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Abstract. Hare and Hare conjectured the 2-packing number of an
m x n grid graph [mn/5] for m,n > 9. This is verified by finding
the 2-packing number for grid graphs of all sizes.

The paper completely answers the question: What is the mazimum
number of checkers that can be placed on an mxn checker board so there are
at least two squares between each pair of checkers? These configurations are
called 2-packings (see Figure 1) and the maximum number is the 2-packing
number of an m x n complete grid graph denoted by ap n-
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Figure 1 — Legal 2-Packings. The checkers in a 2-packing must
be separated by at least two squares (horizontally or vertically).

Hare and Hare [4] developed an efficient algorithm for finding amn-
Based on their computer studies, they conjectured amy = [mn/5] when
m,n > 8, except (m,n) = (8, 10) and (m, n) = (10, 8). Here this conjecture
is verified. Theorems 1 through 8 show that:

( [((m+1)n/6] ifn>me{1,2,3}
[6n/7] ifa>m=4andnmod T#1
[6n/7] +1 fan>m=4andnmod 7=1

o = 4 10 if (m,n) = (7,7) (1)
™ =) [(mn+2)/5] ifn>me{56,7}and (m,n)#(7,7)

17 if (m, n) = (8, 10)
[mn/5] if » > m > 8 and (m,n) # (8,10)

\ @n,m ifm>n

1. Preliminary Calculations

Lemma 1 and 2 give lower and upper bounds for am;,n-

ARS COMBINATORIA 36(1993), pp. 261-270



Lemma 1. Forellm > 0 and n > 0, apm,n > [mn/5].

Proof. Figure 2 partitions the squares of an mxn board into five 2-packings.
Since there are mn squares, at least one set has [mn/5] checkers. O

Lemma 2. Forallk, m andn with0 <k <n and m > 0,
amn < Cmpn—k + Omk.
Proof. A maximal 2-packing of m X n board has at most @y, »_k checkers

in the first n — k columns, and at most an, x checkers in the last k columns.
The result then follows. O
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Figure 2- Five 2-packings of m x n board. The squares of an
mxn board can be partitioned into 5 2-packings. The pattern in each
row repeats every 5 squares, and each row is labelled the same as the
row 5 above it. Since there are mn squares, at least one 2-packing
contains [mn/5] checkers.

We also needed an, n for 390 cases. While most are proved in Hare and
Hare [4], proving the rest “by hand” would have been tedious. Instead, a
computer program was used that implemented a branch and bound algo-
rithm which bounded with Lemma 2. While not as sophisticated as the
algorithm in Hare and Hare, it was quite adequate for the purposes here:
finding these values in 101 cpu-seconds on a VAX 8800. Lemma 3 summa-
rizes these results.

Lemma 3: Egquation (1) holds when m,n < 18, and when m < 8 and
n < 25.

2. The Cases where m=1,2,3,4

Finding @1,5, @2,n, a3, and a4, are direct applications of Lemma 2.
Theorem 2 is from Hare and Hare [4], though the proof is quite different.

Theorem 1. For alln >0, a,n = [n/3].

Proof. Figure 3 shows that a1, > [n/3]. Lemma 3 gives the result when
n < 3. For n > 3, assume the result holds for n — 3. Then by Lemma 2,

ai,n < @in-3+ a1, = [(n - 3)/3] + 1= [n/3].
The result follows by induction. O
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Figure 3 — Maximal 2-packings of 1 x » Board. The first n
columns (the pattern repeats every 3 columns) show that ai,n 2
[r/3]. Theorem 1 shows this is maximal.

Theorem 2. For alln >0, azn = [7/2].

Proof. Figure 4 shows that a2, > [n/2]. Lemma 3 shows the result holds
for n < 2. For n > 2, assume the result holds for » — 2. Then by Lemma 2,

az,n < @gn-2+ 022 = [(n—2)/2] + 1= [n/2].
The result follows by induction. O
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Figure 4 — Maximal 2-packings of 2 x n Board. The first n

columns (the pattern repeats every 4 columns) show that a2, 2
[n/2]. Theorem 2 shows this is maximal.

Theorem 3. For alln > 0, a3 n = [20/3].

Proof. Figure 5 shows that a3, > [2n/3]. Lemma 3 shows the result holds
for n < 3. For n > 3, assume the result holds for » — 3. Then by Lemma 2,

a3,n < 63,n-3+ a3,3 = [2(n — 3)/3] + 2 = [2n/3].

The result follows by induction. O
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Figure 5 — Maximal 2-packings of 3 x n Board. The first n

columns (the pattern repeats every 3 columns) show that a3. >
[2n/3]. Theorem 3 shows this is maximal.

Theorem 4. For alin >0,
Gu = [6n/T]+1 ifnmodT=1
hn = [6n/7] otherwise.

Proof. Let f(n) be the right side of the equation in Theorem 4. Figure 6
shows that a4, > f(n). Lemma 3 gives the result when n < 7. Forn > 7,
assume the result holds for n — 7. Then by Lemma 2,

@4 < Ggn-7+ 047 = f(n —T7)+ 6= f(n).
The result follows by induction. O
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Figure 6 — Maximal 2-packings of 4 x n Board. The first n
columns (the pattern repeats every 7 columns) show the right side
of the equation in Theorem 4 is a lower bound for a4,». Theorem 4
shows this is maximal.

8. The Cases where m =5,6,7

The only values of m where Lemma 2 does not give a5 for all but a
finite number of n is when m = 5, 6, 7. For these, proving (1) becomes more

difficult.
Lemma 4. Let S be a 2-packing of m x n board.

(a) If for some 0 < r < n, |S| = @m,;s + @m,n—r, then S has ezacily
@m,r checkers in columns 1 to 7.

(b) If for some g < 7, |S| = @m,q+ @m,n—q = @m,r + Cmn-r, then S
has ezactly am,; — @m,q checkers in columns g+ 1 to ».

Proof. For (a), S can at most a.,,, checkersin columns 1 to r, and S has
at most @y n—r checkers in columns r + 1 to #n. From these, (a) follows.
Statement (b) follows immediately from (a). O

Theorem 5. Foralln >0, a5, =n+ 1.

Proof. Figure 7 shows that a5, > n + 1. Lemma 3 gives the result when
n < 3. For n > 3, assume the result holds for all £ < n. Suppose S
2-packs a 5 X n board with n + 2 checkers. Then for all 0 < k < =,
Cmiktama-kr =k+ 1+n—k+1 = n+2. Let s; be the number of checkers
of S in column i. Then by Lemma 4, S has column count 2, 1,1, 1, ..., 1,
2 (i.e., 81 = sp = 2 and s = 1 for all k with 1 < k < n»). The only way for
sy = 2 and s; = 1 is to have checkers at (1,1), (1,5) and (2,3). But this
allows no checkers in column 3. The result follows by induction. O

Lemma 5. A 2-packing of a 6 x 5 board cannot have column count 2, 1,
1,2 1.

Proof. Suppose S 2-packs a 6 x 5 board with column count 2, 1, 1, 2,
1. In order for s3 = s5 = 1, the checkers in column 4 must be (1,4) and
(6,4), and at least one of the checkers in columns 3 or 5 must be in row 4.
Without loss of generality, assume (3,4) € S. Then (5,2) € S. But then 2
checkers cannot be placed in column 1. O
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Figure 7 - Maximal 2-packings of 5 x » board. The first n
columns of the left 2-packing (the pattern repeats every 3 columns)
shows as» > n+1 for n mod 3 # 0. The first n columns of the
right 2-packing (after the first 4 columns, the pattern repeats every
3 columns) shows as,n > n + 1 for n mod 3 = 0. These are maximal
by Theorem 5.

Lemma 6. A 2-packing of a 6 x 7 board cannot have column count 1, 2,
1,1,1,2 1.

Proof. Suppose a 2-packing of a 6 x 7 board had column count 1, 2, 1, 1,
1, 2, 1. In order for columns 1, 3, 5, and 7 to each have a checker, the
checkers in columns 2 and 6 must be at (1, 2), (6,2), (1,6) and (6,6). Then
the checkers in columns 3 and 5 must be either (3,3) and (4,5), or (4,3)
and (3,5). Either way prohibits a checker in column 4. O

Theorem 6. For alln > 0, ag, = [(6n +2)/5].

Proof. For » mod 5 = 1,2,3, Lemma 1 shows that as. > [62/5] =
[(6n + 2)/5). Figure 8 shows that agn > [(6n + 2)/5] for n mod 5 =0,4.
Lemma 3 gives the result for n < 3. For n > 3, assume the result holds for
all £ < n. Then there are three cases.

If n mod 5 =0,1, 4, then from Lemma 2,

asn < asn-3+as3 = [(6(n — 3) +2)/5] + 3 = [(6n + 2)/5].

For n = 5j +2, suppose S 2-packs a 6 x n board with [(6n+2)/5]+1 =
67 + 4 checkers. For all k& where 0 < k < n,
asn—k + asx = [(6(n — k) +2)/5] + [(6k + 2)/5]

= 6j+ 2+ [(4 — (k mod 5))/5] + [((k mod 5) + 2)/5] = 65 + 4.

So by Lemma 4, S has column count 2, 1, 1, 2, 1, .... This violates Lemma
5. So the result is true in this case.

For n = 5j+ 3, suppose S 2-packs a 6 x n board with [(6n+2)/5]+1 =
67 + 5 checkers. For all k where 0 < k < 7,

a6,n-k + a6,k = [(6(n — k) + 2)/5] + (6% +2)/5]

6j+6 ifkmod5=4

= 6j+4+ [~ (k mod 5)/5]+[((k mod 5)+2)/5] = { e M heine
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So by Lemma 4,5 =s,=2,sy =1lforl1<k<mnand kmod5=1,2,3,
and s; + sg41 = 3 for 1 < k < = with k¥ mod 5 = 4. Since columns 1,
2 and 3 have 2, 1 and 1 checkers, respectively, s4 = 1 and 35 = 2 for the
reverse violates Lemma 5. Now since columns 4 to 8 have column count 1,
2, 1,1, 1, we must have sg = 1 and 810 = 2 for the reverse violates violates
Lemma 6. Continuing, sy = 1for 1 <k < n and k mod 5 = 4 and s; = 2
for 1 < k < nand k mod 5 = 0, for the first instance where this does not
happen violates Lemma 6. Then, columns n — 4 to » have column count 1,
2, 1, 1, 2 which violates Lemma 5. So the result is true in this final case. O
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Figure 8 — Maximal 2-packings of 6 x » board. The first n
columns of the upper 2-packing (after the first 6 columns, the pat-
tern repeats every 10 columns) show that ae,n > [(6n + 2)/5] for
n mod 5 = 0. The first n columns of the lower 2-packing (the
pattern repeats every 10 columns) show that ae n > [(6n + 2)/5]

for n mod 5 = 4. Figure 2 shows that as» > [(6n + 2)/5] for
n mod 5 # 0,4. Theorem 6 shows these are maximal.

Lemma 7. A 2-packing of T X 5 board cannot have column count 2, 1, 2,
1, 2

Proof. Suppose S 2-packs a 6 x 7 board with column count 2, 1, 2, 1, 2.
In order for s; = s4 = 1, there must be a checker at either (1,3) or (7, 3).
Without loss of generality, assume (1,3) € S. The other checker in column
3 must be either (4, 3), (5, 3), (6, 3), or (7,3).

If there is a checker at (4, 3), at least one checker in columns 2 and 4
must be in row 6. Without loss of generality, assume (6, 2) has a checker.
Then column 1 cannot have 2 checkers.

If there is a checker at (5, 3) or (6,3), at least one checker in columns
2 and 4 must be in row 2. Without loss of generality, assume (2,2) has a
checker. Then column 1 cannot have 2 checkers.

If there is a checker at (7,3), at least one checker in columns 2 and 4
must be in row 3 or 5. Without loss of generality, assume there is a checker
at (3,2). Then column 1 cannot have 2 checkers. O
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Theorem 7. For alln > 0,

3 ifn=1
a7 =4 10 fan="1
[(Tn +2)/5] otherwise.

Proof. Let f(n) be the right side of the above equation. Figure 9 shows
that a7, > [(Tn+2)/5] for » mod 5 = 3,5 with n > 7. Otherwise, Lemma
1 shows that a7, > [Tn/5] = f(n). Lemma 3 shows the result holds for
n < 18. For n > 18, assume the result holds for all ¥ < n. Then there are

two cases.
uEE
e e
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Figure 8 — Maximal 2-packings of a 7 x n Board. The above
2-packing (after the first 6 columns, the pattern repeats every 5
columns until the last 6 columns) show that az» > [(7Tn + 2)/5]
for » mod 5 = 2 and n > 7. Removing the last two columns shows
that az,» > [(7n +2)/5] for n mod 5 = 0 and » > 7. Figure 2 shows
that az,» > [(Tn +2)/5] for n mod 5 # 0,2. Theorem 7 shows these
are maximal.

If » mod 5 # 4, then from Lemma 2,
7,0 < a7,0-7+ az;7 = [(6(n — T) + 2)/5] + 10 = [(6n + 2)/5].

For n = 5j+4, suppose S 2-packs a 7 x n board with [(7To+2)/5]+1 =
77 + 7 checkers. Forall k where T< k <n -7,

arn-k + a7k = [(T(n — k) + 2)/5] + [(7k + 2)/5]

=7j+ 6+ [=2(k mod 5)/5] + [(2(k mod 5) + 2)/5]

_[77+8 ifkmod5=2
T |77+ T otherwise.

Further, a7 n_7+a77=[(T(n~7)+2)/5] +10=75-3+10=Tj+ 7. So
by Lemma 4, sg = 8,_g =2, 8; = 1for T<k <n—Tand k mod 5 =1,4,
s = 2for T< k< n-—Tand kmod 5 =0, and s + sx41 = 3 for
7< k <n—"Twith k mod 5 = 2. Since columns 8 to 11 have column count
2,1, 2, 1, we must have s;2 = 1 and s;3 = 2 in order not to violate Lemma
7. Now since columns 13 to 16 have column count 2, 1, 2, 1, we must have

267



817 = 1 and s;5 = 2 in order not to violate Lemma 7. Continuing, s =1
with7T<k<n—-—Tandkmod5=2and s =2withT<k<n-7
and j mod 5 = 3, for the first instance where this does not happen violates
Lemma 7. Then, columns » — 12 to n — 8 have column count 2, 1, 2, 1, 2
which violates Lemma 7. So the resulti is true in this final case. O

4. The Case where m > 8

Theorem 8. For allm,n > 8,

_jt if (m,n) = (10, 8) or (m,n) = (8,10
Gmn = { [mn/5] otls,;nm;.?xe. (16,8) or () = (5,10

Proof. Lemma 3 shows the resuit holds when m,n < 18, and for m = 8
with n < 25 (Figure 10 shows the exceptionally dense 2-packing of an 8 x 10
board). Lemma 1 shows the result is a lower bound for all m and n.
Without loss of generality, assume m < n. Assume the result holds for
all j <mand k < n. If m = 8, then n > 26. Then Lemma 2 and induction
give :
agn < agn-1s +as,15 = [8(n — 15)/5] + 24 = [8n/5].

If m > 8, then n > 19. Then Lemma 2 and induction give
amn < @mn-10 + @m,10 = [m(n — 10)/5] + 2m = [ma/5]. O
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Figure 10 — Maximal 2-packing of 8 x 10 Board. This is the
unique (up to symmetries) maximal 2-packing of an 8 x 10 board
with 17 checkers. Figure 2 gives a maximal 2-packing for all m x »
board with m,n > 8 except for 10 x 8 and 8 x 10 boards.

5. Suggestions for Further Work

The regularities found here suggest similar problems might have similar
regularities. Three directions for explorations are listed below.

k-packings. Checkers form a k-packing if each pair of checkers are sepa-
rated by at least k squares. It is easy to show that the maximal number of
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checkers in a 1-packing on an m x = board is [mn/2]. For k > 2, what is
the maximal number of checkers in a k-packing on an m x n board?

Domination and Fractional Domination. A set of checkers dominate
a board if each square has a checker on it or is next to (either vertically
or horizontally) a square with a checker on it. Let Amn be the minimum
number of checkers needed to dominate an m x n board. A set of “fractional
checkers” (checkers weighted with a nonnegative number) are a fractional
domination of a board if, for each square, the weight on the square plus the
weights on its neighbors is at least one. Let B, be the minimum sum of
weights needed to fractionally dominate an mxn board. A set of fractional
checkers are a fractional 2-packing of a board if, for each square, the weight
on the square plus the weights on its neighbors is at most one. Let bn.n
be the maximum sum of weights needed to fractionally 2-pack an m x n
board. Chandrasekharan, Hedetniemi, Laskar and Majumdar [1] give

Qm,n < bm,n = Bm,n < Am,m (2)

Considerable work has been directed toward finding 4Am,n and Bp,n. Ja-
cobson and Kinch [6] showed that

Ayn = [n/3), A2 = [(n+1)/2], A3, = [(3n+1)/4]

d Aen = n+l1 ifn=1,23,56,9 3
anc fam {n otherwise. (3)
Hare, Hedetniemi and Hare [5] devised a dynamic programming algorithm
to find A n. It found that A5, = [(6n+4)/5] for 8 < n < 500. Cockayne,
Hare, Hedetniemi and Wimer [2] showed that for all n > 8,

[(n? + n — 3)/5] < An,n < [(n® + 4n — 20)/5].

Since it is a linear programming problem, computation of B, n is straight-
forward. Equations (1), (2) and (3) give Byn = [n/3]. Hare [3] showed
that
B,. — (n+1)/2 if n is odd
Zm = (n? 4+ 2n)/2(n+ 1) ifnis even.

2-Packing of Cartesian Products. A checker board can be thought of
as the Cartesian product of two path graphs. It should be possible to find
the 2-packing number for the Cartesian product of other infinite families of
graphs.
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