A Family of Inequalities
and the Sparsity of Imprimitive Matrices

Mordechai Lewin

Department of Mathematics
Technion, Israel Institute of Technology
Haifa 32000

1. Introduction.

A square matrix A is cogredient to the matrix E, if for some permutation matrix
P we have PAP* = E. A matrix is reducible if it is cogredient to a matrix of the
form (3 g), where B and D are square matrices. Otherwise it is irreducible (see
[1]). A nonnegative, irreducible matrix is primitive if some power of it is positive;
otherwise it is termed imprimitive. The index of imprimitivity d of a nonnegative
irreducible matrix A is the number of eigenvalues of A of maximum modulus. A
positive d is ensured by the Perron-Frobenius Theorem [1], [4], and A is primitive
if and only if d = 1, and imprimitive ifd > 1.

Let A be an irreducible, imprimitive matrix with index of imprimitivity d. It is
well known that A is cogredient to

0 A4 0 O ... 0
0 0 A 0 ... 0
0 0 0 A 0
j.].d 00 o 0

where the zero blocks along the diagonal are square (see, for example, [1, p. 32]).
We shall refer to such a matrix as being in Frobenius Normal Form.

Imprimitive matrices are widely discussed in [1], [4], [S], [7], [8], and others.
In [6] it was shown, by using matrix inequalities, that an irreducible matrix having
more positive than zero elements is necessarily primitive. Brualdi [2] noted that
this result follows immediately from the Frobenius Normal Form of an imprimitive
matrix.

Proceeding along this line of thought we wish to consider a nonnegative, irre-
ducible matrix assuming the knowledge of its index of imprimitivity.

We shall introduce a family of incqualities that are interesting in themselves,
from which the results on imprimitive matrices will easily follow.

2. Some inequalities for a specific rational function of positive real numbers.

Let ¢ be a positive integer and let z;, z2, ... , z; be a sequence of positive, real
numbers. Then
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Lemma 1. Fort < 4, we have
t 2 t
(Z xi) / Zﬂ:sxm 2t
i=1 i=1

where 1 is taken modulo t.
Proof: Fort = 1 the lemma is trivially true. Fort = 2 we get, applying the
Arithmetic-Geometric-Mean inequality,

(z + :1:2)2 = xf + :n% +25132 > 41172

Lett = 3. Then
222 + 222 + 22} = (z} + 23) + (2} + 23) + (z} + 2})
>22132 + 22233 + 2337
so that
2., .2 2
z] + 33 + 13 2 1122 + T2T3 + T3y,

Adding 21, ;3 + 213233 + 21371 to both sides of the inequality we obtain the
desired result.

Now putt = 4. We have

(71 + 22 + T3 + T4)?
=(zy— T2+ 23 — :1:4)2 +4 (z1T2 + T2T3 + T3T4 + T4T1)

>4 (132 + 1273 + T3T4 + T4T1)

and the result follows. Moreover, equality holds if and only if ) + 23 = z2 + Z4.
Lemma 1 is thus proved. 1
We now have

Lemma2. Lett > 5. Then

t 2 t
(E :1:,-) /Ea:.-x.-n >4,
i=1 i=1
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Proof: Letz,,... ,z; be positive real numbers and let

t 2 t
G(Il,...,mg)= (Ez;) —422:,-:1:,41.
i=1 i=1

Note that Lemma 1 implies that G(z,... ,z:) > 0 fort = 4. We now show
by induction on ¢ that G(zy,...,z¢) > 0 fort > 5. If all the z;s are equal,
then G(z1,...,7t) = t*z? — 4tz? > 0. Hence, we may assume that there
exista j with z; < z;_; (where the indices are read modulo t). But the expres-
sionG(=z1, ..., ) is invariant under cyclic rotation of the arguments and, hence,
without loss of generality we may assume j = 2. Then

0<G(zy,22 + 23, 74,... ,Zp)
=G(x1,...,2t) —4T123 — 41274 + 43213
=G(21,...,%) —433(T) —33) — 41334
<G(z1,...,T¢).
The result now follows by induction. |
We may now combine Lemma 1 and Lemma 2 and state

Lemma 3. Let t be a positive integer and let x,,z,,... ,3; be a sequence of
Dositive real numbers. Then

t 2 t
(Em) /Ezmm 2> min(4,1).
i=1

i=1
For t < 5 we may oblain equality; for t > 5 strict inequality prevails.

Fort > S the lemma is the best possible as the following example shows. Put
Ti=g=m,zi=1forl <i<t.PuZ=2m+t—2)%2, N = m?>+2m+t—3.
Itis clear that lim,,_,.,(Z/N) = 4, so that fort > 5 and positive real ¢ we may
find an integer no (€) such that for every n > np we can produce a sequence
I1,T2,...,Z¢ Of positive integers for which

t
X=Ez,-=n
1=1

and

t
4 <X2/EIiIi4l <4+e,

i=1

If in the above example we choose t = 4, we get Z/N = 4 for every positive
integer m.
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3. The Matrix Sparsity results.

Let A be a nonnegative matrix and let o( A) denote the number of positive entries
in A. !

Considering the Frobenius Normal Form of a nonnegative,irreducible matrix of
order n and index of imprimitivity d, where the zero blocks of the diagonal are
square of orders k1, k2, ... , kg and speculating on the possible number of positive
entries in the given matrix, we immediately come to the conclusion that

a(A) < krkz + kaks + ...+ karka + kak .

We may now state

Theorem 1. Let A be an irreducible matrix of order n and index of imprimitivity
d< 4. Then

a(A) < n*/d. 6))

Proof: The theorem follows from Lemma 1 and the fact that cogredient matrices
have the same number of positive elements and the same index of imprimitivity.

Letd=3.Putn=3m+ 6 with§=0,1,2. If § = 0, let all the diagonal zero
blocks be m x m, so that clearly o(A) = n* /3. We now assume § to be nonzero.

Leta=m,b=m+8§—1,c=m+ 1. Thenn=a+b+c. Sinced < 3,
we have 82 /3 < & and so, the zero blocks being of orders a, b and ¢, we may
get o(A) = ab+bc+ ca = 3m? +2mb+6— 1 > 3m? + 2mb + §2/3-1=
(3m+6)2/3 — 1=n2/3 — 1. We thus get o(A) = |#2/3 ] where |s| denotes
the greatest integer not exceeding s.

Leaving similar considerations for the casesd =2 andd = 4 0 the reader we
are now in the position to strengthen Theorem 1 by stating

Theorem 1°. Let A be an ireducible matrix of order n and index of imprimi-
tivity d < 4. Then

o(A) < |n*/d]. V)
Equality in (2) may be obtained forevery nand d, 1 <d < 4.
From Theorem 1 follows immediately

Corollary. [6, Theorem 1] A nonnegative, irreducible matrix having more pos-
itive than zero entries is necessarily primitive.

Let A = (a;;) with a;; # O if and only if j = i + 1 modulo n, where n is
the order of the matrix. We shall refer to such a matrix as a full cycle matrix. It
is easily seen that a full cycle matrix A of order n is imprimitive with index of
imprimitivity d = n, so thatg( A) = #* /d; and yet inequality (1) no longer holds
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in the general case for n > 5. A counterexample of smallest order is the following
matrix of order 7.

Aq

[}
—-——-0 0000
COOCOOC ==
OCOOCOO=OO
COOO=mOOQ
OCOO0CO=0OC
OCO =~ =000
CO = m=m OOOC

The matrix A7 is irreducible with index of imprimitivity d = 5. Buto( A7) = 10
andn? /d=49/5 < 10 = o(A7).

Theorem 2. Let the conditions for A be as stated in Theorem 1 except for d
which will be assumed greater than 4. Then

o(A) < n2 /4. 3)

Proof: Apply Lemma 2. |

As previously noted inequality (3) is the best possible as for every positive, real
¢ there exists a positive integer ng (¢) and an infinite sequence of matrices A;(&)
of order ¢ and index of imprimitivity d > 4 such that for n > ng(e) we get

w?[(4+¢) < 0(A,) < n?/4.

Remark.

The author wishes to express his deep appreciation to the referee for the excellent
and meticulous manner in which he refereed this paper. Special thanks are due to
him for considerably shortening my original proof of Lemma 2.
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