## Graphs without $K_4$ -minors

Hong-Jian Lai West Virginia University Morgantown, WV 26506

Hongyuan Lai Wayne State University Detroit, MI 48202

Abstract. In [Discrete Math. 75 (1989) 69 - 99], Bondy conjectured that if G is a 2-edge-connected simple graph with n vertices, then G admits a double cycle cover with at most n-1 cycles. In this note we prove this conjecture for graph without subdivision of  $K_4$  and characterize all the extremal graphs.

## Introduction

Graphs in this note are finite and loopless. For all undefined terms, see Bondy and Murty [BM]. Let G be a graph and  $e \in E(G)$ . The contraction G/e is the graph obtained from G by identifying the two ends of e and deleting the resulting loops. A subdivision of a graph G is a graph obtained from G by subdividing some edges of G, and will be denoted by G. As in [BM], G and G and G denote the connectivity and the edge-connectivity of G, respectively. In 1952, Dirac showed the following:

**Theorem A (Dirac [D]).** If G is a nontrivial simple graph without  $TK_4$ , then G has a vertex of degree at most 2.

An arc of G is an (x, y)-path P of G with  $x, y \in V(G)$ , such that all the internal vertices of P have degree 2 in G. A maximal arc is one that cannot be extended in G. The length of an arc P is |E(P)|. We regard  $K_1$  as an arc of length 0 (with identical ends) and  $K_2$  as an arc of length 1. Let k be a nonnegative integer. Given graphs  $G_1$  and  $G_2$ , if for  $i \in \{0,1,2\}$ ,  $G_i$  has an arc  $P_i$  with  $|E(P_i)| = k$  and with the ends of  $P_i$  being  $x_i, y_i \in V(G_i)$ , then one can define the k-arc-sum of  $G_1$  and  $G_2$  to be the graph obtained from the vertex disjoint union of  $G_1$  and  $G_2$  by deleting all the internal vertices of  $P_2$  and identifying  $x_1$  with  $x_2$  and  $y_1$  with  $y_2$ . Thus the k-arc-sum of  $G_1$  and  $G_2$  contains  $G_1$  and  $G_2$  as subgraphs. If G is a k-arc-sum of  $G_1$  and  $G_2$  with

$$|E(G_i)| < |E(G)|, (1 \le i \le 2),$$
 (1)

then G is called a proper k-arc-sum of  $G_1$  and  $G_2$ .

**Remark.** The definition of the k-arc-sums here is motivated by and similar to the (k+1)-sums of Bondy [B], but is different from the k-sums of Seymour [S].

Let G be a simple graph. An edge  $e \in E(G)$  is called a sum-edge of G, if G is a proper 1-arc-sum of two subgraphs  $G_1$  and  $G_2$  with  $E(G_1) \cap E(G_2) = \{e\}$ . For each integer  $i \geq 3$ , define  $\mathcal{K}(i)$  to be the family of simple graphs G such that either G is a cycle of length at most i, or G is a 0-arc-sum or a 1-arc-sum of  $G_1$  and  $G_2$  for some  $G_1, G_2 \in \mathcal{K}(i)$ , such that every k-cycle of G,  $3 \leq k \leq i$ , has at most two sum-edges of G, and such that if a k-cycle G has exactly two sum-edges in G, G is a G if then these two sum-edges are adjacent in G.

Define  $K = \bigcup_{i \geq 3} K(i)$ . By definition of the k-arc-sum, the following Proposition is immediate.

**Proposition 1.** Suppose that G is a k-arc-sum of  $G_1$  and  $G_2$ . If each of  $G_1$  and  $G_2$  has no  $TK_4$ , then G has no  $TK_4$ . In particular, every graph in K has no  $TK_4$ .

#### Main Results

Theorem 1 Let G be a nontrivial 2-edge-connected graph. If G contains no  $TK_4$ , then either G is a cycle or G is a proper k-arc-sum of some graphs  $G_1$  and  $G_2$ , for some  $k \ge 0$ , with  $\kappa'(G_i) \ge 2$ ,  $(1 \le i \le 2)$ . Moreover, if G is simple and not a cycle, then  $G_1$  and  $G_2$  are simple graphs.

Let sc(G) denote the minimum number of cycles of G that are needed to cover E(G) exactly twice. In [B], Bondy conjectured that any 2-edge-connected simple graph with n vertices satisfies  $sc(G) \le n-1$ , where equality holds if and only if G has a spanning tree T such that for every edge  $e \in E(G) - E(T)$ , T + e has a 3-cycle, (such a tree T is called a *tritree* of G, and such a graph G is called a *trigraph*).

**Theorem B.** (Bondy [B]) Let G be a graph with n vertices.

- (i) If G is a trigraph, then  $sc(G) \ge n-1$ .
- (ii) If G is a 0-arc-sum of two trigraphs, then G is a trigraph.
- (iii) Suppose that G is a 1-arc-sum of trigraphs  $G_1$  and  $G_2$  and that e is the sum edge shared by  $G_1$  and  $G_2$ . If each of  $G_1$  and  $G_2$  has a tritree that uses e, then G is also a trigraph.

# Proposition 2. If $G \in \mathcal{K}(3)$ , then G is a trigraph.

Proof: We argue by induction on |V(G)|. By (ii) of Theorem B, we may assume that G is not a 3-cycle nor a 0-arc-sum of some graphs in  $\mathcal{K}(3)$ . Thus by definition of  $\mathcal{K}(3)$ , G is a 1-arc-sum of  $G_1$  and  $G_2$ , for some  $G_1, G_2 \in \mathcal{K}(3)$ . Choose  $G_1$  and  $G_2$  so that  $|E(G_2)|$  is minimized. We claim that  $G_2$  is a 3-cycle.

Let e denote the edge shared by  $G_1$  and  $G_2$ . If  $G_2$  is not a 3-cycle, then since  $G_2 \in \mathcal{K}(3)$ ,  $G_2$  is a 1-arc-sum of some  $G_2'$ ,  $G_2'' \in \mathcal{K}(3)$ . If  $e \in E(G_2') \cap E(G_2'')$ , then let  $G_1' = G_1 \cup G_2''$ , and so the minimality of  $G_2$  is violated, since  $G_2'$  is a proper subgraph of  $G_2$  and since G is a 1-arc-sum of  $G_1''$  and  $G_2''$ . Hence we may assume that  $e \in E(G_2') - E(G_2'')$ . Let  $G_1'' = G_1 \cup G_1''$ , then the minimality of  $G_2$  is violated again, since  $G_2''$  is a proper subgraph of  $G_2$  and  $G_2''$  is a 1-arc-sum of  $G_1''$  and  $G_2''$ . Hence  $G_2$  must be a 3-cycle.

By induction hypothesis,  $G_1$  is a trigraph. Let  $C_1$  be a 3-cycle of  $G_1$  that contains e. Since  $C_1$  has at most two sum-edges, and since e is a sum-edge of G,  $C_1$  contains an edge  $e_1 \in E(C_1) - \{e\}$  that is not a sum-edge of G. Let  $T_1$  be a tritree of  $G_1$ . If  $e \notin E(T_1)$ , then since  $C_1$  is a 3-cycle,  $e_1 \in E(T_1)$ . Let  $T_1' = T_1 + e - e_1$ . Since  $e_1$  is not a sum-edge of G, and since  $|E(C_1)| = 3$ ,  $T_1'$  is a tritree of  $G_1$ . It follows that  $G_1$  has a tritree that uses e, and so by (iii) of Theorem B, G is a trigraph.

Let A(G) denote the collection of all maximal arcs A of G with  $|E(A)| \ge 2$ . For any  $A \in A(G)$ , A is called a *cyclic* arc if there is an arc A' with  $E(A') \subseteq E(G) - E(A)$  such that  $G[E(A) \cup E(A')]$  is a cycle of G, or if A itself is a cycle; and A is an *acyclic* arc, otherwise. For each  $A \in A(G)$ , define b(A) as follows:

$$b(A) = \begin{cases} |E(A)| - 3 & \text{if } A \text{ is a cycle} \\ |E(A)| - 2 & \text{if } A \text{ is cyclic but not a cycle} \\ |E(A)| - 1 & \text{if } A \text{ is acyclic.} \end{cases}$$

Note that by Theorem A, if G is simple and has no  $TK_4$ , then  $A(G) \neq 0$ . Define

$$b(G) = \sum_{A \in \mathcal{A}(G)} b_G(A).$$

As examples,  $b(K_{2,t}) = 0$  if  $t \ge 2$ ; and if G is a subdivision of the Petersen graph, then b(G) is equal to the number of vertices of degree 2.

**Proposition 3.** Let  $G \in \mathcal{K}$ . Then  $G \in \mathcal{K}(3)$  if and only if b(G) = 0.

Proof: Suppose that  $G \in \mathcal{K}(3)$ . Then every arc  $A \in \mathcal{A}(G)$  is in a 3-cycle and so b(G) = 0. Suppose then that  $G \in \mathcal{K} - \mathcal{K}(3)$ . Then G has a cycle C of length at least 4. Since C has at most 2 sum-edges, and since when |E(C)| = 4 and C has exactly two sum-edges, these two sum-edge must be adjacent, C contains an arc  $A \in \mathcal{A}(G)$  such that either A is a cycle of length at least 4, or a cyclic arc of length at least 3 that is not a cycle, or an acyclic arc of length at least 2. Thus b(G) > 0.

Theorem 2. Let G be a simple graph with n vertices. If G has no TK4,

$$sc(G) \le n - 1 - b(G), \tag{2}$$

where equality holds if and only if  $G \in \mathcal{K}$ . Moreover, if b(G) = 0, then equality holds in (2) if and only if  $G \in \mathcal{K}(3)$ .

Corollary 1. Let G be a 2-edge-connected simple graph with n vertices. If G has no  $TK_4$ , then  $sc(G) \leq |V(G)| - 1$ , where equality holds if and only if  $G \in \mathcal{K}(3)$ .

Corollary 2. A 2-edge-connected simple graph G is a trigraph without a  $TK_4$  if and only if  $G \in \mathcal{K}(3)$ .

Proof of Corollaries 1 and 2: Corollary 1 follows from Theorem 2. Corollary 2 follows from Theorem 2, from Corollary 1 and from (i) of Theorem B.

### The Proofs

Let H be a subgraph of G. The set of all vertices in V(H) that are incident with at least one edge in E(G) - E(N), denoted by  $A_G(H)$ , is called the *vertices of attachment* of H in G.

Lemma 1. Let G be a graph without  $TK_4$  and let H be a subgraph of G with  $\kappa'(H) \geq 2$  such that  $A_G(H) = \{x_1, x_2\}, (x_1 \neq x_2)$  and such that G has an  $(x_1, x_2)$ -path P using no edges in E(H). If for some  $k \geq 1$ , H is a proper k-arcsum of some 2-edge-connected graphs  $H_1$  and  $H_2$ , then G is a proper k-arc-sum of some graphs  $G_1$  and  $G_2$  with  $\kappa'(G_i) \geq 2$ .

Proof: Since H is a proper k-arc-sum of  $H_1$  and  $H_2$ , both  $H_1$  and  $H_2$  are subgraphs of H, and so of G.

Case 1:  $x_1, x_2 \in V(H_2)$ .

Let  $G_1 = H_1$  and  $G_2 = G[E(H_2) \cup E(G - E(H))]$ , then G is a proper k-arc-sum of  $G_1$  and  $G_2$ . When  $x_1, x_2 \in V(H_1)$ , the proof is the same.

Case 2:  $x_1 \in V(H_i), (1 \le i \le 2)$ .

Since  $k \geq 1$ , there is an edge e (say) shared by  $H_1$  and  $H_2$ . Since both  $H_1$  and  $H_2$  are 2-edge-connected, there is a cycle  $C_i$  in  $H_i$  such that  $e \in E(C_i)$ ,  $(1 \leq i \leq 2)$ . Let  $P_i$  denote a path in  $H_i$  that joins  $x_1$  to exactly one vertex  $y_i$  (say) in  $C_i$ .

If  $y_1, y_2 \notin V(P)$ , then  $C_1, C_2, P_1, P_2$  and P form a  $TK_4$  in G, a contradiction. Hence we may assume that  $y_1 \in V(P)$  and that any path from  $x_1$  to  $C_1$  in H must use  $y_1$ . Let  $P^1, P^2, \ldots, P^m$  be all the  $(x_1, y_1)$ -paths in H. It follows that that subgraph

$$H' = H - (\cup_{i=1}^m V(P^i) - \{y_1\})$$

is a 2-edge-connected subgraph of G with  $A_G(H) = \{x_2, y_1\}$ , and so we are back to Case 1.

Proof of Theorem 1: If G has 2 edges  $e_1$ ,  $e_2$  with the same ends, (that is,  $e_1$ ,  $e_2$  are parallel edges in G) then let  $G_1 = G - e_1$  and  $G_2 = G[e_1, e_2]$  and we are done.

The theorem will also be trivial if G has a cut-vertex. Hence we shall assume that G is simple and 2-connected.

We prove the general case by induction on the number of vertices of G and so we assume that G is not a cycle and Theorem 1 holds for graphs with order smaller than |V(G)|.

By Theorem A, G has a vertex v of degree 2. Since G is not a cycle, G has a maximal arc P of length at least 2, where the ends x and y of P have degree at least 3 in G. Since G is 2-connected,  $x \neq y$ . We shall show first that G has a 2-edge-connected proper subgraph H such that

$$|A_G(H)| = 2, (3)$$

and, (assuming  $A_G(H) = \{u, v\}$ ), such that

$$G - E(H)$$
 has an  $(u, v)$  – path. (4)

Let  $G'=G-(V(P)-\{x,y\})$ . If  $\kappa'(G')\geq 2$ , then G' is a subgraph satisfying (3) and (4). Hence by  $\kappa'(G)\geq 2$ , we may assume that  $\kappa'(G)=1$ . Thus G' has an edge such that G'-e has two components G'' and G''' with  $x\in V(G'')$  and with |V(G'')| being minimized. If  $y\in V(G'')$ , then e is a cut-edge of G, contrary to the assumption that  $\kappa'(G)\geq 2$ . Thus  $y\in V(G''')$ . Let  $z\in V(G'')$  be the vertex incident with e. Since G is 2-connected,  $x\neq z$ . Clearly G has an (x,z)-path using no edges in E(G'') and  $A_G(G'')=\{x,z\}$ . By the minimality of |V(G'')|,  $\kappa'(G'')\geq 2$ . Thus G'' is a 2-edge-connected proper subgraph of G satisfying (3) and (4).

Choose a minimal 2-edge-connected proper subgraph H of G satisfying (3) and (4), and assume that  $A_G(H) = \{x_1, x_2\}$ . By induction, H is a proper k-arc-sum of two sub-graphs  $H_1$  and  $H_2$ . Suppose first that k = 0. Since G is 2-connected, we may assume that  $x_i \in V(H_i)$ ,  $(1 \le i \le 2)$ . But then H may contain a smaller 2-edge-connected subgraph satisfying (3) and (4), contrary to the minimality of H. Hence we must have k > 1 and so Theorem 1 follows from Lemma 1.

**Lemma 2.** Let G be a 2-edge-connected graph. If G has an arc A with  $|E(A)| \ge 2$ , then for each  $e \in E(A)$ ,

$$sc(G/e) = sc(G). (5)$$

Proof: The proof is routine and straightforward.

**Lemma 3.** If G is a 1-arc-sum of H and a k-cycle H', where  $k \geq 3$ , then  $sc(G) \leq sc(H) + 1$ .

Proof: Let  $C' = \{C'_1, \ldots, C'_m\}$  be a double cycle cover of H with m = sc(H). Let e be the edge commonly shared by H and H'. We may assume that  $e \in E(C'_1)$ . Thus let  $C_1 = G[E(C'_1) \cup E(G_1) - e]$ ,  $C_2 = C'_2, \ldots, C_m = C'_m$  and  $C_{m+1} = H'$ . Then  $\{C_1, C_2, \ldots, C_{m+1}\}$  is a double cycle cover of G, and so we have  $sc(G) \leq m+1$ . **Lemma 4.** Let G be a simple graph of n vertices. Each of the following holds.

- (i) If  $G \in \mathcal{K}(3)$ , then sc(G) = n 1.
- (ii) If  $G \in \mathcal{K}$ , then sc(G) = n 1 b(G).
- (iii) Suppose that G is a 2-arc-sum of  $G_1$  and  $G_2$  where  $G_1, G_2 \in \mathcal{K}$ . If the common arc P shared by  $G_1$  and  $G_2$  is not in a  $K_3$  of G, then

$$sc(G) < n-2 - b(G). \tag{6}$$

Proof: Both (i) and (ii) of Lemma 4 hold if G is a cycle. So we suppose that G is not a cycle. Assume first that  $G \in \mathcal{K}(3)$ . Then by definition of  $\mathcal{K}(3)$ , G is a k-arc-sum of  $G_1$  and  $G_2$ , for some  $G_1, G_2 \in \mathcal{K}(3)$ , where  $0 \le k \le 1$ . If k = 0, then (i) follows easily by induction. Hence we assume that k = 1. Choose  $G_1$  and  $G_2$  so that  $|E(G_2)|$  is minimized. Then by the definition of  $\mathcal{K}(3)$  and since k = 1,  $G_2$  must be a  $K_3$ . Thus by Lemma 3 and by induction,

$$sc(G) \le sc(G_1) + 1 = (n-2) + 1 = n-1.$$
 (7)

Hence (i) of Lemma 4 follows by (i) of Theorem B and by (7).

By Proposition 3, if  $G \in \mathcal{K} - \mathcal{K}(3)$ , then b(G) > 0 and so G has an arc  $A \in \mathcal{A}(G)$  such that  $b_G(A) > 0$ . Pick  $e \in E(A)$ . Then G' = G/e is simple and G/e is in  $\mathcal{K}$ . By induction, we have sc(G/e) = (n-1) - 1 - b(G/e). But since  $b_G(A) > 0$ , we have b(G) = b(G/e) + 1 and so (ii) of Lemma 4 follows by induction.

Let  $G,G_1,G_2,P$  satisfy the hypothesis of (iii) of Lemma 4. We argue by induction on n and so we may assume that G is 2-connected. If  $G_1$  is not a cycle, then since  $\kappa(G) \geq 2$ ,  $G_1$  is a 1-arc-sum of  $H_1$  and  $H_2$ , for some  $H_1, H_2 \in \mathcal{K}$ . Since P is an arc, either  $E(P) \subseteq E(H_1)$  or  $E(P) \subseteq E(H_2)$ . We may assume that  $E(P) \subseteq E(H_1)$ . Choose  $H_1$  and  $H_2$  so that  $|E(H_2)|$  is minimized. Hence  $H_2$  is a k-cycle, for some  $k \geq 3$ . Note that P is shared by  $G_2$  and  $H_1$ . Let G denote the 2-arc-sum of  $G_2$  and  $H_1$ . By induction,

$$sc(G') \le |V(G')| - 2 - b(G') = (n - k + 2) - 2 - b(G').$$
 (8)

Since  $H_2$  is a k-cycle,  $H_2$  contributes k-3 to b(G). Hence by Lemma 3 and by (8),

$$sc(G) \le sc(G') + 1 \le n - k + 1 - b(G') + (k - 3) \le n - 2 - b(G),$$

and so (iii) follows by induction, when  $G_1$  is not a cycle.

Hence we may assume that  $G_1$  is a k-cycle and that  $G_2$  is a k'-cycle. Thus n = k + k' - 3 and b(G) = (k - 4) + (k' - 4). Since it is clear that sc(G) = 3, we have sc(G) = n - 2 - b(G), and so (iii) of Lemma 4 follows by induction.

Proof of Theorem 2: We proceed by induction on n = |V(G)|. If G is a cycle, then Theorem 2 holds trivially. So we assume that G is not a cycle and that  $|V(G)| \ge 4$ . Since Theorem 2 follows easily by induction if G has a cut-vertex, we assume that G is 2-connected. It follows that G has no arc A such that A itself is a cycle.

If b(G) > 0, then G has an arc A and an edge  $e \in E(A)$  such that G/e is simple and such that A is either acyclic with  $|E(A)| \ge 2$ , or A is cyclic with  $|E(A)| \ge 3$  and is not a cycle. It follows by the definition of b(G) that

$$b(G) - 1 = b(G/e)$$
. (9)

By induction,  $sc(G/e) \le (n-1) - 1 - b(G/e)$  and so by (9) and by Lemma 2,  $sc(G) \le n-1 - b(G)$ . Furthermore, if sc(G) = n-1 - b(G), then we must have sc(G/e) = (n-1) - 1 - b(G/e). Thus by induction,  $G/e \in \mathcal{K}$ . To show that  $G \in \mathcal{K}$ , it remains to show that when |E(A)| = 2, G is not a proper 2-arc-sum of some subgraphs that share A. But this follows by (iii) of Lemm 4 and by sc(G) = n-1 - b(G).

Hence we may assume that b(G) = 0. We argue further that G has no A with  $|E(A)| \ge 2$  such that A has an edge e with G/e simple. Suppose, to the contrary, that G has such an arc A and such an edge  $e \in E(A)$  with G/e simple. Since b(G) = 0, we have b(G/e) = 0 also. Thus by induction and by (5),

$$sc(G) = sc(G/e) \le (n-1) - 1 - b(G/e) = (n-2) - b(G),$$

and so (2) holds by induction.

Since G is not a cycle, by Theorem 1, G is a proper k-arc-sum of two 2-edge-connected subgraphs  $G_1$  and  $G_2$ . Since G has no arc A of length at least 2 such that A has an edge e with G/e simple, and since G is 2-connected, we have

$$1 \le k \le 2$$
, and every arc of length 2 is in a  $K_3$  of  $G$ . (10)

Denote  $n_i = |V(G_i)|$ ,  $(1 \le i \le 2)$ . Note that since G is simple,  $n_i < n$ ,  $(1 \le i \le 2)$ . For convenience, let  $b_i(A) = b_{G_i}(A)$ ,  $(1 \le i \le 2)$ . Let P be the common arc shared by both  $G_1$  and  $G_2$  with k = |E(P)|. Then we have

$$n_1 + n_2 = n + k + 1. (11)$$

By induction, there are double cycle covers  $\mathcal{C}_1$  and  $\mathcal{C}_2$  for  $G_1$  and  $G_2$ , respectively, such that

$$sc(G_i) = |C_i| \le n_i - 1 - b(G_i), (1 \le i \le 2).$$
 (12)

Denote  $C_i = \{C_1^i, C_2^i, \dots, C_{m(i)}^i\}$ ,  $(1 \le i \le 2)$ , where  $m(i) = |C_i|$ . Since P is an arc, any cycle in  $C_i$  containing an edge of P will contain all edges of P. Thus we may assume that

$$E(P) \subseteq E(C_1^1) \cap E(C_1^2). \tag{13}$$

Let  $C = (C_1 \cup C_2 - \{C_1^1, C_1^2\}) \cup \{G[(E(C_1^1) \cup E(C_1^2)) - E(P)]\}$ . Then C is a double cycle cover of G with

$$|C| = |C_1| + |C_2| - 1.$$

It follows that

$$sc(G) \le sc(G_1) + sc(G_2) - 1. \tag{14}$$

Suppose first that k = 1. Then we have

$$b(G_1) + b(G_2) \le b(G) = 0, \tag{15}$$

since in this case,  $\mathcal{A}(G) \subseteq \mathcal{A}(G_1) \cup \mathcal{A}(G_2)$ . Thus by (12), (14) and (15), we have

$$sc(G) \leq n-1$$
.

Suppose further that sc(G) = n-1, then by (14), equality must hold in (12), and so both  $G_1$  and  $G_2$  are in  $\mathcal{K}(3)$ , by induction. We must show that  $G \in \mathcal{K}(3)$ .

Since  $G_1 \in \mathcal{K}(3)$  and since  $\kappa(G) \geq 2$ , either  $G_1$  is a 3-cycle or  $G_1$  is a 1-arc-sum of a 3-cycle and some other subgraph.

Suppose first that  $G_1$  has a 3-cycle  $G_1''$ , such that  $G_1$  is the 1-arc-sum of  $G_1'$  and  $G_1''$ , for some subgraph  $G_1'$  of  $G_1$  and such that  $e \notin E(G_1'')$ . Let e' be the common edge shared by  $G_1'$  and  $G_1''$ . Then G is the 1-arc-sum of  $G_1''$  and  $H = G[E(G) - (E(G_1'') - \{e'\})]$ . Thus by induction,  $H \in \mathcal{K}(3)$ . Since  $e \notin E(G_1'')$ , and since  $H \in \mathcal{K}(3)$ , every 3-cycle in G containing G has at most two sum-edges. Since  $G_1''$  is a subgraph of  $G_1 \in \mathcal{K}(3)$ , and since  $G_1''$  is a subgraph of  $G_2''$  is a subgraph of  $G_3''$  is a sub

Thus we may assume that every 3-cycle in  $G_1$  contains e, and so  $G_1 - e = K_{2,t}$  for some  $t \ge 1$ . Similarly, we may assume that  $G_2 - e = K_{2,s}$  for some  $s \ge 1$ . It follows that  $G - e = K_{2,s+t}$  and so  $G \in \mathcal{K}(3)$ . Hence Theorem 2 follows by induction when k = 1.

Suppose then that k=2. Recall that P is shared by  $G_1$  and  $G_2$ . Let  $x,y \in V(G)$  be the two ends of P. By (7),  $xy \in E(G)$ . Without loss of generality, we may assume that  $x,y \in E(G_1)$ . Let  $G_1^1 = G[E(G_1) \cup E(P)]$  and  $G_2^2 = G[E(G_2) - E(P)] + xy$ . Then G is a 1-arc-sum of  $G_1^1$  and  $G_2^2$ , and so we are back to the case when k=1. This proves Theorem 2.

## References

- [B] J.A. Bondy, *Trigraphs*, Discrete Math. 75 (1989), 69–99.
- [BM] J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications", American Elsevier, New York, (1976).
- [D] G.A. Dirac A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952), 85-92.
- [S] P.D. Seymour, *Decomposition of regular matroids*, J. Combin. Theory (B) **28** (1980), 305–359.