191=(1,1,1,3,1,2,1,5,2,2) [125] = ([251,2([251,5(1.4)))

246



Remark 13. Clearly a count-wheel [w] must begin either (1,2,...) or
(1,1,1,...). Itis easy to check that the second case occurs if and only if 17
is a square mod v, where v is defined by w = 2%y, v odd. It is also easy to
check that the number of times 1 appears in [w] is equal to 2*m, where

m=#{j|0 < j < vandjandj+ 8 areboth squares (mod v)}.

Remark 14. If [w] = (a),...,0,),define the height h(w) = max{a1,...,a,}.
Clearly we may keep h(w) small, as h(2*) = 1. Also, we may make h(w) large,
for if w is the product of k distinct primes, A(w) /w is approximately 1/2*, so
h(w) is at least approximately 2*. Since for any w the set E of Proposition 7
contains all the triangular numbers less than or equal to w, we readily obtain the
bound h(w) < v2w. Numerical evidence seems to indicate that as w ranges
over primes, h(w) grows more slowly than this bound.

Remark 15. Let f be any function from the positive integers to the positive
integers. Then we may define a count-wheel for the function f by Definition 1
with equation (*) replaced by

i(k)

> = f(k).
1=1(k=-1)+1

L4

(Thus our count-wheels above are count-wheels for the function f(k) = k.) It
is easy to check that Theorem 3 holds in this more general case, giving a unique
reduced count-wheel [w];. If we let Ay(w) be the length of [w], then by an
argument analogous to that in the case of A(w) (cf Proposition 7) it is easy to see
that

A(w) ={j|0 <j<wand F(k) =; (mod w) forsomek >0}

where F(k) is defined by F(0) = 0 and F(k) = £, f(i) fork > 0.
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