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Abstract. Partitions of all quadruples of an n-sct into pairwise disjoint packings with
no common triples, have applications in the design of constant weight codes with min-
imum Hamming distance 4. Let §(n) denote the minimal number of pairwise disjoint
packings, for which the union is the set of all quadruples of the n-set. It is well known
thatf(n) > n—-3 ifn=2 or4 (mod 6),0(n) >n—-2ifn=0,10r3 (mod 6),
andf(n) > n—1forn=35 (mod 6). 8(n) = n— 3 implies the existence of a large
set of Steiner quadruple systems of order n. We prove that 8(2%) < 2% -2,k > 3,
andif 8(2n) < 2n—-2,n=2 or4 (mod 6),then §(4n) < 4n—2. Let D(n)
denote the maximum number of pairwise disjoint Steiner quadruple systems of order n.
We prove that D(4n) > 2n+min{D(2n),n—2}forn=1o0r5 (mod 6),n>7,
and D(28) > 18.

1. Introduction,
A packing quadruple system (PQ) of order n (PQ(n)) is a pair (Q,q) where
Q = (0,1,...,2— 1} is a set of n points and g is a collection of 4-element

subsets of Q called blocks such that every 3-element subset of Q is a subset of
at most one block of g. A PQ is optimal if there is no PQ of the same order
with a larger size. A Steiner quadruple system (SQS) of order n (SQS(n)) isa

(PQ(m)) such that every 3-element subset of Q is a subset of exactly one block
of g. It is well known that an SQS(n) exists if and onlyif n =2 or4 (mod 6).

It is clear that an SQS(n) is an optimal PQ and it is well known that an SQS(v),
has b, = % ;) blocks. Hanani [7] proved that Steiner quadruple systems of order
v exist if and only if v = 2 or 4 (mod 6). Two SQSs (Q,q:1) and (Q,¢2)
are disjoint if 1 N g2 = 0. Let D(v) denote the maximum number of pairwise
disjoint SQSs (PDQSs) of order v. It is clear that D(v) < v — 3 and a set of
v — 3 PDQSs of order v is called a large set. The main constructions of PDQSs
are the 2 v and the 3 v constructions of Lindner [10], [11], the constructions of n
mutually 2-chromatic PDQSs of order 2 n, n odd, of Phelps and Rosa [13], and

the constructions of Etzion and Hartman [5]. Pairwise disjoint PQ(n)s can be
represented in a graph whose vertex set is the set of all quadruples of the n-set.
Two vertices are connected with an edge if the corresponding quadruples have a
common triple. A coloring of the vertices partitions the quadruples into pairwise
disjoint PQs of order n. Let 8(n) denote the chromatic number of this graph. It
is clear that f(n) = n— 3 for some = if and only if a large set of order n exists.

Hence, (n) > n—3 ifn= 2 or4 (mod 6). It is well known (for example,
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[1]) that an optimal PQ(n) forn= 1 or3 (mod 6) has size n(n— 1)(n— 3)
and, hence, 0(n) > n—2. Forn = 0 (mod 6) an optimal PQ(n) has size
ﬁ"’—‘,jﬁ and, hence, 8(n) > n—2. Forn=5 (mod 6) an optimal PQ(n)
has by the Johnson bound [7] at most size (8=l =3w=4) , | 257 ang, hence,
8(n) > n— 1. Graham and Sloane {6] proved that 8(n) < n. It is also well
known that (7) = 6. van Pul and Etzion [14] proved that (n) < n—1 for
n=2%o0rn=3.2%,i> 1,andif6(2n) < 2n—1thenf(4n) < 4n—1.
Brouwer et al [2] proved that@(n) < n—1forn=15.2%, andn=7-2%,i> 1.

Partitions of quadruples have applications in the construction of constant weight
codes with minimum Hamming distance 4. Let A(n, d, w) denote the maximum
number of codewords in a binary code of length », minimum Hamming distance d,
and constant weight code w. A (n,d, w) is a fundamental combinatorial quantity,
which is also used in the construction of codes for asymmetric channels, DC-free
codes, and spherical codes [2]. It seems that the best known method to design
constant weight codes with distance 4 is the partitioning method [2]. To apply this
method we have to partition sets of n-tuples into disjoint constant weight codes
of weight w and minimum Hamming distance 4. Partition of quadruples is, of
course, partition of n-tuples with weight 4.

In Section 2 we present the 2 v construction of Lindner and a variant of the
partitioning method which results in a PQ. In Section 3 we show that the set of
PDQSs of Lindner is not maximal, that is, it can be extended, and prove that
D(47n) > 2n+ min{D(2n),n—2}forn=1o0r5 (mod 6),n > 7, and
D(28) > 18. In Section 4 we show that (2%) < 2% -2,k > 3, and if
0(2n) <2n—2,n=2o0r4 (mod 6),then6(4n) < 4n-2.

2. The Lindner construction.

Our constructions for PDQSs and partitions of quadruples use many kinds of
latin squares and latin rectangles. For a k X n, k < =, latin rectangle A, A(3,7),
1< i<k, 1< < n denotecell (1,7) of A. Two of these latin squares
are based on the table of the cyclic group [4]. These two n x n latin squares are
denoted by A, and B,, and defined by

A1, ) =i+j—2 (mod m)
Ba(1,7) =i—j (mod n).
Figure 1 presents A7 and B;.

0123456 0654321
1234560 106 5432
2345601 2106543
3456012 3210654
4560123 4321065
5601234 5432106
6012345 6543210
Figure 1: A7 and By
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Now, we present the Lindner construction [10] for constructing v SQSs of order
2v from an SQS(v) and a v x v latin square. Let (@, B) be an SQS(v) with
Q = {1,2,...,v} and let V be a latin square of order v. Denote by a; the
permutationon Q = {1,2,...,v} defined by za; = y ifand only if V(i,z) = y.
SetS=Qx{1,2}andforeachi=1,2,...,vdefineacollection of quadruples
B; on S as follows

(1) For each quadruple [z, y, z, w] € B, the following 8 quadruples belong to B;:

[(z,1),(y, 1), (2,1, (wx,2)], [(3,2),(y,2),(2,2),(we;*, 1)],
[(z,1),(y,1),(22,2),(w, )], [(2,2),(,2),(20;,1),(w,2)],
[(z,1),(y2:,2),(2,1),(w, D], [(2,2),(ye;',1),(z,2),(w,2)],
[(z4,2),(y, 1), (2, 1), (w, D], [(za7',1),(y,2),(2,2),(w,2)],

(2) For each 2-element subset [z,y] of @, [(z,1),(y,1),(z;,2),(yay,2)] €
B;.

If the latin square V' contains no 2 x 2 subsquare then the v SQSs are v PDQSs
of order 2v. If the latin square has 2 x 2 subsquares then to obtain v pairwise
disjoint PQs of order v we made the following change in (2). For each 2-element
subset [z, y] of Q, such that there is no 7, j < 1, with V(1,z) = V(j,y) and
V(’!y) = V(]) $), [(zx l) ’ (ys 1) ) (.'x:oz.-, 2) y(yai)2)] € Bi-

We will use the latin squares with no subsquares of order 2 which were defined
by Kotzig, Lindner, and Rosa, [9]. Letn= 2 (mod 4),n= 2k, so that k is odd.
Let C, D be k x k latin squares defined by

C(1,7) = Ak(4, ) reduced modulo & to the range {k, k+1,k+2,...,2k—1},
and

D(1,j) = Ax(i, 7)—1 reduced modulo k to the range {k, k+1,k+2,... ,2k-1}.
The square

_ | Bk C
M= [ D Bk]

is a latin square of order n with no subsquare of order 2.

The following properties of M are significant for extending the v SQSs ob-
tained by the 2v construction to a larger set (but not a large set) of PDQSs. The
proof of the following lemma can be easily verified from the definition of M}, A,
and B;.

Lemma 1. M; has the following properties.

1) M(3,7) - M(d,8) =s—j (mod £),1 <i< 2k 1< <s<kor
k+1<j<s< 2k
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(2) Mi(4,7) — Mi(i,s) = j+s—2 (mod k),1 <i<k 1 <8<k
k+1<j<2k.

() Mi(i,8) —Mi(i,/)=s+7—3 (mod k), k+1<1<2k, 1<k,
k+1<j7<2k.

The set of PDQSs from Lindner construction is not maximal. To extend it we
use a well known variant of the partitioning construction (for example, see Lindner
and Rosa [12]). This variant results in an SQS. Let (Q;,4:1) and (Q3, g2) be any
two SQSs of order 2v where Q1 N Q2 = 0. Let F = {F,F,... , 3,1} and
G = {¢1,Gs,... ,G2,-1} be two one-factorizations of K3, based on Q; and
Q2, respectively, and let o be any permutation on the set {1,2,...,2v — 1}.
Define a collection of blocks A on Q; U @ as follows:

(B.1) Any block belonging to ¢, or g2 belongs to A; and
(B2) Ifz),z; € Q andy;,y2 € Q then [31,32,41,y2] € A if and only if
[z1,72] € F,[n1,12] € Gjandia=j.

We call this method partitioning quadruple system (PQS) construction. This
method results in PQ which is not an SQS if either we use a PQ instead of an SQS,
or that instead of a permutation a we use a partial permutation, where a partial
permutation o = (o, z,... ,Q20-1), is defined by o; € {0,1,...,2v -1}
and all the nonzero ;s are distinct. If i = 0 we ignore F; in (B.2).

3. Extending the non-maximal set of PDQSs.

In order to extend the set of v PDQSs constructed in Section 2, we first describe
the near-one-factorization # of K,, » = 1 or 5 (mod 6),n = 2k + 1. The
following sets are the first disjoint near-one-factors of F.

F={li+k:0<i<k—-1}
Fo={lii+k+1:0<i<k-1}
B={[2i-1,2i1:1<i< k}

Fy = {[2i,2i+ 1):1 < i< k-1}U{[0,2k]}.

It is clear that [a,b] € Fy U F; implies that @ — b equal k or n — k modulo
nand [(a,b] € F5 U Fy implies that e — b equal 1 or n — 1 modulo n. The
only other two pairs for which a — b equal either k, n — k, 1, or n— 1 modulo
nare [0, 1] and [ k,2 k]. Using the results of Chetwynd and Hilton [3] we have
that these near-one-factors can be extended to near-one-factorizations for n > 29.
If we extend these four near-one-factors by adding a near-one-factor Fy,_; which
contains [k, 2 k] but not [0, 1] (this can be easily done forn > 11, and forn=7
let F; contains [k,2k] and [0,1]) then the theorem of Chetwynd and Hilton
implies that these near-one-factors can be extended to a near-one-factorization F
forn > 33 (In F let [0,1] be in F,,.) We found out that this is true also for
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n = 19,23,29, and 31, which are the only 4 parameters (except 7) below 33
that we need, since for all other n, » < 33,7 = 1 or 5 (mod 6) we have
D(47n) > 3n[5]). Given the near-one-factorization F = {F, F,,...,F,} of
ordern = 1 or 5 (mod 6), where in F; vertex f; is isolated, we construct the
following two one-factorizations G and H of K3,.

Construction of G.
Gi={la,b):[a,b] € F}U{[2n—1—a,2n—1 —b]:[a,}] € F}}
U{lfi,2n—-1-f1}, 1<in

Gui={[a,0:0<an-1,n<b<2n~-1,a+b=i—-1 (mod n)},
1<i<n—-1.
Construction of H.
H;={[a,b]:[a,b] € F;}U{[n+ a,n+ bl:[a,b] € F}}
U{lfi,n+ fi]}, 1<i<n

Hpi={[a,01:0 <2< n-1,n<b<2n-1,b—a=1 (mod n)},
1<i<n—1.

Now, we apply the Lindner construction with the (27n) x (27) latin square
M, and an SQS(27). By the structure of the one-factorizations G and H, and
by Lemma 1, we can observe that the quadruples [(a, 1),(b,1),(¢,2),(d,2)],
[a,b] € Gs,[c,d]l € Hj, which might have been used in the Lindner construction
are for the following pairs of 1 and ;.

Pl) 1<i<nwithj=2n-2o0rj=2n-1,
P2) i=n+lori=n+2withl <j<n
P3) i=n+1withj=2n-1.
P4) i=n+2withj=n+1,
®PS5) n+3<i<2n—-1withj=¢-1lorj=1-2.
If [0, 1) and [k, 2 k] are in the same near-one-factor (when n= 7) we have
@Q.1) i=lori=2withj=1lorj=20rj=n
Q2) i=3ori=4withj=3o0rj=4o0rj=n
Q3) 5<i<n—1with5<;<n
Q4) i=nwithl <j<n
If [0,1] and [k,2 k] are in two different near-one-factors we have
R.D) i=1lori=2withj=1lorj=2o0rj=n—-1.
(R2) i=3ori=4 withj=3o0rj=4o0rj=n
R3) 5<i<n—2with5<j<n
R4) i=n—1lwithj=1lorj=20r5<j<n
RS) i=awith3 <j<n
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We have to construct an r x (2n— 1) latin rectangle 8 such that if 8(s, ) = j
then the quadruple {(a, 1),(b,1),(c,2),(d,2)] for [e,b] € G; and [c,d] € H;
does not appear in any quadruple of the first 2 n PQs, that is, A( s, 1) 5 j for pairs
i, j defined above by (P.1) through (P.5), (Q.1) through (Q.4), and (R.1) through
(R.5). If [0, 1] and [k, 2 k] are in the same near-one-factors we have r = n— 3
whileif [0, 1] and [ k, 2 k] are in two different near-one-factors we haver = n—2.
In the Appendix we present the near-one-factorization, latin squares withno 2 x 2
subsquares and the 4 x 13 latin rectangle which are used to obtain D(28) > 18.
Now we give the construction for the case where [0, 1] and [, 2 k] are in two
different near-one-factors. To make the construction of this latin rectangle clearer
we will build it in two steps. In the first siep there will be some entries which are
inconsistent with the requirements defined by (P.1) through (P.5) and (R.1) through
(R.5). In the second step we will fix those entries to obtain our rectangle 8.

Stepl: Forl <i<n—2
(1) Forj=1,2,3,a(t,j) =0+l reduced modulo ntotherange {1,2,... ,n}.
(2) Ford <j<n+2,a(i,j)=j7—i+n-2 reduced modulo n— 1 to the
range {n+ 1,n+2,...,2n—1}.
(3) Forn+3 <j<2n—1,0(i,j) = i+ j+ 2 reduced modulo n to the
range {1,2,...,n}.
The only violations that we have are of the requirements defined by (P.1) for
columns 4 through » and by (R.1) and (R.2) for columns 1, 2, and 3, and rows
n—4,n—3,and n— 2. We correct these in the next step.

Step 2: 8(i, ) = a(i,j) except for the following cases.

1) B(2,4)=2andpB(2,2n—-2)=2n—1.

(2) For3 < i< n—S5 ifa(i,j) = 2n—2 then A(4,7) = 1. If a(i, ) = 2n—1
then 8(4,7) = 2. If a(4,7) = 1 then 8(4,j) = 2n—2.Ifa(4,7) =2 then
B(i,j) =2n-1.

(3) B(n—4,2) =n+2, B(n—4,3) =n+5, f(n—-4,4 =n-1,
B(n—4,n-3)=3, f(n—4,n—-2) =1, A(n—-4,m) =2, f(n—-
4 n+3)=2n-2, f(n—4,2n-2) =n, B(n—4,2n—1)=2n-1,
andforn+ 4 < j < 2n—3, B(n—4,j) = j reduced modulo nto the
range {1,2,...,n}.

4) f(n—3,1)=n+4, f(n—3,4) =35, f(n—-3,n-2) =4, f(n—
3,n—1 =3, f(n—-3,m+3) =2, f(n—-3,n+ 4 =2n-1,
B(n—-3,2n—-2) = 2n-2, B(n—3,2n— 1) = n—1, and for
n+5 < j<2n-3,8(n-3,j) = j+ 1 reduced modulo n to the
range {1,2,...,n}.

(5) B(n—2,1) =n+3, f(n—2,2) =3, f(n-2,4) = 6, B(n—2,n—1) =
4, f(n=2,m) =1, B(n-2,n+3)=2n-1, B(n—-2,n+4) =5,
B(n—2,2n-3) =2n-2, f(n-2,2n-2) = n—1, B(n-2,2n-1) =
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n,andforn+5 < j<2n-4,(n—2,7) = j+ 2 reduced modulo nto
the range {1,2,... ,n}.

We leave to the reader to check that the 8 is a latin rectangle which fulfill all
the requirements. We use the r rows of the r x (2n — 1) latin rectangle £ as the
r permutations for the PQS construction (each point a of G is changed to (a, 1)
and each point b of H is changed to (b,2)). Therefore, we have the following
theorem.

Theorem 1. D(47n) > 2n+ min{D(27n),n—2},n=10r5 (mod 6) and
D(28) > 18.

Figure 2 and Figure 3 present the latin rectangles o and 8, for n= 11.

4 12 13 14 15 16 17 18 19 20 28 6 7 8 9 10 1 1 2
3 ) : 21 12 13 14 15 16 17 18 19 20 7 g 9 10 1N 1 2 3
s & 7 20 21 12 13 14 1S 16 17 18 19 8 9 10 1 1 2 3 4
6 7 8 19 20 21 12 13 14 15 16 17 18 9 10 1 1 2 3 4 5
7 8 9 18 19 20 21 12 13 14 15 16 17 10 1 1 2 3 4 5 6
§ 9 10 17 18 19 2 21 12 13 14 15 16 11 1 2 3 4 s 6 7
9 10 N 16 17 18 19 20 21 12 13 14 15 1 2 3 4 5 6 7 8
0 11 1 15 16 17 18 19 20 2t 12 13 14 2 3 4 H) 6 7 8 9
1mn 1 2 14 15 16 17 18 19 20 2 12 13 3 4 S5 6 T 8 9 10

Figure 2: The latin rectangle o for n = 11

3 4 § 12 13 14 15 16 17 18 19 20 21 6 7 8 9 10 1 1 2
4 5 ] 2 12 13 14 15 16 17 18 19 20 7?7 8 9 10 1t 1 21 3
5 6 7 1 2 12 13 14 15 16 17 18 19 8 9 10 1 20 21 3 4
& 7 8 19 1 2 12 13 14 15 % 17 18 9 10 11 20 2 3 4 §
7 8 9 18 19 1 2 12 13 14 15 16 17 10 1 20 21 2 4 5 ]
3 9 10 17 18 1 1 2 12 13 14 15 16 11 20 21 3 4 5 6 7
9 13 16 10 17 18 19 3 1 12 2 14 15 20 4 5 6 7 8 1 N
15 U 1} 5 16 17 18 19 4 3 12 13 14 2 2 6 7 8 9 20 10
4 3 2 6 15 16 17 18 19 4 1 12 13 n 3 7 8 9 20 10 N

Figure 3: The latin rectangle 8 for n= 11

4. Upper bounds on 0(n).

Two one-factors [ Hy, H2], of K2, are called consistent if there exists an integer

7 such that for every edge [a,b] € H;,i = 1,2, ¢ithere — b = r (mod 2k)
orb—a =7 (mod 2k). One-factorization F = {F}, F3,... , Fy_1}, is called
consistent if [ F5;_1, F5;],1 <1 < 2k — 1, are consistent, and in F5;_;, for each
edge [a,b),a— b=k (mod 2k).

Lemma 2. The graph G with the set of vertices Z, and edges {[a,b}:a—b=1i
(mod n)} is a union of at most three sets of edges such that no two edges in a set
have a vertex in common.

Proof: Follows immediately from the fact that G is a union of cycles. |
Let (4, n) denote the greatest common divisor of ¢ and n.

Lemma 3. The graph G with the set of vertices Z,, and edges {[a,b):a—-b=
(mod %)} is a union of two one-factors if and only if a%- is even and greater
than 2. ,
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Proof: Since G is a union of cycles, G is a union of two one-factors if and only if
it consists of cycles with even lengths. The length of the cycles of G is ﬁ and,
hence, G is a union of two one-factors if and only if (i” 5 is even and greater than
2. ' ]

Lemma 4. K- has a consistent one-faclorization iff 2k = 27.

Proof: By Lemma 3, K- is the only graph that can have a consisient one-factori-
zation. By Lemma 3 cach ¢, 1 < 4 < 27! — 1, the graph with the set of vertices
Z,- and edges {[a,b]: a—b =1 (mod 27)} is a union of two one-factors. These
two one-factors are taken as Fy;_; and Fy;. Now, let Fory = {[j,j + 2771t
0 <7< 2! —1}). Itiseasy to verify that F = {R,F,... ,Far_1} isa
consistent one-factorization. |

Theorem 2. 6(2%) < 2% -2 fork > 3.

Proof: Let n = 2%. We use the Lindner construction with the latin square A,
to obtain the first n sets of quadruples. Let F = {Fy, F3,...,F,_1} be a con-
sistent one-factorization of order 2%. Let (i, /) be the 2 x (n— 1) rectangle
defined by a(1,2j — 1) = 27, a(1,2j) = 2j —1forj = 1,2,...,2%" —
La(l,n—1 =n-1,a2,j) =j,j=12,...,n—2,and «(2,n —
1) = 0. Itis clear that if a(i,7) = m, m ¥ 0, then all the quadruples of the
form [(a,1),(b,1), (¢, 2),(d, 2)] where (a,b) € F; and (¢, d) Fin, appear in the
quadruples of the Lindner construction. Let 8(4, j) be the 2 x (n— 1) latin rect-
angle defined by 8(2,n—2) = n—1,8(2,n—1) = n—-2,and 8(4, ) = a1, ])
otherwise. This latin rectangle can be completed to an (n— 1) x (n— 1) latin
square [4] 4. We can assume that y(n— 1,n— 2) = n— 2. Let §(4, /) be the
{(n—2) x (n— 1) rectangle defined by

5(")]) = '7(""2:]) for 1 S i S 'n—3vl S] S n—1,
exceptfori=n—3, j=2-2 (1)

(n-3,n-2)=0 )
§(n—2,/)=0for1 <j<n-3 3)
8(n—2,n—2)=n-1 @)
(n—2,n—1)=n-2 ®

Now we apply the PQS construction to obtain n — 2 set of quadruples by using
the rows of the rectangle § as the n— 2 permutations and partial permutations in
the PQS construction. |
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Corollary 1. 0(2% —1) < 2% -2 fork > 3.

Since there exists a partition for quadruples of order 8 with 6 PQs of sizes,
14,14,12, 12,10, and 8 [2], [14], our construction implies that there exists a
partition for quadruples of order 2% with 25-! — 2 PQs of size by 251 — 2
PQs of size bys —2%~2, one PQ of size byx —22F-3 + 2%-1_and one PQ of size
22k-2 _ 9k

For values n = 2 or 4 (mod 6) which are not powers of two there is no
consistent one-factorization. Hence, we use a different technique. In the rest of
this section let n= 2%.r foroddr > 1,7 # 0 (mod 3).

Lemma 5. Let i = 2%.sand j = 2%'.s forodd s, s < r. Then there exist
four one-factors H,, H,, H3, H4, of K,, such that in H, for each edge [a,b],
a—b=j (mod 2*%.v) andin Hy, H,, Hs foreach edge [a, b}, either a —b = j
(mod 2%.7) ora — b= (mod 2F.7).

Proof: Letg = (j,n) andd = 3. The graph G with set of vertices Z,, and set
of edges {[m, m + 1]: 0 < m < n— 1} consists of (1,n) = 2g cycles of length

T = —%. Vertices a and b are on the same cycle iff e = b (mod 2g). Given
¢ € Z,, each two vertices of the set {a:c < a < c+gorc+j<a<c+g+j}
are on two different cycles of G1. NowletV = {m:c < m < c+ g} and

Hy={[m,m+jlimeV}

U {[m+qi,m+qi+i]:meV, g odd and lgqgg-l}

U {[m+j+qi, m+j+gi+i]l:meV,goddand 1 gqgg—l}
Hy={[m+2jm+3jl:meV}

1

V] {[m+qi, m+qgi+il:meV, gevenand 2 <g< 7~

.
| v

U {[m+j+qi,m+j+qi+i]:me V,gevenand 2 <¢g< 5~ }

Hy={[mm+il:meV}
U{[lm+j,m+j+il:meV}
U{[m+gj,m+gj+jl:meV,gevenand4 < g<d-2}
Hy = {[gj,q/ +jl: goddand1 < g < d—1}.
We leave to the reader to verify that Hy,, m = 1,2,3,4 have the required prop-
erties. 1
Lemma 6. Theset S = {i:1 < i < 2%'.} can be partitioned into

(1) pairs [a,b] such that a = 2%~'.s for odd s, and either b= 2a orn—b =
2a,
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(2) singletons [a] such that a £0 (mod 2%),
such that the number of singletons is at least 4, the intersection between two sets
(two pairs, two singletons, one singleton and one pair) is emply, and the union of
all the sets is S.

Proof: Forl < b < 2% 1.r,b=0 (mod 2*) wedistinguish between two cases.
Ifb#0 (mod 2%+1) we form the pair [£,b]. If b = 0 (mod 2%*') we form
the pair [%2,5]. Note thatn— b= 0 (mod 2*) butn—b# 0 (mod 2¥*').
All the other integers in S are singletons. Since the number of pairs is &5~ =1 then
the number of singletons is 25~!.7 — (r — 1) > 4. Itis easy to venfy that the
pairs and singletons satisfy the requirements of the lemma. i

One-factorization F = {F, F3,... ,Far_1} of Ky, is called quasi-consistent
if it can be partitioned into pairs of one-factors which are consistent, sets of four
one-factors, Hy, Ha, H3, Hs, for which in H, for each edge [a,b],a — b = j
(mod 2k),andin H,, H,, H3, foreachedge [ a, b] eithera—b = j (mod 2k) or
a—b=2j (mod 2k),andin F5;_;,foreachedge[e,b],a—b= k (mod 2k).
The following lemma is an immediate consequence of Lemmas 3, 5, and 6.

Lemma 7. K, has a quasi-consistent one-factorization.

For the next lemma let {H;, Ha, Hs} be the three sets of pairs such that if
(a,b) € H;, [c,d] € H;,1 < 14,7 < 3 theneithera — b = ¢ —d (mod n)
ora—b=d-c (mod n). Let [G1,G2], [G3,G4], two pairs of consistent
one-factors. The following lemma has a trivial proof.

Lemma 8. All the quadruples of the form [(a,1),(b,1),(¢c,2),(d,2)], where
(a,b] € H{UH,UH3, [c,d] € G1UG: can be partitioned into three PQs. All the
quadruples of the form [(a,1),(b,1),(c,2),(d,2)], where [a,b] € G1 UG>,
[c,d] € G3 U G4 can be partitioned into two PQs.

Theorem 3. 9(n) < n— 2 implies 0(27n) < 2n-2.

Proof: We use the Lindner construction with the latin square A, to obtain the
first n sets of quadruples. We can order the smgletons defined in Lemma 6 in
palrs [a,b] and one quadrple [c, d, e, f], where e = 22 and f = # since both

=2 and } aresingletons. Let F = {F, Fs, ..., Fuo1 } be a quasn-conslstent one-
factonzanon of ordern. In F' we first have all sels of four one-factors which satisfy
Lemma 5. Then all sets of four one-factors, which are related to the pairs ordered
from the singletons. These four one-factors consists of two pairs of consistent
one-factors. Finally, we have the seven one-factors related to [¢c, d, e, f] in this
order. Let a(4,7) be the 5 x (n— 1) rectangle defined by a(1,25 — 1) = 2j,
a(1,2j) =2j-1forj=1,2,...,25 r—1,a(1,n—-1) =n—-1,a(2,/) =
7.7=12,... ,fn—2,a(2,n— 1) =0,0(3,2a-1) =2b-1,a(3,2a) = 2b,
a(4,2a—1) =2b,a(4,2a) = 2b - 1, for pairs [e, b] defined by Lemma 6 or
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by the ordering of the singletons.

a(3,2¢c—-1)=n-3, a(3,2¢) =n—-2, a(3,2d-1) =2¢c-1,
a(3,2d)=n—1, (3,n—3)=2d-1, a(3,n-2) = 2d,
a(3,n—1)=2c, a(4,2c-1)=n-2, a(4,2¢) =n—3,
a(4,2d—1)=n—-1, a(4,2d) = 2¢, a(4,n—3) = 24,

a(d4,n—-2)=2d-1, a(4,n—1)=2¢c-1, a(5,n—2) =n-1,

a(5,n—1)=n—2,and a(5,7) =0 for j=1,2,...,2—3. Itis clear that if
a(i,7) = m, m ¥ 0, then all the quadruples of the form [(a, 1), (b,1), (¢, 2),
(d,2)] where (a,b) € Fjand (¢,d) € Fn, either appear in the quadruples of the
Lindner construction or can be partitioned into three PQs by using Lemmas 2, 3,
and 8, and the PQS construction. Let 8(1, j) be the 4 x (n— 1) latin rectangle
defined by 8(2,n—2) = n—-1,8(2,n—1) = n—-2,and 8(4, ) = a(i,/),1 <
J < n—1, otherwise. This latin rectangle can be completed toan (n—1) x(n—1)
latin square [4] 4. We can assume that y(n— 1,2 —2) = n— 2. Let §(4, j) be
the (n — 5) x (n— 1) rectangle defined by

8Gi,j) =(i+4,/)for1 <i<n—-5,1<j<n—1,
exceptfori=n—35,j=n-2, (1)

8(n—5,n-2)=0. )

Now we apply the PQS construction to obtain n—5 sets of quadruples by using the
rows of the rectangle § as the n — 5 permutations and partial permutations in the
PQS construction. Hence, all the quadruples where partitioned into n+ 3+ n—5 =
2n—-2 PQs. |

Unfortunately, except forn= 2%, k > 3, there is no known n for which 6(n) <
n—2.
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Appendix

The near-one-factorization F' of K.

R 0,3 1,4
F 0,4 1,5
B 1,2 3,4
F, 0,6 2,3
Fs 0,5 1,3
Fs 0,2 1,6
B 0,1 2,4
The latin square M.
0 6 5 4 3 2 117
1 0 6 5 4 3 2 8
2 1 0 6 5 4 3 9
3 21 0 6 5 410
4 3 2 1 0 6 5 11
5 4 3 2 1 0 612
6 5 4 3 2 1 013
13 7 8 910 11 12 O
7 8 910 11 12 13 1
8 910 11 12 13 7 2
9 10 11 12 13 7 8 3
10 11 12 13 7 8 9 4
1112 13 7 8 9 10 5
12 13 7 8 9 10 11 6.

The latin rectangle for the PQS construction.

36

4 3
5 4
6 5

521 910 8
6 5 810 11 9
16 3 11 810
21 4 8 91
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