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Abstract. Let p(z > y) be the probability that a random linear extension of a finite
poset has z above y. Such a poset has a LEM (linear extension majority) cycle if there
are distinct points 1,73 ,... ,Zn in the poset such that p(z) > z2) > 1/2,p(z2 >
x23) > 1/2,... ,p0(zm > 71) > 1/2. We sctile an open question by showing that
interval orders can have LEM cycles.

1. Introduction.

For all distinct = and y in a finite poset P = (X, >), let p(z > y) be the propor-
tion of linear extensions of P in which z is greater than y. We define the linear
extension majority relation >, on X for P by

z>, yifp(z>y)>1/2
and say that P has a LEM cycle if there are distinct ;, 3, ... , Zp in X for which
Iy D% T2,%2 D% I3,..+ ,Tm >x Ti.

We have learned recently from Ivan Rival (see [14] for reference) that >, ap-
peared in the work of S.S. Kislitsyn as early as 1967. Kislitsyn conjectured that >,
is transitive, in which case LEM cycles could not arise and >, would join other
methods of constructing representative linear or weak order extensions of finite
posets [8]. The fact that >, can be intransitive seems to have been demonstrated
first by Fishburn [5] in 1974, Since then, LEM cycles have been shown to occur
in many types of posets. Our purpose here is to show that these include interval
orders, thus settling an open question in Gehrlein and Fishburn [12]. We prove
this shortly, but first give some background to place it in perspective.
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We recall that the width W of a finite poset P is the maximum cardinality of
an antichain in P; the height H of P is the maximum cardinality of a chain in P
minus 1; and the dimension D of P is the minimum cardinality of a set of linear
extensions of P whose intersection equals P. P is an interval order if it has no
pair of order-disjoint 2-point chains, so x > bora > y whenever z > y and
a > b, and is a semiorder if it is an interval order that has no 3-point chain that
is order-disjoint from a fourth point. Standard representation theorems [3, 6, 15]
say that:

T1. Pisaninterval order if and only if there is a map f from X into closed real
intervals such that z > y < min f(z) > max f(y);

T2. P is a semiorder if and only if there is a map f from X into unit-length
closed real intervals such that z > y < min f(z) > max f(y);

T3. Phas D < 2 if and only if there is a map g from X into closed real intervals
such that £ > y <> g(z) properly includes g(y).

Because of T3, D < 2 posets are also referred to as interval inclusion orders.
Semiorders always have D < 3 [13], but interval orders can have arbitrarily large
dimensions [2].

2. LEM cycles.

Since the discovery of the existence of LEM cycles in finite posets, efforts have
been made to determine the simplest types of posets that exhibit the phenomenon.
Gehrlein and Fishburn [11] used computer search to establish that LEM cycles
cannot occur when n < 8, where n = |X|. They showed also that exactly five
9-point posets have LEM cycles, each on three points (1 >, 2 >, 3 >, D).
These are posets (a), (b), and (c), of Figure 1 and the inverses of (b) and (c).
Poset (a), noted earlier in [7, 9], is a 3-dimensional width-3 height-2 poset with
(1 >2 =p(2 >3) =p(3 >1) =80/159. Posets (b) and (c) are 2-
dimensional with (W, H) equal to (3,4) and (4, 3) respectively. Gehrlein and
Fishburn [12] and Gehrlein [10] identify other posets for n € {10, 11,12} with
LEM cycles. All of these have H > 2 and none is an interval order. Examples
are shown in (d) - (f) of Figure 1.

The question of whether height-1 posets can have LEM cycles was settled af-
firmatively by Ewacha, Fishburn, and Gehrlein [4]. Their smallest example has
n = 15: see Figure 1 (g). The analysis of [4) suggests that no smaller height-1
poset has a LEM cycle.

Along with the n < 8 posets, we know of two nontrivial types of posets that
never have LEM cycles. They are semiorders [12] and width-2 posets. Results in
[10, 12] invite the conjecture that interval orders also never have LEM cycles, but
we now know that this is false.

Theorem. There are 2-dimensional interval orders with as few as 25 points that
have LEM cycles.
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In other words, there are interval orders that are also interval inclusion orders
that have LEM cycles. We do not know whether n = 25 is best possible for this
conclusion, but even if it were there might be interval orders with D > 2 and
n < 25 that have LEM cycles.

Figure 1. Poscis with1 >, 2 >, 3 >, 1.
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3. Proof of Theorem.

Figure 2(i) pictures a 25-point poset P with isolated point 3 alongside a 24-point
component. Antichains A, B, and C have 9,5 and 6 points respectively, every
point in A covers 1 and z, 1 covers every point in B, . ... Figure 2(ii) and Figure
2(iii) show representations of P as an interval order and an interval inclusion order
respectively. In these representations, all intervals for A (or B, or C) are identical.

The large component of the diagram was constructed to have 1 above 2 in a
majority of its linear extensions, so 1 >, 2. However, when 1 > 2, they are
separated by at most z and y; when 2 > 1, they can be separated by as many as
seven points. Define the height of a point in a linear extension to be its bottom-up
position, that is, 1 or 2 or - - -, The separation differential for 1 and 2 allows 1’s
average height to be less than 2°s. In our large component, {A|, and |B| and |C|
where chosen to minimize |A| + |B| + |C| subjectto 1 >, 2, average height of
2 greater than the global average (12.5 for the 24-point component), and average
height of 1 less than the global average. The latter two constraints imply that
when point 3 is merged with the linear extensions of the large component, we get
2>, 3and3 >, 1.

To compute p values we first replace A, B, and C by same-sized chains with no
loss of generality. For 1 > 2, 1 can fit between 2 and A in 2 ways, y can then fit
into the 12-point chain above BUC in 13 ways, B and C merge in ('61) ways, and 3
fits into a 24-point linear extension of the large component in 25 ways. Therefore,
given the initial linearizations of A4, B,and C, 1 > 2 for 2(13) (16‘) 25 linear

extensions. The number for2 > 1 is [12 (&) + (2)] 25. Similar computations
for2 >3 and3 > 1leadto

p(1>2)=26/51=0.509803 ...

p(2 > 3) =214 /425 = 0.503529 ...

p(3 > 1) = 298/595 = 0.500840 ... .
Hence,1 >, 2 >, 3>, 1.

4. Discussion.

A general conclusion of the research summarized here is that only certain very
restrictive classes of posets, including those of semiorders and width-2 posets, are
devoid of LEM cycles. Interval orders, height-1 posets, width-3 posets, and 2-
dimensional posets can have LEM cycles. Two minor questions left open are the
minimum | X | for which a height-1 poset has a LEM cycle (< 15), and for which
an interval order has a LEM cycle (< 25).

Other open problems abound. We conclude with two that are suggested by work

on proportional transitivity [7} and on random posets (1, 8, 10, 16, 17].
(1) Determine sup min {p(1 > 2), p(2 > 3), p(3 > 1)}, where the sup
is taken over all finite posets that contain points 1, 2, and 3. The largest
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Figure 2, Interval order with1 >, 2 >, 3 >, 1.
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lower bound on the sup that is presently known, about 0.54, follows from
Theorem 3 in [7].

(2) Determine the limit as » — oo of the probability that an n-point poset has
a LEM cycle, or show that the limit does not exist. The probability model
intended here assigns equal probability to each n-point poset (unlabeled).
The question can also be posed for random posets on n points defined in
other ways.
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