Symmetric (31, 10, 3) Designs with Trivial Automorphism Group
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Abstract. Sixteen non-isomorphic symmetric 2-(31, 10, 3) designs with trivial full
automorphism group are constructed.

Introduction

We assume familiarity with the basic notions and facts from design and coding
theory (cf., e.g. [1], [2], [3], [4], [7], [13)).

The parameters 2-(31, 10, 3) are the smallest for a symmetric 2 -design of non-
Hadamard type for which complete enumeration has not been finished yet. One
source for interest in such designs is that any 2-(31, 10, 3) design without ovals
(an oval being a set of 4 points meeting each block in at most 2 points) gives rise to
an extremal binary doubly-even (64,32, 12) code [11], [12]. In [11] we showed
that the only primes which can be orders of automorphisms of a 2-(31,10,3)
design are 7, 3 and 2, and constructed all four non-isomorphic designs possessing
automorphisms of order 7. One of these four designs was without ovals, thus
yielding an extremal (64,32, 12) code. Subsequently, Mathon [8] undertook a
search for all designs with automorphisms of orders 3 and 2, finding altogether
38 designs, 6 among them without ovals. The six designs without ovals produce
four inequivalent extremal codes (since a pair of dual designs generate a pair of
equivalent codes) [5]. More recently Spence [9] found six more 2-(31, 10, 3)
designs with an automorphism of order 3 missed by Mathon. Each of these six
new designs does possess ovals.

In this note we summarize the results of a random search for designs with trivial
automorphism group. Over a dozen of such designs have been found (eight non
self-dual designs are listed in Table 2), all of them possessing ovals.

The designs
The construction method is by embedding of a given 2-(10, 3, 2) design as a de-
rived design into a symmetric 2-(31, 10, 3) design. The search can be speeded up
by using the approach from [10] exploring the binary subcode of the ternary code
having as a parity check matrix the incidence matrix of the initial 2-(10,3,2)
design. Note that not every 2-(10, 3,2) design is embeddable into a symmetric
2-(31,10, 3) design [6].

Non-isomorphic designs have been distinguished by an easily computable iso-
morphism invariant. A spread in a 2-(10,3,2) design is a set of three pairwise

ARS COMBINATORIA 36(1993), pp. 249-254



disjoint blocks. Given a symmetric 2-(31, 10, 3) design, we compute the num-
ber n; of derived 2-(10,3,2) designs having precisely 1 spreads. For the de-
signs we have encountered the number of spreads vary from 30 to 42, and the
characteristics (mo,...,n42) provide a very handy isomorphism invariant. We
have used as starting 2-(10, 3,2) designs some derived designs of the known
2-(31,10,3) designs without ovals. Although a number of new designs were
found, in all cases the only symmetric designs without ovals thus obtained were
the ones we have started with. The characteristics (nsp,...,m42) together with
the number of ovals are listed in Table 1, where the dual design of a design No. i
is denoted by ¢'. Combined with the knowledge of the possible orbit lengths for
a non-trivial automorphism and comparing the number of ovals [8], [11], the data
from Table 1 provides immediate evidence for the triviality of the group of the
designs. The eight non self-dual designs are listed in Table 2.

Table 1. The characteristics (n3, ..., n2) and the number of ovals # O

D ™0 M2 T4 T THE M40 M) #0
1 1 2 7 12 7 2 0 7
v 0 3 9 10 6 3 0 7
2 0 0 4 14 9 3 1 10
2! 0 2 5 7 11 6 0 10
3 0 2 11 4 10 3 1 12
3/ o 3 7 11 4 5 1 12
4 0 2 8 5 9 6 1 4
4' 0 4 4 7 8 8 0 4
5 0 1 4 8 11 6 1 5
5! 0 2 1 1 9 8 0 5
6 0 2 5 7 11 6 0 6
6 | 0 3 4 9 7 7 1 6
7 0 1 10 9 8 3 0 9
7! 0 3 6 10 10 2 0 9
8 0 3 7 6 9 5 1 7
8/ 0 2 7 7 10 5 0 7

Table 2. The 16 rigid 2-(31, 10, 3) designs

15 16 23 24 25 26 30 31
11 12 19 20 23 29 30 31

738 15 16 23 24 25 26 30 31
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After this manuscript had been accepted for publication the author was informed
that E. Spence has undertaken a search for all non-isomorphic 2-(31,10,3) design

An essential part of the work on this paper was done while the author was visiting

the University of Waterloo, Ontario, Canada.
(E. Spence, A complete classification of symmetric (31,10,3) designs (preprint)).
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