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Abstract. In this paper, partial answers to some open problems on harmonious label-
ings of graphs listed in [2] are given.

1. Introduction

Let G = (V, E) be a finite simple graph with p vertices and ¢ edges. We write

(a, b) for the edge whose endpoints are e and b. A harmonious labeling of a graph
“with ¢ > p edges is a function

h: V(@) — Zgq

(the group of integers modulo ¢) such that the induced edge labeling given by
h(a,b) = h(a) + h(b) (mod q) for every edge (a,b) is1 — 1. Ifg=p—1,
exactly one label may be used on two vertices and the resulting edge labels are
distinct.

Since general results about harmonious graphs seem to be exceptionally difficult
to find, research has focused on specific classes of graphs (see [2]).

In the next section we investigate some general characterizations of harmonious
graphs. Section 3 presents partial answers to some of the open problems listed
in [2].

2, General results on harmonious graphs

Theorem 2.1. The total number of possible harmonious labelings of a graph with
g2pis

—_1\¢9
(151) if q is odd,

_ a/2
(ﬁq_4_2_)_> if g is even.
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Proof: When ¢ is odd, the set of labelings for all edges is {0,1,...,g — 1} as
follows.

h(a,b) edge (a,b) the number of edges
1 (0’1) (9"'1,2),---.(%3',!5—1) gi—l

9-2 | (0,4-2)(1,4-3) ... (%) =]

¢-1 | (0,-1D(1,q-2) ... (5,%) =L
0 (1,g-1) (2,q—2)...(1;—‘,s;l) =

Picking an (a, b) from each row in the above table, we can construct a harmo-
nious graph with ¢ edges. Conversely, each edge (e, b) of a harmonious labeling
comes from exactly one row in the table. So, the number of possible harmonious

labelings is ( ) if g is odd.

Similarly, ¢ is even, the number of possible harmonious labelings is
(m_z)"’ 2 | |

Remark. Not all the harmonious graphs produced in the proof of Theorem 2.1
are connected.

Example. G = (V, E) with E = {(0,1),(3,7),(0,3),(1,3),(0,5),(2,4),
(1,6),(1,7)} is not connected.

Theorem 2.2. Every graph can be embedded in a harmonious graph.

Proof: For a given graph G = (V, E) with p vertices and ¢ edges, we construct a
graph G* = K, + K + G, where n is defined as follows.

Let V(G) = {=z1,22,...,2p},
V(K1) = {z0},
V(&) = {v,v2,..., 1},
and define h by
h(z;) = {h for::=0,1,2,
(z51) + h(z‘,_z) +1 fori= 3,4,...,1)
Then h is an injection from V ( K,,) to the set

{1,2,.. (:‘M)GE(K o h(z;, ;) \{h(zi, ;) | 5,25 € E(K1 + G)},

where
(z‘.z;)eE(K.+a)(h(z"xJ)) -p—q20.

It is easy to verify that h is a harmonious labeling and G is a subgraph of G*. §
The following theorem provides a necessary condition for harmonious graphs.
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Theorem 2.3. Let (dy,ds,...,dp) be the degree sequence of G.
If G is a harmonious graph, then

[ 4
M du= (;) (mod g) ®
t=1

has a solution (y1,y2,...,yp) of nonnegative integers, where 0 < y; < q¢—1,
and

Vi 7“ Y5, i # js
if G is not a tree.

If G is a tree, there is exactly one pair 1, 7 such that y; = y;.
Proof: Let h: V(G) — {0,1,2,...,q9 — 1} be a harmonious labeling of G.
Let A(z) = yi, ;3 € V(G) and degz; = di, 4 = 1,2,...,p, then y; €
{0,1,2,...,¢—1},and y; # y; if 1 # j. Hence

P
E diy; = E h(z;, z;) + gt (t is a nonncgative integer)
=1 (zi.li)ﬁﬂc)
iti

=0+1+2+---+g—1+gqt

= (g) +qt= (g‘) (mod q).
1

Lemma 2.4. ([5,Ch.2, %, Th.2]) Equation (*) has a solution of integer if and only
if

g-c-d-(dl,dz-,---.dp: 9) | (;)0

As a corollary to Theorem 2.3 we have the Graham-Sloane necessity condition
[4, Th. 11].

Corollary 2.5. [4)) Ifa harmonious graph G with degree sequence (d1,dz, .. ., dp)
has an even number q of edges and 2* | d; (d; is divisible by 2k fori =
1,2,...,p, then 2%*! | q.

Proof: Suppose that 25*1/ . Consider

5 g
Ed,‘I;E (2) (mod q).

i=1
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Since 2% | d; 2 | g,and ¢ = § Y0, di, then 25! | gc.d(d1,dz,...,dp, Q).
k>2.
(1) If2% gcd(d,...,dp,q), then 2571 tg(g-1) = (§). Thus g.c.d(ds,
"'th)Q)I (g)'
(2) If2*|gcd(d,...,dp,q). Since 2kt g 24 %q(q —1). Thus g.c.d.(d;,
coerpy ) 2a(g — 1), ie., gC.d(dr, ., dp, ) (F)-
By Lemma 2.4 equation () has no solution in the integers. Hence G is not
harmonious. |
Remark. Theorem 2.3 is not a consequence of Graham-Sloane Theorem (Corol-
lary 2.5), as will be shown in Theorem 3.11.

Corollary 2.6. Ifa graph G is k-regular, then G is not harmonious, if
(1) p=1 (mod 2) and k=0 (mod 4), or
(2) p=2 (mod 4) and k=0 (mod 2).
Proof: Observe that ¢ = %plc. The result now follows from Corollary 2.5. | |

3. Answers to some open problems in harmonious graphs
In [2] Gallian summerized much of the work done on harmonious labelings of
graphs and provided a plethora of open problems and conjectures. In this section
we’ll give partial answers to some of them.
First, we want to point out that Grace’s conjecture that an even cycle with one
additional endpoint for each vertex is harmonious has been proved by us (see [6]).
Now we investigate specific classes of graphs.
(1) mK, (the union of m disjoint copies of the complete graph K,,).

According to [2], up to now no results have been obtained pertaining to the har-
moniousness of mK,,.

Theorem 3.1. If n =1 (mod 2) and m = 2 (mod 1), then mK, is not
harmonious.

Proof: The graph m K, is a (n— 1)-regular graph with m(;) edges.
By Corollary 2.6, m K, is not harmonious if
{m(g) =1 (mod2) {m(;) =2 (mod 4)
n—1=0 (mod 4) n—1=0 (mod 2)
m=2 (mod 4)
It is not difficult to get
s ot cficut fo & {n—lEO (mod 2)
expressions. |

We next consider mK3. According to Theorem 3.1, a necessary condition for
mK3 to be harmonious is that m is odd or m = 0 (mod 4). We have the fol-
lowing.

from the above congruence
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Theorem 3.2. m K3 is harmonious when m is odd.

Proof: Arrange the m complete graphs K3 in their natural sequence. Let z;, y;, zi,
be three vertices in the ith copy of K3,i1=1,2,...,m.

h:V(mKi3) — {0,1,2...,3m — 1}, (m > 3), is given by
h(z))=1-1, i=1,2,...,m,
h(y£)={2(m—i) ) 1<ig<(m-1)/2,
Im-—-21¢ , (m+1)}/2<i<m,
(5m-1)/2+1i , 1<i<(m-1)/2,

h(z‘)={(3m-1)/2+i , (m+1)/2<i<m

Remark: Whenm = 3, h: {z1,22,23} — {0,1,2}.

One can easily verify that h is one-to-one. In the following, we give the value
of h(z;,y:).

(@ Thesetof h(zy,y;),i=1,2,...,m,is

3m—1 3m+1 Sm-3
L ) .

(b) Thesetof h(z;, 2),1=1,2,...,m,is

5m—1 5Sm+1' Tm-3
2 ’ 2 1003 2 s [
(c) Thesetof h(y;,2),i=1,2,...,m,is

Tm—-1 Tm+1 9m-3
L ) .

Thus the labels of the edges are the integers from 38=L to 22=3 and therefore
h is a harmonious labeling. |

It is known (see [2]) that m K, is graceful if and only if m = 1 andn < 4. We
conjecture that m K3 is not harmonious whenm = 0 (mod 4). We have verified
that the conjecture is true for m = 4.

(2) Helms H,.

Helms H, (wheels with a pendent edge at each cycle vertex) have been shown
to be graceful (see [2]), but their harmoniousness is an open problem. In fact, the
proof of the harmoniousness of wheels Wa .2 in [3] has givenusa hint as to how
to solve this problem.
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In [3], the path of length 2 n was drawn as a bipartite graph in the plane with
n+ 1 vertices on the left and n vertices on the right, and with the first vertex of the
path on the left, Label the vertices on the left by 0,1,2,...,nand the vertices
on the right by n+ 1,n+ 2,...,2n, Then the vertex labeled » was connected
to the vertex labeled O to give a harmonious cycle Can 1. Labeling Czq41 in the
preceding way and using 3 n+ 1 as the center label produces a harmonious labeling
for Wan2 = K1 © Ca.1 . Now, add a pendent edge at each cycle vertex of the
above labeling for W>,,2 and label the endpoints adjacent to the cycle vertices
0,1,2,...,nwith5n+ 2,50+ 3,...,6n+ 2, and the endpoints adjacent to the
cycle vertices labeledn+ 1,n+ 2,...,2nwithd4n+ 2,40+ 3,...,50+ 1.

This yields a harmonious labeling of helms with an odd cycle. Hence we have
the following.

Theorem 3.3. Helms with an odd cycle are harmonious.

We conjecture that helms with an even cycle also are harmonious. We have
checked that the conjecture is true for helms with a 4-cycle or 6-cycle.
(3) Windmills KJ*(n > 3) (the family of graphs consisting of m copies of K,
with a vertex in common).
In 1982, K* was proved to be harmonious for all m (see [2]). Graham and Sloane
conjectured that K2 is harmonious if and only if n = 4. They verified this con-
jecture for the cases that nis odd or n= 6 (see [4]).

We'll show that Graham and Sloane’s conjecture is true for infinitely many
evenn.

Lemma 3.4. (see(l, §18, Th.1]) Let n= p}",p3* ...p2 where each p; is prime.
Then n is not a sum of two squares if and only if there is a

;=3 (mod 4) and o is odd. *)

Theorem 3.5. If n iseven and n/2 satisfies condition (+) in Lemma 3.4, then
is not harmonious.

Proof: |E(K?)|=2 (3) is even. Suppose that K 2 is harmonious, and z, a1, a2,
...,an-1 are labels of the vertices of one K, and x, b, ,b2,...,b,—1 are labels of
the vertices of the other K,, where z is the label of the vertex common to the two
Ky's.

We introduce the following function

H(Z)=(Z"+ 2%+ -+ Z2°)2 + (Z°+ 2% + ...+ Z})2.

Let A, (A,) be the number of even (odd ) numbers in set {z,a1,...,a5-1},
and B, ( B,) be the corresponding number in the set {z, by, ...,b,—1}. Clearly,
Ac+ A, = B. + B, = nalso,

H(-1) = (Ae — Ao)? + (B — B,)? 1)
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and
H(Z) = 2% + 2% + ...+ Z2

+ 224 2 g4 2
+ 2250 4 ZFO g ZEO YO 4
+ Zz&b,,.x + Zb|+bz + ”_+Zba-1+b-—l)

Since K2 is harmonious, and | E( K2)| is even, we have
H(-1) =22 2)
By (1) and (2), we have
(Ae = Ao)* + (Be = Bo)* = 2m 3)

where A, — A, and B, — B, are even because A, + A, and B, + B, are even.
Since n is even, (3) is equivalent to

X2+Yi=nf2 @)

where X,Y arc integers (even numbers).
By Lemma 3.4, if n/2 docsn’t satisfy condition (), then equation (4) doesn’t
hold. Thus K2 is not harmonious. |

According to Theorem 3.5 the values of = up to 100 for which K, 2 is not har-
monious are 6, 12, 14, 22, 24, 28, 30, 38, 42, 44, 46, 48, 54, 56, 60, 62, 66, 70,
76,78, 84, 86, 88, 92, 94, 96.

Lemma 3.6. (see [1, §18, Ex.13)) A positive integer m is not a sum of three
squares if and only if n= 4°(8k + 7), where e, k are nonnegative integers.

Theorem 3.7. If

(1) n=0 (mod 4) and 3 = 4¢(8k + 7), where e and k are nonnegative
integers or

(2) n=5 (mod 8), then K2 is not harmonious.

Proof: The argument of this proof is similar to that of Theorem 3.5.
We introduce the following function:
H(Z)=(Z%+ 2% +---+ 2°)?
+(Z5+ 3% + ... 4 Zb1)?
+(Z5+ 29+ -4 22,
Counting H(—1) in two ways, we casily sec that a necessary condition for K. 3,

to be harmonious is
P+ +4=3n 5
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where a, B, are even when n = 0 (mod 4) and «, 8, are odd whenn = 5
{(mod 8).

But, by Lemma 3.6, whenn=0 (mod 4), 342 =4¢(8k+7);orwhenn=>S5
(mod 8) equation (5) doesn’t hold. [

According to Theorem 3.7, K2, K};, K3, are not harmonious.

@) B(m,r,m,),r > 1, (the graph consisting of m copies of K, witha K, in
common).

It is known that B(n, r, m) is gracefui in the following cases: n=3,r = 2,
m > l;n=4,r =3, m > 1 (see [4]). But up to now, no results have been
obtained regarding the harmoniousness of B(n,r,m) for r > 1. Analogous to
the result for the gracefulness of B(n, r, m) we have the following.

Theorem 3.8. B(3,2,m) m > 1 is harmonious.
Proof: Label the two vertices in common to the K3 ’s with {0, 1}. Label the rest
with {2,4,6,...,2m}.

An easy computation shows that the labeling is of the desired type. 1
Theorem 3.9. B(4,3,m) m > 1 is harmonious.
Proof: Label the three vertices in common to the K4's with {0, 1,2}. Label the
rest with {4,7,10,...,3i+1,...,3m+ 1},

This labeling is clearly harmonious. |

We believe that the graphs B(4,2,m) also are harmonious, since we have
verified the cases when m = 2,3,4.

() c* (the one point union of t cycles of length n). Graham and Sloane
proved 3 is harmonious if and only if ¢ # 2 (mod 4). S.C. Shee (see
[2]) proved C*“,t > 1, is harmonious.

We have the following negative result.

Theorem 3.10. If
(1) »=1 (mod 2),t =2 (mod 4);0r
(2) n=2 (mod 4),t=1 (mod 2), then Cc™ is not harmonious.

Proof: If nisoddandt = 2 (mod 4) orn = 2 (mod 4) and ¢ is odd, then
|B( c*’ )| = tnis even, and the degree of every vertex is divisible by 2but4 ftn
50, by Corollary 2.5, C*” is not harmonious. ]

(6) Cpt(theclass of graphs formed by adding a single pendent edge to ¢ vertices
of a cycle of length n).

Grace has shown that C;}* is harmonious when 7 is odd. But not results have
been obtained regarding the harmoniousness of C;* when nis even. The following
result shows that the graphs C;;* are not harmonious for even n.

First we prove a more general result.
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Theorem 3.11. Let C,, be the class of graphs formed by adding a path lo a vertex
of a cycle of length m, and q = |E(C.)|. Then a necessary condition for C,, (o
be harmonious is that q is even.

Proof: Suppose that C., is harmonious. Label the vertex of degree 3 and the end-
point with z; and z;, and label the other vertices of degree 2 with z3,z4, ..., Z,.
According to the equation (*) in Theorem 2.3

3z 4+ T2+ a3+ -+ Tg) = (g) (mod g), so

S +z(§) - (g) (mod ) ©

:z:l—zz-i-%(q—l)EO (mod g)

Ifg =1 (mod 2), from (6) we obtain z; — z2 = 0 (mod g), which is not
possible because z; # z2 and 1,22 € Z,. |
Remark: Theorem 3.11 can’t be derived from Corollary 2.5.

As an immediate consequence we have the following.

Corollary 3.12. When n is even, C}' is not harmonious.

(7) Triangular snakes (a triangular cactus block-cutpoint-graph is a path of length
n).
David Moulton [7] has proved that triangular snakes are graceful, but no results
have been obtaired as to their harmoniousness. Our next result provides a partial
solution.

Theorem 3.13. When n is odd, A, is harmonious.

Proof: Arrange the triangles in their natural sequence. Let z;_;, z;, y; be the three
vertices in ith trianglefori = 1,2,...,n.
Case 1. =1 (mod 4).
If n= 1, label the three vertices with {0, 1,2 }. We consider n > 3 as follows.
The function 4 is defined by

_ 3 foreveni,
h(zi) = { =i foroddi,
2n—1 foreveni # 2,
2n+ i3 foroddi,andi> 3L,
h(y:) = | 3%i_1 foroddi,and3 <i< HL,
2n-1 ifi=1,
3n-1 ifi=2.
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One can easily verify that h(z;) # hla:;) , h(y:) # h(y;) and h(zy) # h(yj).
In the following we give the set of induced edge labels.

(@) The set of edge labels on (z;-1, ;) 1 = 1,2,...,nis

n+ 1 'n-ﬁ-l_'_l 3n-1
) e T3 [

() The set of edge labels on (i, Zi-1), (vi,z;) evenand i > 4, and (1, %o),
(91,71, (Yot Tag1) i

3n—1 3n-1 Sn—-1
{ 3 +1, > +2,..., > }

(c) The set of edge labels on (yi, 2i-1), (vs, z:), where s isodd and ¢ # 1,
i # ﬁz—l' and(y2|$l)’(y2'22) (yﬁ?)x%) is

Sn-1 Sn—-1 Tn-1
{ > +1, > +2,..., 2 }

Thus the set of induced edge labels of A, is

n+l n+1 +1 Tn-1
2 ’ 2 LA ] 2 1
and the function h is a harmonious labeling.
Case 2: n=3 (mod 4).
If n = 3, label zo,x;,%2,z3 With 0,2,1,3; label y;,y2,y3 with 8,4,6.
Clearly this is a harmonious labeling. Now we consider » > 3 as follows.
The function A is given by

foreveni,
B3 = el foroddi,
( 2n—1i foreveni # 2,
2n+ 553 foroddi,andi > =T,
S 2 foroddi,and3 < i < %5t
1 ifi= 2,
2n—1 ifi=1,
(3n—1  ifi=2.

3 Nl

~

h(y:) = 1

Analogously, we can show that h is a harmonious labeling. |
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Theorem 3.14. Whenn=2 (mod 4), A, is not harmonious.

Proof: Note that ¢ = |A4| = 37, and A, has n — 1 vertices of degree 4 and
n+ 2 vertices of degree 2. Since n = 2 (mod 4) and 4 /3n, according to
Corollary 2.5, is not harmonious. |

The remaining problem is whether A, is harmonious when n = 0 (mod 4).
We have checked that A4 is harmonious.

We remark that K, -snakes analogous to triangular snakes are harmonious (see
[4]). Now we introduce the ladder +nK defined as follows.

Let zo,Z1,...,Zn-1 and yo,y1,...,Yn-1 be the consecutive vertices of two
disjoint paths on » vertices. A ladder is the graph obained by connecting each x;
toyi, vi+1 (0 i< n—2)and eachy; 0241 (0 <1< n—-2).

We have

Theorem 3.15. The ladders +nK, are harmonious.

Proof: Denote the n vertices on one side of ladder by zo, 1,32, ..., Tn-1 Datural
order and the n vertices on other side by yo,y1,¥2,.++,¥Yn-1-
The function h: V(+nK32) — {0,1,2,...,¢} is given by

1 ifi=0,
h(z;) = { 3+ h(zi—1), foroddi,
2+ h(zi-1), foreveni #0.

0 ifi=0,
h(y;) = { 2+ h(y;-1) foroddi,
3+ h(y;—1) foreveni # 0.

It is not difficult to verify that h is a harmonious labeling. .|

Further, we define subladders nK, as the class of graphs formed by deleting
edges (zi_1,¥;) or (yi-1,z;) foreachi (i = 1,2,...,n— 1) from the ladders
above. ‘

Theorem 3.16. The subladders ®nK> are harmonious.
Proof: The function h is given by

1 ifi=0
h(z;) = ’
(2) {2+Mxpﬂ,ﬁi2L

h()_{o ifi=0,
Y= 24 h(yi) ifid 1.

This labeling is clearly harmonious. 1
(8) Double cone C, + K.
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According to [2], when n is odd C,, + K3 has been shown to be harmonious.
But when n is even the harmoniousness of C,, + K still is open. The following
theorem give a partial answer to this question.

Theorem 3.17. Ifn=2,4,6 (mod 8),C, + K, is not harmonious.

Proof: Note that the double cone C,, + K has two vertices of degree n, n vertices
of degree 4 and g = 3n.

Casel.n=2 (mod 4). Notethat4)3n Case2. n=4 (mod 8). We have
8/3n

By Corollary 2.5, C,, + K are not harmonious. ]

We don’t know if C, + K3 is harmonious whenn= 0 (mod 8). Once this is
answered, this problem will be solved completely.

Finally, we want to point out that one of open problems in the table of [2],
namely the harmoniousness of Sy, + K, was settled by Chang, Hsu and Rogers
in 1981 (see [2]) ( Ky + K, are harmonious).
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