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Abstract. It has been shown that there exists a resolvable spouse-avoiding mixed-
doubles round robin tournament for any positive integer v # 2,3,6 with 27 possible
exceptions. We show that such designs exist for 19 of these values and the only values
for which the existence is undecided are: 10,14,46,54,58,62,66 and 70.

1. Introduction

The terminology and notation in this paper follow from that of [2,4,5]. A spouse-
avoiding mixed-doubles round robin tournament is an arrangment for couples to
play mixed-doubles tennis so that no player is partnered by, or opposes, his or
her spouse; otherwise, every player has each other player as an opponent exactly
once and has each other player of the opposite sex as a partner exactly once. The
tournament is resolvable if its matches can be partitioned into rounds so that every
player can play at the same time within a round. A resolvable spouse-avoiding
mixed-doubles round robin tournament for n couples is denoted R(n).

It shown in [4] that the existence of an R(=) is equivalent to the existence of a
self-orthogonal Latin square of order n with a symmetric orthogonal mate when n
is odd, and a self-orthogonal Latin square of order » with a unipotent (that is, some
fixed element, say 0, must occur on the main diagonal) symmetric orthogonal mate
when nis even,

For convenience we denote by SOLSSOM(v) (USOLSSOM(v)) a self-ortho-
gonal Latin square of order v with a (unipotent) symmetric orthogonal mate. We
further denote by ISOLSSOM(v,n) (TUSOLSSOM(v,n)) a SOLSSOM(v)
(USOLSSOM(v)) with a sub-SOLSSOM(n) (sub-USOLSSOM(n)) missing in the
lower right corner. The first letter I stands for incomplete. An ISOLSSOM(v, 0)
(TUSOLSSOM(v,0)) and ISOLSSOM(v,1) always exist if a SOLSSOM(v)
(USOLSSOM(v)) exists.

From Wang [4], Lindner, Mullin and Stinson [2] and Zhu [§] we have

Lemma 1.1. A SOLSSOM(v)does notexistforv € {2,3,6}, butaSOLSSOM(v)
does exist for positive integer v with the possible exception of v € E

E={10,14,46,54,58,62,66,70}.

For the existence of USOLSSOM we have (see [4])
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Lemma 1.2. USOLSSOM(v)does notexistforv € {2,6}, butaUSOLSSOM(v)
does exist for even integer v with the possible exceptionof ve€ EUF

F={74,82,98,102, 118,142,174, 194,202,214,
230,258,278,282,394, 398,402,422, 1322}.

We then have

Lemma 1.3. An R(n) does not exist forne€ {2,3,6}, butan R(n) does exist
for positive integer n with the possible exception of n€ EU F.

It is our purpose here to show that such designs exist for v € F', and reduce this
number of possible exceptions to 8.

2. Construction

The following lemma follow mutatis mutandis from Lemma 1 in [5] which are
the variants of Theorem 1 in [1]. We give its proof in detail.

Lemma 2.1. Suppose q is an even prime power, ¢ > 8, and there exist
USOLSSOM(m ), USOLSSOM(m + k) and ISOLSSOM(m + k;, k;) where m
is even,

’i’“‘
= = 9=4 -
ke=0ork odd >0,t=1,2,...55— k= (2k).

t=1

Then there exists a USOLSSOM(@@m + k).

Proof: Let Ly = (a;;), a;j = a; + \aj, 6i,6j,\ € GF(q) = {ao,01,...,09-1}
such thatap = 0 and a; = &' 1 < i < ¢ — 1 where « is a primitive element
of GF(g). It is easy to see that the Latin squares L, L,1,L42,...Lag — 2
are pairwise orthogonal and that the squares Ly, Lo2,...,Lqd,d = ’-;3 are all
self-orthogonal, the square L, is unipotent symmetric. The cells with entry O
in L4t determine a common transversal of L,d and L;, a USOLSSOM(g), say
tth transveral, t = 1,2,...,%>. The transpose of the ¢th transversal is also a
common transversal of the USOLSSOM(q), say (¢')th transversal. We know that
all these transversals intersect in cell (0, 0) and are disjoint elsewhere.

Begin with the USOLSSOM(q) and replace each of its cells with an m x m
array labelled by the element in that cell, the array will be a USOLSSOM(m) if
the cell is not on any transversals mentioned above, otherwise the array will be
the upper left part of an ISOLSSOM(m + ki, k;) if the cell is on the tth or (¢')th
transversal but not (0, 0) and the array in (0,0) will be the upper left part of a
USOLSSOM(m + k). We suppose that each of the above ISOLSSOM(m + k;, k)
and USOLSSOM(m + k) is based on the same elements as the USOLSSOM(m)
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and some other new elements, and the new elements remain unchanged when
labelling. Then we obtain the upper left part of the required USOLSSOM(gm + k).
Suppose its four corners are occupied by the USOLSSOM(m + &) as shown in
Fig.1, so what we need now is to describe the right part and the lower part.

The right part consists of the columns Gy, Ca,...,C, ..., Cy4-1 where column
C; comes from the right parts of the ISOLSSOM(m + k¢, k) on tth and (t')th
transversals in such an order: tth transversal left and (¢')th transversal right. The
lower part consists of the rows R, Rz,..., Rt,..., Ra-1, where R; comes from
the lower parts of the ISOLSSOM(m + k¢, k) on tth and (¢')th transversals in
another order, i.e. tth ransversal below and (¢')th transversal above.

Now we get a self-orthogonal Latin square with a unipotent orthogonal mate
which is almost symmetric. The only problem is that in the orthogonal mate some
positions occupied by a new element z in a cell of the tth transversal have their
symmetric positions occupied by another new element y in the symmetric cell
of the (t')th transversal. Since m is even and k; odd > 0, we can replace the
element z by y in the positions above the diagonal of the cell. For the cells of
(¢)th transversal, replace the correspondent element y by z. It is a routine matter
to see that the final squares are the required USOLSSOM(gm + k).

We have the following corollary

Corollary 2.2. Thereexistsa USOLSSOM(v) forv € {142,194 202,258,278,
282,394 398,402,422 }.

Proof: In Table 1 we use Lemma 2.1 to get the required USOLSSOMs. All the
input ISOLSSOM(m + ki, k¢), USOLSSOM(m) and USOLSSOM(m + k) are
obtained from Lemmas 1.1 and 1.2.

Table 1

Equation k=Y(2k)
142=32 x4+ 14 7x(2x1)
194=8 x24+2 2x1
202=16 x 12+ 10 Sx(2x1)
258=16 x 16+ 2 2 x1
278 =32 x 8+ 22 11 x(2 x1)
282=32 x8+26 13x(2x1)
394=32 x12+ 10 S5x(2x1)
398=32 x 12+ 14 7 %x(2x1)
402=32 x 12+ 18 9 x(2x1)
422=16 x26+6 Ix(2x1)

To apply the second construction we need some input designs, which we state
below. From [4] we have
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Lemma 2.3, There exists an TUSOLSSOM(v,n) for (v,n) € {(18,4),(22,4),
(26)4)!(30’4):(34:8))(38)8)}‘

We give another construction below, using “frame-type” SOLSSOMs (FSOLS-
SOMs). A t-FSOLSSOM(u) is defined as follows.

Let V be antu-setand let 7 be a partition of V intou sets 71, T3, . . . , Ty, €ach of
size t. Then a t-SOLSSOM(u) is a pair of tu by tu arrays, A and B both indexed
by V, which satisfy the following.

(1) Each cell of A and B which is indexed by a pair (t1,%2) where ¢; and ¢
belong to the same partition block is empty, and all other cells of each array
contain a member of V,

(2) Each line (row or column) of each array indexed by a member of block T
of the partition contains each member of V\T',

(3) The array B is symmetric, and

(4) If A’ denotes the transpose of A, then { A, A’, B} is a set of pairwise orthog-
onal partial Latin squares.

Loosely speaking, a t-FSOLSSOM(u) can be considered to be a SOLSSOM(tu)
“missing” a set of u disjoint sub-SOLSSOM(?)s.

For u odd, a 1-FSOLSSOM(u) is equivalent to a SOLSSOM(u), whereas for u
even, a 1-FSOLSSOM(u) cannot exist.

From [2,3] we have

Lemma 2.4. There exists a 2-FSOLSSOM(u) for v =5,7.

The following lemma follow mutatis mutandis from Construction 2.3 in [2]. So
we state it without proof. For the detail the reader is referred to [2].

Lemma 2.5. Suppose that for positive integers t,u, v, w,a with 0 < a <wthere
exist;
(1) at-FSOLSSOM(u),
(2) anIUSOLSSOM®@,w),
(3) aUSOLSSOM@u(w —a) +a),
(4) three pairwise orthogonal Latin squares of order *3* containing common
subsquares of order “32.

Then there exists a USOLSSOM(u(v — a) + a).
We have the following corollary

Corollary 2.6. Thereexistsa USOLSSOM()forv € {74,82,98,102,118,174,
214,230}.

Proof: In Table 2, we use Lemma 2.5 to get the required USOLSSOMs. All the
input ¢-FSOLSSOM(u), TUSOLSSOM(v, w), USOLSSOM(u(w — e) + a) and
222 sub 22 are obtained from Lemmas 1.1, 1.2,2.3 and 24.
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Table 2

Equation w t Shsubs

74=5(18 —4)+4 4 2 7
82=5(18-2)+2 4 2 8subl
98=5(22-3)+3 4 1 19subl
12=7(18 —4)+4 4 2 7
118=5(26 —3)+3 4 1 23subl
174=9(22 -3)+3 4 1 19subl
214=7(34 -4)+4 8 1 30 sub4d
230=7(38-6)+6 8 2 16subl

From USOLSSOM(82) we have
Lemma 2.7. There exists a USOLSSOM(1322).

Proof: Write 1322 = 16 x 82+ 5 x (2 x 1). Since there exist ISOLSSOM(83,1),
.USOLSSOM(92) from Lemmas 1.1, 1.2, respectively, a USOLSSOM(1322) ex-
ists from Lemma 2.1.

3. Conclusion

Up to now, it has been shown that a USOLSSOM(v) exists for v € F. Updating
Lemma 12 we obtain the following

Theorem 3.1. A USOLSSOM(v) does not exist for v € {2,6}, but a
USOLSSOM{(v) does exist for even integerv with the possible exception of v €
E.

We then have

Theorem 3.2. An R(n) does not exist for n € {2,3,6}, but an R(n) does
exist for positive integer n with the possible exception of n € E.

E = {10,14,46,54,58,62,66,70}
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