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Abstract. We consider a subset-sum problem in (25,U), (2%, 4), (2°,¥)

and (Sy,+), where S is an n-element set, S, 2 {0,1,2,---,2" — 1} and U,
A, & and + stand for set-union, symmetric set-difference, multiset-union,
and real-number addition, respectively. Simple relationships between com-
patible pairs of sum-distinct sets in these structures are established. The
behavior of a sequence {n~!|Z| | n = 2,3,--}, where Z is the maximum
cardinality sum-distinct subset of S (or S,,), is described in each of the four
structures.

1. Introduction

Let X be a finite set in which a commutative and associative binary
operation is defined. For this operation we choose the additive notation +
and call z;, + i, + -+ + Zi,,, ¢i, € X, a sum. It is assumed that &’ has
a zero element 0, ie, 2 4+0=0+2 = z for all z from X. The sum of all
elements from Z is called the sum of Z. The sum of @ is 0. The number
og elements in Z C X is denoted by |Z|. The power set of Z is denoted by
2%.

A set Z C X is said to be sum-distinct in (X,+), if the 2!2| sums of
subsets of Z are all distinct.

In the sequel, we will specify X either as 2%, |S| = n, or as S, 2
{0,1,2,---,2" — 1}, and consider sum-distinct sets in (2%,0), (25,4),
(25,¥) and (Sp,+), where U, A, ¥ and + stand for set-union, symmetric
set-difference, multiset-union, and real-number addition, respectively. The
pair (25,N), being the dual of (2°,U), is not included. The pair (Sp,+) is
motivated by |Z| € {1,2,---,2" — 1} if £ is a proper subset of 25. (The
rationale behind 2" ¢ S, is to make S, a decimal equivalent of {0,1}".)
By identifying: 1) a subset A of & with the characteristic function I4 of
Aon S, and 2) U, A, and & with the corresponding bitwise operations on
elements from {0,1}", we identify the pairs (25,U), (25,A) and (2°,4),
with

({0,1}",+;) where + is a coordinate-wise Boolean addition,
({0,1}",®) where & is a coordinate-wise modulo 2 addition,
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({0,1}",+) where + is a coordinate-wise real-number addition, »)
respectively. For example, if & = {a,b, ¢}, then, due to the table below

Iiap} Ia,} Ib,e} Ita)
1 1 0 1
1 0 1 0
0 1 1 0

verifying the sum-distinctness of {{a,b},{a,c}, {b,c},{a}} in (2{2:0<} v)
amounts to verifying the sum-distinctness of {110,101, 011,100} in the cor-
responding structure ({0,1}3,+). The latter seems to be more appealing
(at least to author). Note that A" does not have to be closed with respect
to +, e.g. {a,b}w {b,c} = {a,2b,c} ¢ 2180},

Let Z be the maximum cardinality sum-distinct set in (X,+), |X] =

2", and let M, 2 {n,n+1,n+2,---}. A relative measure of the size of Z

in X, defined by d, 2 n~1|Z|, will be called the density of Z in X. Our
criterion in comparing sum-distinct sets in the above structures will be the

density sequence {d, | n € M2} and, in particular, d* = max{d, | n € N2}.
The definition of density is motivated by an information-theoretic measure
in multiple-access coding, [4].

Note that w : {0,1}" — Sy, defined by w(z) = Yrep %2, z =
(z0,* -+ 12n—1) and z; € {0,1}, is an injection. (The algorithm w=!(.) is
simple and well known.) The binary equivalent of x € S, will be denoted
by b(z), e.g. 5(0) = 0. The binary equivalent of a set Z C S, will be
denoted by b(Z); that is, b(Z) = {b(z) | z € Z}.

In the sequel, we discuss sum-distinct sets in the above listed struc-
tures. We relate them to each other (when possible), describe the behavior
of their density sequences and determine d*. It turns out that, with respect
to the above points, problems related to sum-distinct sets in ({0,1}",+;)
and ({0,1}",®) are simpler than the ones in (S, +) and ({0,1}",+). We
address the former in the next section. In Sections 3 and 4 we discuss
sum-distinct sets in (Sp,+) and ({0,1}", +), respectively.

2. Sum-distinct sets in ({0,1}",+;) and ({0,1}",®)

1) Since the binary operation + is always written as a part of the pair ((1’, +), the same
notation for addition (as in (S, +)) should not cause confusion.
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Sum-distinct sets in ({0,1}",++) and ({0,1}",®) are related by the
following observation.

Remark 1. If Z is a sum-distinct set in ({0,1}",+), then Z is a
sum-distinct set in ({0,1}",®).

Proof.?) With little effort one can show that a set {z,%2,--, 21},
% # 0, is sum-distinct in ({0,1}",®) if and only if none of its 2T —
1 nonempty subsets has sum equal to zero. Hence, if Z is not sum-
distinct in ({0,1}",®), then there exists at least one subset of Z, say
{Zi) Zigy - , %}, such that

(2.1) %, Dz, ®---DE, = 0.

Let @ = %;, +y %, + - - - +» Zi,,_, and let V denote logical or. For any given
coordinate ! € {0,1,---,n — 1}, either @[l] = 1 or &[l] = 0. If &l] =1,
then (a4 z, )] = a[l) v z.[[l = 1V z,[l] = 1. If 4[] = 0, then, by the
nature of + in {0,1}*, %,[{] = 0 for j = 1,2,---,m — 1 and hence, by
(2.1), %,.[[] = 0. Thus, @[] = 0 and (2.1) imply (@ + 2, )[]] = 0. So, (2.1)
implies @ + %, = # and thus Z is not sum-distinct in ({0,1}",+). §

The converse of the above remark is not true. The ‘smallest’ example
are the sets {11,01} and {11,10}.

Since {0, 1}" is closed with respect to +, and @, it follows that d, <1
for all n € AN in both ({0,1}*,+) and ({0,1}*,®). Clearly, &(Z,),

where Z, = {2 | i =0,1,---,n — 1}, is the only sum-distinct set in
({0,1}",+4) for which d, = 1. There are, however, many n-element
sum-distinct sets in ({0,1}",&). One can generate them easily by notic-
ing that if {%;,,%,, -+, %,}, m < n, is sum-distinct in ({0,1}",®) and
b= %, ©%i,® - ® z,, then {3,%,,%,, -, %,_,} is sum-distinct in
({0,1}*,®). Hence, d* = 1 in both ({0,1}",+;) and ({0,1}",®).

3. Sum-distinct sets in (S, +)
Let ¢ € Ny and let B, be a class of sum-distinct sets from (Sp,+) such
that Z € B, if and only if |Z] = n + c. That is,

(31)  B.2{Z2CS.|c€No, |Zl=n+c, Z is sum — distinet}.

If n <3, then By = 0. If n = 3, only {3,5,6,7} is in By. If n > 3, then
B, contains at least (32y/2)~12" elements, [6]. Hence, if n € A3, then
d, > 14+ n~1in (S,,4). According to [2] and [5], there is a 23-element
sum-distinct set in (Sa;,+).

2 The proof given below was suggested to author by Professor R.W. Gatterdam.
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Lemma 1. Let G(n) = 14 n~!log,(n +log,(1+ n +log, n)), n € Na.
Then, d, < G(n) in (S,,+).

Proof. Let Z be a sum-distinct set from (Sn,+). Lemma follows from
|Z] < 2™ by a repeated substitution of the upper bound for |Z]| into the
right-hand side of 212! < |Z|2". That is, 21%] < |Z|2" and |Z| < 2" yield
|Z| < 2n which, together with 22! < |Z|2", yields |2| < 14 n+log, n and
so on. |

Note that G(n) monotonically decreases with n € M, and G(2) = 2.
Hence, for any given a € (1,2], there exists no € N, such that G(n) < a
for n > nq. In particular, ng = 12.

Theorem 1. d¢* = £ in (Sn,+). The corresponding sum-distinct set
is {3,5,6,7}.

Proof. By using repeated substitution described in the above lemma,
it is easy to show that |Z| < n +log,(1+ n + log, n) for a sum-distinct set
Z € S,. Hence, |Z| < 16 for n = 12 and thus dy; < 3. Let B, # 0 for
n < 12. Then n~!|2Z| = 14+ n~'c > § implies n < 3c. Inspection shows
that d3 = 3 for {3,5,6,7} € B; and B. =0 for ¢ = 2,3,4 and n = 3c. 3

Inequality 2!21-1 < 2741, /|Z], derived from the result in [3, p. 137],
provides an alternative way of proving the above theorem. The proof starts
with the obvious |Z| < 2" and uses a repeated substitution of the upper
bound for |Z] in \/HZ_I to obtain a suitable upper bound for |Z|.

Theorem 1 utilizes |Z| < n + k + k1 log|Z|, where k € N} and k; €
R*, for a sum-distinct set £ from (Sn,+). The author believes this to
be a poor estimate of |Z|. A futile computer-search for sum-distinct sets
whose cardinality meets the upper bound stated in Lemma 1 indicates that,
perhaps, k; = 0. As poor as it is, this argument prompts the following
conjecture.

Conjecture 1. There exist a finite positive integer ¥ and a fixed
positive integer ng such that B, = @ for all ¢ > k and all n > nq.

4. Sum-distinct sets in ({0,1}",+)

A sum-distinct set in ({0,1}",+) is also called a detecting set of vec-
tors. This term comes from the ‘coin weighing’ problem, [7]. Sum-distinct
sets in (S,,+) and ({0,1}", +) are related by the following observation.

Remark 2. A binary equivalent of a sum-distinct set from (S,, +) is
a sum-distinct set in ({0,1}",+).

Proof. If b(X) = {Z1,%2,-- -, &7} is not sum-distinct in ({0,1}",+),
then there exist at least two subsets of b(X), say {Z;,,%i,, -, %i,.} and
{25,185, -, £ju } such that (Z;, +Zi,+- - +2i,)[[] = (25, +&j,+--+2;)[]]
for 1 =0,1,---,n~1. After multiplying this by 2 and summing up we have
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Y 2, = YF_ z;. and thus X = {a; | b(z;) = %} is not sum distinct
in (Sp,+). 1

The converse of the above remark is not true. For example, the set
{5(2),b(3),b(5)} has eight distinct sums, that is, 000, 010, 110, 101, 120,
111, 211, 221. By the above remark, a lower bound, 1 + n~1, for dy in
({0,1}",+) follows from B; # @ for n € N3. However, a much stronger
result holds in ({0, 1}",+).

Theorem 2. Let A(n), n € Ni, denote the number of 1’s in the
binary representation of the first n positive integers. Then, n='A(n) <
dn < logy(1+n +n?), n € N2, in ({0,1}",+).

Proof. It has been shown (by effective design), [5], that for every
n € Nj there is a set Z which is sum-distinct in ({0, 1}",+) and |Z]| > A(n).
To establish the upper bound, note that |Z| < 2” and 21%! < (1 +|Z|)".
Hence, |Z| < n? + n and 28l < (1 4+ n 4 n?)". This upper bound can be
slightly improved by a repeated substitution of the upper bound for |Z|
into 2121 < (1 4+ |Z))". &

From [5, p. 479] one obtains 21%1=" < ¢|2|% where ¢ < 4e. That
yields asymptotically stronger upper bound in Theorem 2, namely d,, < k+
3 logy(3n2+kn), where k < 3+log, e. The estimate A(r) = inlog, n+0(n)
was announced in [1]. A more precise result may be found in [8].

Call a sum-distinct set Z = {21,22,--,2p}, zi € &, fullin (X, +) if
{z} U Z is not sum-distinct for any z from X.

A full sum-distinct set does not necessarily have to be the maximum
cardinality sum-distinct set, e.g. Z,. However, the binary equivalent of a
full sum-distinct set from (S,,+) may or may not be a full sum-distinct
set in ({0,1}",+). For example, Z,, and 5(Z,) are full sum-distinct sets in
(Sn,+) and ({0, 1}",+), respectively. However, {1,3,5} is full in (S3,+)
while {b(1),5(3), b(5)} is not in ({0,1}3,4). ¥

Problem 1. Let Z be the maximum cardinality sum-distinct set
from (Sn,+). Under what conditions is b(Z) a full sum-distinct set in
({0,1}",+4)?
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