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Abstract. We define the basis number, $(G), of a graph G to be the least integer k
such that G has a k-fold basis for its cycle space. We investigate the basis number of
the lexicographic product of paths, cycles and wheels. It is proved that

(Pn® Pn)=(pr ®Cm) =4 forn,m>17,
W(Cn ® Pm) = b(Cp ® Cry) =4 forn,m > 6,
(P, @ Wp) = 4 forn,m > 9,and
(Cp, @ W) = 4 forn,m > 8.

Ttis also shown that max {4, b(G) +2 } is an upper bound for b( P, ®G) and 8(Cn®G)
for every semi-hamiltonian graph G.

1. Introduction.

Throughout this paper we consider only finite, undirected, simple graphs. Our
terminology and notations will be standard except as indicated. For undefined
terms, see [S] and [7].

Let G be a connected graph, and let ey, ez, ... , e, be an ordering of the edges.
Then any subset S of edges corresponds toa g-dimensional vector (ay, a2, ... ,aq)
witha; = 1 ife; € Sanda; = 0 ife; € S, fori = 1,2,...,q. These vectors
form a vector space over the field Z;. These vectors which correspond to cycles
of G generate a subspace called the cycle space of G, denoted by C(G). Strictly
speaking the vectors generate C(G), but we usually think of the corresponding
cycles as elements of the space. It is well-known that

dimC(G) =v(G)=qg—-p+1,

where p is the number of vertices and 4(G) is the cyclomatic number of G. A
basis for C(G) is called k-fold if each edge of G occurs in at most k of the cycles
in the basis. The basis number of G (denoted by b(G)) is the smallest integer &
such that C(G) has a k-fold basis, and such a basis is called a required basis of
G and denoted by B,(G). If B is a basis for C(G) and e is an edge of G, then
the fold of e in B (denoted by fg(e)) is defincd to be the number of cycles in
B containing e. The lexicographic product [6] (also called composition) of two
graphs Gy = (X3, Ey) and G = (X2, B2), denoted by G ® G2, is the graph
with vertex set X; x X, in which (=, z,) is joined to (y,,y2) whenever z; is
joined to y; in G or xy = y and z; is joined to yz in G2. It is clear that the
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number of edges in G ® G2 is p1g2 + p2qi, where p; and gi are the number of
vertices and edges in G;, 1 = 1,2. Note that the lexicographic products G; ® G2
and G, ® G are not isomorphic.

The path with n vertices is denoted by P,, and the cycle with m edges is denoted
by Cp.

The first important result concerning the basis number was given in 1937 by
MacLane [8]. He proved that a graph G is planar if and only if 5(G) < 2. In
1981, Schmeichel [11] proved that forn > 5, b(K,) = 3; and for m,n > 5§,
b( Kmun) = 4 except for K¢ 10, K5, and K¢ n, withn=15,6,7,and 8.

Moreover, in 1984 Al-Sardary [10] established b( Ks ) = b(K¢,5) = 3, for
n=5,6,7,and 8.

In 1982, Banks and Schmeichel [4] proved that forn > 7, 5(Q,) = 4, where
Q. is the n-cube. Furthermore, Ali [1], [2], and [3], considered the basis number
of some complete multipartite graphs, the basis number of the join of graphs and
the basis number of the direct products of paths and cycles, respectively. His main
results are given in the following theorems.

1. (Kpm) <9, for m,n> 3, where Ky Iis a complete m-partite graph.
2. (Knnn) =3, n2>3,

3. B(Kmae) <4, forany positive integers £, m and n.

4. b(CmPp) L 2.

5. B(Cn-C.) < 2, where Cy,- C,, denotes the direct product [3] of the cycles
Cnm and C,.

6. If G\ and G, are vertex disjoint graphs, and each has a spanning forest of
valency not more than 4, then
b(G1 + G2) < max{4,b(G) + 1,b(G2) + 1}.

The purpose of this paper is to determine the basis number of the lexicographic
products of paths, cycles, and wheels.

2. The basis number of P, ® Py,.

Let the vertex sets of P, and C,, be Z,, where Z,, denotes the addition group
of residus modulo n. Let the path P, be 012 ...(n — 1), and the cycle C,, be
012...(n- 1)O0.

The following lemma is a simple and useful result.

Lemma 1. If G and H are connecled graphs, then G ® H is also connected.

Proof: From the definition of the Iexicographic product of two graphs, one can
deduce that G x H C G ® H, where G x H dentoes the cartesian product [9] of
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the graphs G and H. In [9] it is proved that G x H is connected, therefore, G x H
is also connected. 1

Now we consider the complete bipartite graph K, . Let {(0,0),(0,1),...,
(0,m-1)}and {(1,0),(1,1),...,(1,m — 1)} be the partition of the vertices
of K, m into independent sets. Schmeichel [11] proved that

B (Kmm)={(0,9)(1,7)(0,i+1)(1,j+ 1)(0,9)]i,j=0,1,... ,m=2}, (1)

is a basis for C( K ) of fold 4, and so deduced that b( Kpmm) < 4. Ali [2]
showed that

Al={(0,0)(l,0),(0,0)(1,m—l),(O,m—l)(l,O),(O,m—l)(l,m—l)}, (2)
is the set of all 1-fold edges of Koy in B Kmmm), and

A2 = {(0’0)(1)])1(0)7“— l)(l,]),(0,])(1,0),(0,])(l,m— l)l
j=l:2)"'sm-2}) (3)

is the set of all 2 -fold edges of K in By( Ky ) ; and all other edges are of fold
4,

Lemma 2. If G is connected, and has a spanning tree of valency not more than
4, then
(P, ® G) < max{4,b(G) + 1}.

Proof: It is clear that
hBLG=G+@q.

Therefore, from Theorem 1 in [2],

b(P, ® G) = b(G + G) < max{4,b(G) + 1}.

Corollary 1. b(P, ® P,) =4 for m > 12,
Proof: From Lemma 2, we have

(P, ® Py) < 4.
Itis clear that for m > 3, P, ® P,, is nonplanar, thus, 5( P, ® Pn) > 3. On the -
other hand, suppose b( P, ® P,;) = 3 and let B, be a required basis of P, @ P,,.

Then |B,| = m* — 1. As in Theorem 1 in [2], the number of 3cycles in B, is at
most 3.2(m — 1), and all other cycles in B, are of length at least 4.

273



Hence,
4 ((m?-1)—6(m—1))+3.6(m—1) <3(m?+2m-2),
that is,
m? +8 < 12m.
The above inequality does not hold when m > 12. Hence,
P, @P,) >4,ifm>12.
|

By finding a 3-fold basis, we show that 5(P, ® P,) = 3 form = 3,4,and §S.
It seems likely that 5( P, ® P,) =3 form=6,7,...,11.

Corollary 2. (P, ® Cy,) =4 for m > 12.
Proof: From Lemma 2, we have

(P, ®Cp) <4.
Itis clear that P, ® C,, is nonplanar form > 3. Thus, b(P, ® Cy) > 3. On the
other hand, suppose b( P, ® Cy,) = 3. The number of 3-cycles in a required basis
of P, ® C,, is at most 3.2(m), and all other cycles are of length at least 4. Since

AP ®Cp) = m? + 1,
and
|E(Py ® Cm)| = m? +2m,
then
4(m? —6m+ 1) +3(6m) < 3(m? +2m),

which implies

m?+4 <12m.
It can be easily verified that the above inequality does not hold when m > 12.

Hence,
(P, ®Cpr) 24ifm > 12,
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By finding a 3-fold basis, it is shown that
P, ®C,)=3form=3,4,and5.

Theorem 1. Forn> 2, (P, ® Pp) < 4.
Proof: LetVp,Vy,..., V.1, bea partition of the vertex set of P, ® P,, such that

Vi={(,0,3G,1,...,G,m- D},

andlet E;,i=0,1,... ,n— 2, be the set of all edges in P, ® P,, joining a vertex
of V; to a vertex of V;,;. That is, for each 1, the subgraph H; = (V;U V41, E;) is
isomorphic to K, . Also let P,{, be the j-copy of Py, that is P,, with each vertex
yreplaced by (j,y),forj = 0,1,... ,n— 1. Then, it is a simple matter to verify
that

Eo,Br,...,Eu2,E(Pp),... , B(PE")

is a partition of the edge-set of P, ® Pp.
We shall prove that

n~2
B(P.® Pn) = (U B,(Hk)) us
k=0
is a basis for C( P, ® P,,), in which

B,(Hi) = {(k,i)(k+1,7)(k,i+ 1)(k+ 1,7+ 1)(k,9)|
i,7=0,1,...,m—2},

and

S={(,NUEF+D0E+1,m=1)(1,7),6@+1,/)(+1,7+1)
(i,m=-1)(@+1,)]i=0,1,...,n—2andj=0,1,..., m—2}.

It is clear that

[(B(Pa® Pp)|=(m—-1)(m—1)}(n-1) +2(m—1)(n—-1)
=m?(n—1D+n(m—1)—nm+1= WP, ® Pp).
From the construction of P, ® Pn, we notice that every chordless cycle C of
P, ® Py, is either a 3-cycle or a 4-cycle of the graph H}, for some k. Therefore,

C is generated by B( P, ® P,,). Thus, B(P, ® P,,) generates C( P, ® P,,) and
s0 it is a basis.
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To consider the fold of the basis B( P, ® Pp), let

n-2
T = |J B:(Hy),
k=0

L={(,m-1D0+1,7),G+1,m-1)(47]
i=0,1,...,n—2,andj=0,1,...,m—.1},

and
n—-2
M= (U E(H;,)) - L.
k=0
It is clear that E( P, ® P,,) is partitioned into U?;o’ E( P,';,), L and M. Then
using (1), (2), and (3), we have

n—-1

fr(e) =0, fs(e) <2, forein | J E(PY),
i=0

fr(e) <2, fs(e) <2, fore€ L,

fr(e) <4, fs(e) =0, foree M.
Thus, B( P, ® Py,) is a 4-fold basis of P, ® Pp,. |
Theorem 2. Forevery integers m,n > 7, we have b(P, ® Pn) = 4.

Proof: By Theorem 1, it suffices to exhibit (P, ® Pr) > 4,form,n > 7.
Suppose b( P, ® P,,) = 3. The number of 3-cycles in a required basis of P, ® P,
is at most 3(n) (m — 1), and all other cycles are of length at least 4. Thus,

4 (m*-1)(n—-1)-3n(m-1)) +3 3n(m-1)) <3 (m*(n—1) + s(m-1)) ,

that is
m?(n—1)+2n+4 < 6mn

It can be easily verified that the above inequality does not hold whenm,n > 7.
Hence,
(P, ®P,)=4ifn,m>7.

|
Remark: Although the lexicographic product P, ® Py, is not isomorphic to P, ®
Py, for m # m, but from Theorem 1 and Theorem 2, if m,n > 7

b(Pn®Pm) =b(Pm®Pn) =4,
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3. The basis number of C, ® Cr,.

In this section, we consider the basis number of the lexicographic product of a
cycle with a path or a cycle.

Theorem 3. For all integers m,n>1,
(P, ®Cyp) =4.

Proof: Let B(P, ® Pp,) be the required basis of P, ® P,, defined in Theorem 1.
We shall prove that

B(Pha®@Cm) = B(Pr@Pn) UW
is a basis for C( P, ® Cp,), in which
W= {(5,0)(i, 1) ...(3,m — D(5,0)[i=0,1,... ,n—1}.
It is clear that

lB(Pn®Cm)I='Y(Pn®Pm)+"
=(n— 1)(m2 -D+n
=(n— 1)m2+nm—nm+l
= (P ®Cp).

Since B(P, ® P,,) is an independent set of cycles, and each cycle (i,0)(3,1) ...
(1, m—1)(1, 0) contains an edge ({,0) (¢, m— 1) notin E(P,® P,,),then B(P,
®Cr) is anindependent set of cycles in C( P,®C,,) . One can easily observe from
the proof of Theorem 1, that foralli = 0,1,... ,n—1landj =0,1,... ,m—1,the
fold of the edge (1, 7) (4, 7+ 1) is 1 in W and it is not more than 2 in B( P, ® P),
in which j + 1 is taken with respect to modulo m. The fold of each other edge of
P, ® Cy, is at most 4. Thus, b( P, ® Cn) < 4.

On the other hand, suppose b( P, ® C) = 3. The number of 3-cycles in a
required basis of P, ® Cy, is at most 3nm, and all other cycles are of length at
least 4. Hence,

4 (mz(n— 1) —3mn+ 1) +97m <3 (mz(n—- 1) + mn) ,

that is
m2(n—1)+4 < 6mn.

It can be easily verified that the above inequality does not hold when m,n > 7.
Hence,
WP, ®Cn) 24ifmmn>17.

The proof of Theorem 3 is complete. ]
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Theorem 4, For m,n > 3, we have b(C, ® Cn) < 4, equalily holds when
m,n>6.

Proof: Let
B(Ca®Cn) = B(P, ® Cw) UB(Pé ® Py U {CO}y

in which B( P, ®C,,) is the basis for C( P, ® Cy,) defined in the proof of Theorem
3, B(P;.® Py,) is the basis for C(P; ® P.,) defined in Theorem 1, forn = 2,
where P; is the edge joining vertices 0 and n— 1, and

Co =(0,0)(1,0)(2,0)...(n—1,0)(0,0).

To obtain B(P; @ Py) from B( P, ® P,,) replace 1°s in the first positions of the
ordered pairs by (n— 1). Now Cp is independent from the cycles in B(P; ® P),
because Cp contains the edge (0, 0) (1, 0), which is not present in any linear com-
bination of cycles in B( P; ® Py,). Therefore, B( Py ® Pp) U{Co }, is an indepen-
dentset of cycles. Also B( P, ®Cy,) UB(P; ® P,,) U{Cp } is an independent set
of cycles, because if C is any cycle generated from cycles in B(P3 ® P,,) U{Co },
then C contains at least one edge of E,_, (E,_; is the set of all edges joining a
vertex in V,-; to a vertex in V5). On the other hand, no linear combination of
cycles in B( P, ® Cy,) contains an edge of E,_, . Therefore, B(C, ® Cn,) is an
independent set of cycles. Since

|B(Ca®Cm)|=(n=1m?+1+(m? -1 +1
= nm® + 1= (G, ® Cn),

then B(C, ® Cy,) is a basis for C, ® Cp.
To find the fold of B(C, ® Cp), let

N= B(Pz’ ®Pm) UB(Pn®Cm)-
From the proofs of Theorem 1 and Theorem 3, one can easily check that
fn(e) < 4, foreache € E(C, ® Cp) — E(Co),

and

fn(e) =1, foreache € E(Cy).

Thus, B(C, ® Cr) is a 4-fold basis of C, @ Cp,.

To complete the theorem, suppose 5(C, ® Cr,) = 3. The number of 3-cycles
in arequired basis of C, ® C,, is at most 3nm, and all other cycles are of length
at least 4.
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Hence,
4(nm? —3nm + 1) + 9nm < 3(m?n+ mn),
that is
m?n+4 < 6mn.
It is clear that the above inequality does not hold when m, n > 6. Hence,
M(Cr,®Cn) >4ifmn>6.
The proof of Theorem 4 is complete. |
TheoremS. Forn>3 and m > 2,
b(Cn® Pn) < 4
equality holds for m,n> 6.
Proof: Consider the set of cycles
B(Cu ® Pp) = B(Py ® Pu) UB(P; ® Pn) U{Co},

in which B(P, ® Py,) is that defined in the proof of Theorem 1, and B(Pj ®
P,) U{Cy} is defined in the proof of Theorem 4. It is clear that

B(Cp® Pn) C B(C®Chr),
and
|B(Co® Pp)|= m*n—n+ 1=~(Cy ® Ppn).
Thus, B(C, ® Pp,) is a basis for C, ® Py, and
KC,® P,) < 4.

Now, suppose
b(Cn ® Pr) = 3,
and B,(C, ® Pp) is a required 3-fold basis. Then the number of 3-cycles in
B,(C, ® P,) isatmost 3n(m — 1) whenn >4 and m > 3.
Since

|E(Cr ® Pp)| = m2n+ mn—n,
then
4(m’n—3mn+2n+1) +33(m—1) < 3(m*n+ mn—m),
that is

m?n+2n +4 < 6mn.
The above inequality does not hold when =, m > 6. Hence, form,n> 6
b(Cn® Ppn) =4.
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4. An upper bound for 5( P, ® G) and ¥(C, ® G).
The basis number of the lexicographic product of a semi-hamiltonian graph with
a path or a cycle is studied in this section.
Theorem 6. For every semi-hamiltonian graph G,
(P, ®G) < max{4,b(G) +2}.

Proof: Let m be the order of G and let P, be a hamiltonian path of G. Consider
the set of cycles

n~-1
B(Pn ®G) = B(Pn ® Pm) U (U Bf(G’))
i=0
where B,(G") is a required basis of the ith copy G* of G, and B(P, ® P,,)
is the basis of P, ® P,, defined in the proof of Theorem 1. It is clear that any
linear combination of cycles in B( P, ® P,,) contains an edge joining a vertex of
V(G*) with a vertex of V(G™*!) for some i, 0 < i < n— 2. Moreover, any

linear combination of cycles in U;‘:J B,(G") contains edges of G* for some i,

0 < 1 < n— 1. Therefore, B( P, ® G) is independent. Since
|B(Pa®G)|=(Pn®Pm) + n{g—m+1)
=mi(n—-1)+ng—nm+1
=1(P,®QG),

in which gq is the size of G, then B( P, ® G) is a basis for P, @ G.

From Theorem 1, the fold in B(P, ® G) of each edge zy, z € V(G*) and
y € V(G™*Y), fori = 0,1,...,n— 2, does not exceed 4. And the fold in
B(P, ® P,) of each edge of P}, fori = 0,1,... ,n— 1, does not exceed 2.
Therefore, the fold in B(P, ® G) of each edge of G%, fori = 0,1,... ,n—1,
does not exceed b(G) + 2. Thus,

b(P, ® G) < max{4,b(G) +2}.

Theorem 7. For every semi-hamiltonian graph G,
b(C,®G) < max{4,b(G) +2}.

Proof: Using Theorem 5, one may show, as in the proof of Theorem 6, that

n—1

B(C.® Pn) U (U B,(G"))

i=0

is a basis for C, ® G of fold at most
max{4,b(G) + 2},

in which m is the order of G. [ |
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Corollary 1. For m,n> 9, b(P, @ Wy,) = 4, where Wy, is a wheel of order
m.

Proof: From Theorem 6, b(P, ® W,,) < 4. Suppose b(P, @ W,) = 3 and
B.(P, ® W,,) is a 3-fold basis. It is clear that

|E(Py @ Wr)| = m*n+ 2mn— m? — 24,
WP @Wyq) = m2n+ mn—m? —2n+ 1.

The number of 3-cycles in B, (P, ® W,;,) is at most 3n(2m — 2). Therefore,

HmPn—m? —5Smn+4n+1)+33n(2m—2)
< 3(m?n+ 2mn—m?—2n),

that is

m2n+4n+4 < m? + 8mn.

The above inequality does not hold for m,n > 9. Hence, form,n> 9, (P, ®
Wa) = 4. ]

Corollary 2, For m,n> 8, b(C, @ W,,,) = 4.
The proof is similar to that of Corollary 1.
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