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Abstract. In [Discrete Math. 75 (1989) 69 - 99}, Bondy conjectured that ifGisa2-
edge-connected simple graph with n vertices, then G admits a double cycle cover with
atmost n— 1 cycles. Inthis note we prove this conjecture for graph without subdivision
of K and characterize all the extremal graphs.

Introduction

Graphs in this note are finite and loopless. For all undefined terms, se¢ Bondy
and Murty [BM]. Let G be a graph and e € E(G). The contraction G/e is the
graph obtained from G by identifying the two ends of e and deleting the resulting
loops. A subdivision of a graph H is a graph obtained from H by subdividing
some edges of H, and will be denoted by TH. As in [(BM], x(G) and &'(G)
denote the connectivity and the edge-connectivity of G, respectively. In 1952,
Dirac showed the following:

Theorem A (Dirac [D)). If G is a nontrivial simple graph without T K4, then
G has a vertex of degree at most 2, |

Anarcof Gisan(z,y)-path P of G withz,y € V(G),such that all the internal
vertices of P have degree 2 in G. A maximal arc is one that cannot be extended
in G. The length of an arc P is |E( P)|. Weregard K as an arc of length 0 (with
identical ends) and K, as an arc of length 1. Let k be anonnegative integer. Given
graphs G and G», if fori € {0,1,2}, G; has an arc P; with |E(P;)| = k and
with the ends of P; being z;,y; € V(Gi), then one can define the k-arc-sum of
G, and G to be the graph obtained from the vertex disjoint union of G and G
by deleting all the internal vertices of P, and identifying z; with z; and y, with
y2. Thus the k-arc-sum of G and G contains G and G2 as subgraphs. If G is
a k-arc-sum of G, and G, with

|B(G)| < |E(®)|, (1LiLD), 1)

then G is called a proper k-arc-sum of G1 and G2.
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Remark. The definition of the k-arc-sums here is motivated by and similar to
the (k + 1) -sums of Bondy [B), but is different from the k-sums of Seymour [S].

Let G be a simple graph. An edge e € E(G) is called a sum-edge of G, if G
is a proper 1-arc-sum of two subgraphs G and G, with E(G1) N E(G3) = {e}.
For each integer s > 3, define (1) to be the family of simple graphs G such that
either G is a cycle of length at most 1, or G is a 0-arc-sum or a 1-arc-sum of G
and G, for some G ,G:» € K(1), such that every k-cycleof G,3 < k < i, hasat
most two sum-edges of G, and such that if a k-cycle C has exactly two sum-edges
in @G, 3 < k < i, then these two sum-edges are adjacent in C.

Define K = U;53K(4). By definition of the k-arc-sum, the following Proposi-
tion is immediate.

Proposition 1. Suppose that G is a k-arc-sum of G, and G,. If each of G

and G has no T K, then G has no T K4. In particular, every graph in KC has no
TKs,.

Main Results

Theorem 1 Let G be a nontrivial 2-edge-connected graph. If G contains no
TKa4, then either G is acycle or G is a proper k-arc-sum of some graphs G\ and
G,, for some k > 0, with '(G;) > 2,(1 < i £ 2). Moreover, if G is simple
and not a cycle, then Gy and G, are simple graphs.

Let sc( @) denote the minimum number of cycles of G that are needed to cover
E(@G) exactly twice. In [B], Bondy conjectured that any 2-edge-connected simple
graph with n vertices satisfies sc(G) < n— 1, where equality holds if and only
if G has a spanning tree T such that for every edge e € E(G) — E(T), T + e
has a 3-cycle, (such a tree T is called a tritree of G, and such a graph G is called
a trigraph).

Theorem B. (Bondy [B]) Let G be a graph with n vertices.
(i) If G is atrigraph, then sc(G) > n—1. ,
(ii) If G is a O-arc-sum of two trigraphs, then G is a trigraph.
(iii) Suppose that G is a 1-arc-sum of trigraphs Gy and G, and that e is the
sum edge shared by G\ and G>. If each of G\ and G has a tritree that
uses e, then G is also a trigraph. |

Proposition 2. If G € K(3), then G is a trigraph.

Proof: We argue by induction on |V (G)|. By (ii) of Theorem B, we may assume
that G is not a 3-cycle nor a 0-arc-sum of some graphs in X(3). Thus by definition
of X(3), G is a 1-arc-sum of G and G, for some G;,G, € K(3). Choose G
and G so that | E(G)| is minimized. We claim that G is a 3-cycle.
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Let e denote the edge shared by G and G». If G is not a 3-cycle, then since
G, € K(3), G, isal-arc-sum of some G5, G5 € K(3). Ife € E(Gy)NE( 2>
then let G| = G U GY, and so the minimality of G is violated, since G, isa
proper subgraph of G and since G is a 1-arc-sum of G and G . Hence we may
assume that e € E(G}) — E(GY). Let G| = G1 U GY, then the minimality of
G, is violated again, since GY is a proper subgraph of G and G is a 1-arc-sum
of G/ and G;. Hence G, must be a 3-cycle.

By induction hypothesis, G is a trigraph. Let C; be a 3<cycle of G that con-
tains e. Since C; has at most two sum-edges, and since e is a sum-edge of G,
C) contains an edge e; € E(Cy) — {e} that is not a sum-edge of G. Let T
be a tritree of G;. If e ¢ E(T}), then since C is a 3-cycle, e; € E(Ty). Let
T/ = T} + e—e,. Since e, is not asum-edge of G, and since |B(Cy)| = 3, T} isa
tritree of G . It follows that G has a tritree that uses e, and so by (iii) of Theorem
B, G is a trigraph. 1

Let A(G) denote the collection of all maximal arcs A of G with |[E(A)| > 2.
Forany A € A(G), A is called a cyclic arc if there is an arc A’ with E(A') C
E(G) — E(A) such that GLE(A) U E(A')] is acycle of G, or if A itself is a
cycle; and A is an acyclic arc, otherwise. For each A € A(G), define b(A) as
follows:

|E(A)| -2 if Ais cyclic but notacycle
|[E(A)| -1 if Aisacyclic.

Note that by Theorem A, if G is simple and has no T K, then A(G) # 0.

Define
@ = ) be(A).
A€A(G)

As examples, b( K2,) = 0 ift > 2; and if G is a subdivision of the Petersen
graph, then b(G) is equal to the number of vertices of degree 2.

Proposition 3. Let G € K. Then G € K(3) ifand only if b(G) = 0.

Proof: Suppose that G € K(3). Thenevery arc A € A(G) is ina 3-cycle and so
b(G) = 0. Suppose then that G € K — K(3). Then G has a cycle C of length
at least 4. Since C has at most 2 sum-edges, and since when |[E(C)| = 4 and C
has exactly two sum-edges, these two sum-edge must be adjacent, C contains an
arc A € A(G) such that either A is a cycle of length at least 4, or a cyclic arc
of length at least 3 that is not a cycle, or an acyclic arc of length at least 2. Thus
G) >0. |

Theorem 2. Let G be a simple graph with = vertices. If G hasno T Ka,
3¢(G) < n—1-HG), @

|[E(A)| -3 ifAisacycle
b(A) = {
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where equality holds if and only if G € K. Moreover, if b(G) = 0, then equality
holds in (2) if and only if G € K(3).

Corollary 1. Let G be a 2-edge-connected simple graph with n vertices. If G
has no TKa, then sc(G) < |V(G)| — 1, where equality holds if and only if
G e K(3).

Corollary 2. A 2-edge-connected simple graph G is a trigraph without 2a T K4
ifand only if G € K(3).

Proof of Corollaries 1 and 2: Corollary 1 follows from Theorem 2. Corollary 2
follows from Theorem 2, from Corollary 1 and from (i) of Theorem B. | |

The Proofs

Let H be a subgraph of G. The set of all vertices in V( H) that are incident with
at least one edge in E(G) — E(N), denoted by Ag( H), is called the vertices of
attachment of H in G.

Lemma 1. Let G be a graph without T K4 and let H be a subgraph of G with
&'(H) > 2 such that Ag(H) = {z1,z2}, (1 # z2) and such that G has an
(z1,%2) -path P using no edgesin E(H) . Ifforsome k > 1, H is aproper k-arc-
sum of some 2-edge-connected graphs Hy and H» , then G is a proper k-arc-sum
of some graphs G\ and G» with &'(G;) > 2.

Proof: Since H is a proper k-arc-sum of H, and H3, both H; and H, are sub-
graphs of H, and so of G.
Case 1: y,z2 € V(H2).

Let Gy = Hy and G, = G[E(H,) U E(G — E(H))], then G is a proper
k-arc-sum of G and G». When z,,z, € V(H;), the proof is the same.
Case2: 1 e V(H;),(1<1<L2).

Since £ > 1, there is an edge e (say) shared by H; and Hz. Since both H,
and H, are 2-edge-connected, there is a cycle C; in H; such that e € E(C;),
(1 < i < 2). Let P; denote a path in H; that joins ; to exactly one vertex y;
(say) in C;.

Ify,,y2 & V(P),thenC,,C, P, P, and P formaT K4 in G, a contradiction.
Hence we may assume thaty; € V (P) and that any path from z; to C, in H must
use y1. Let P!, P2,..., P™ be all the (z1, y;)-paths in H. It follows that that
subgraph )

H =H-(U4LV(P) - {n})
is a 2-edge-connected subgraph of G with Ag( H) = {z2, y1 }, and so we are back
to Case 1. |
Proof of Theorem 1: If G has 2 edges e; , e; with the same ends, (that is, ey, e; are
parallel edges in G) then let G, = G — e; and G2 = Gle1,e2] and we are done.
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The theorem will also be trivial if G has a cut-vertex. Hence we shall assume that
G is simple and 2-connected.

We prove the general case by induction on the number of vertices of G and so
we assume that G is not a cycle and Theorem 1 holds for graphs with order smaller
than |V(G)].

By Theorem A, G has a vertex v of degree 2. Since G is not a cycle, G has a
maximal arc P of length at least 2, where the ends x and y of P have degree at
least 3 in G. Since G is 2-connected, z # y. We shall show first that G has a
2-edge-connected proper subgraph H such that

|[Ac(H)| =2, 3)
and, (assuming Ag( H) = {u,v}), such that
G — E(H) hasan (u,v) — path. @)

LetG' = G—(V(P) —{z,y}). If&'(G') > 2,then G is a subgraph satisfying
(3)and (4). Hence by x'(G) > 2, we may assume that x’(G) = 1. Thus G’ hasan
edge such that G’ — e has two components G” and G* with z € V(G") and with
|V(G")| being minimized. If y € V(G"), then e is a cut-edge of G, contrary to
the assumption that x'(G) > 2. Thusy € V(G™). Let z € V(G") be the vertex
incident with e. Since G is 2-connected, z # 2. Clearly G has an (z, z)-path
using no edges in E(G") and Ag(G") = {z, z}. By the minimality of |V (G")|,
k'(G") > 2. Thus G" is a 2-edge-connected proper subgraph of G satisfying (3)
and (4).

Choose a minimal 2-edge-connected proper subgraph H of G satisfying (3) and
(4), and assume that Ag( H) = {z1, z2}. By induction, H is a proper k-arc-sum
of two sub-graphs H; and H,. Suppose first that k = 0. Since G is 2-connected,
we may assume thatz; € V(H;), (1 < ¢ < 2). Butthen H may contain a smaller
2-edge-connected subgraph satisfying (3) and (4), contrary to the minimality of H.
Hence we must have & > 1 and so Theorem 1 follows from Lemma 1. [ |

Lemma?2. Let G bea2-edge-connected graph. If G has anarc A with |E(A)| >
2, then for each e € E(A),
sc(Gfe) = sc(G). *)
Proof: The proof is routine and straightforward. |
Lemma 3. If G is a 1-arc-sum of H and a k-cycle H', where k > 3, then
8c(@) < sc(H) + 1.

Proof: LetC' = {C},...,C.,} be a double cycle cover of H with m = sc(H).
Let e be the edge commonly shared by H and H'. We may assume that e €
E(C!). Thus let C, = G[E(C}) U E(G1) —€l,Ca = Cj},...,Cp = C}, and
Cm+1 = H'. Then {C),C,...,Cn+1} is a double cycle cover of G, and so we
have sc(G) < m+ 1. [ |
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Lemma 4. Let G be a simple graph of n vertices. Each of the following holds.

(i) If G € K(3), then sc(G) =n—-1.
(i) fG €K, thensc(G) =n—1—-bG).
(iii) Suppose that G is a 2-arc-sum of G and G, where G,G2 € K. If the
common arc P shared by G, and G, isnotina K3 of G, then

3c(@) < n—-2 - KG). ©)

Proof: Both (i) and (ii) of Lemma 4 hold if G is a cycle. So we suppose that G
is not a cycle. Assume first that G € K(3). Then by definition of X(3),G is a
k-arc-sum of G; and G, forsome G;,G2 € K(3),where0 < k< 1. Ifk=0,
then (i) follows easily by induction. Hence we assume that £ = 1. Choose Gy
and G so that |[E(G>) | is minimized. Then by the definition of XC(3) and since
k=1, G, must be a K3. Thus by Lemma 3 and by induction,

(@) €<sc()+1=(n—-2)+1=n-1. Q)

Hence (i) of Lemma 4 follows by (i) of Theorem B and by (7).

By Proposition 3, if G € K — K(3), then 5(G) > 0 and so G has an arc
A € A(G) such that bg(A) > 0. Picke € E(A). Then G' = G/e is simple
and G/e is in K. By induction, we have sc(G/e) = (n— 1) — 1 — b(G/e). But
since bg( A) > 0, we have b(G) = b(G/e) + 1 and so (ii) of Lemma 4 follows
by induction.

Let G,G1,G2 P satisfy the hypothesis of (iii) of Lemma 4. We argue by induc-
tion on » and so we may assume that G is 2-connected. If G, is not a cycle, then
since x(G) > 2, @G is a 1-arc-sum of H, and H3, for some H;, H € K. Since
P is an arc, either E(P) C E(H;) or E(P) C E(H;). We may assume that
E(P) C E(H;). Choose H; and H; so that |E( H2)| is minimized. Hence H>
is a k-cycle, for some k& > 3. Note that P is shared by G, and H;. Let G denote
the 2-arc-sum of G and H;. By induction,

sc(G) L [V(GH| -2 -b(G) =(n—k+2) -2 - NG). ®)

Since H) is a k-cycle, H, contributes & — 3 to b(G). Hence by Lemma 3 and by
®,

3c(@) <3c(GN+1<n—k+1-bG)+(k-=3)<n—-2 -HG),

and so (iii) follows by induction, when G is not a cycle.

Hence we may assume that G is a k-cycle and that G, is a k’'-cycle. Thus
n=k+ k' —3 and b(G) = (k — 4) + (k' — 4). Since it is clear that sc(G) = 3,
we have sc(G@) = n— 2 — b(G), and so (iii) of Lemma 4 follows by induction.

| |
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Proof of Theorem 2: We proceed by induction on n = |V(G)|. If G is a cy-
cle, then Theorem 2 holds trivially. So we assume that G is not a cycle and that
[V(G)| > 4. Since Theorem 2 follows easily by induction if G has a cut-vertex,
we assume that G is 2-connected. It follovs that G has no arc A such that A itself
is acycle.

If 5(G) > 0, then G has an arc A and an edge e € E(A) such that G/e is
simple and such that A is either acyclic with |[E(4)| > 2, 0r A is cyclic with
|ECA)| > 3 and is not a cycle. It follows by the definition of b(G) that

(@) — 1= b(G/e). ©)

By induction, sc(G/e) < (n— 1) — 1 — b(G/e) and so by (9) and by Lemma
2, 36(G) < n— 1 — b(G). Furthermore, if sc(G) = n— 1 — b(G), then we
must have sc(G/e) = (n— 1) — 1 — b(G/e). Thus by induction, G/e € K. To
show that G € K, it remains to show that when |E(A)| = 2, G is not a proper
2-arc-sum of some subgraphs that share A. But this follows by (iii) of Lemm 4
and by sc(@) =n—1 - ¥G).

Hence we may assume that b(G) = 0. We argue further that G has no A with
|E(A)| > 2 such that A has an edge e with G/e simple. Suppose, to the contrary,
that G has such an arc A and such an edge e € E(A) with G/e simple. Since
b(G) = 0, we have b(G/e) = 0 also. Thus by induction and by (5),

3¢(G) = sc(Gfe) < (n—1) — 1 —b(G/e) = (n—2) — b(G),

and so (2) holds by induction.

Since G is not a cycle, by Theorem 1, G is a proper k-arc-sum of two 2-edge-
connected subgraphs G and G . Since G has no arc A of length at least 2 such
that A has an edge e with G/e simple, and since G is 2-connected, we have

1 < k<2, andevery arc of length 2 isina K3 of G. (10)

Denote n; = |[V(Gi)|, (1 < i < 2). Note that since G is simple, n; < =,
(1 < i < 2). For convenience, let b;(A) = bg,(A),(1 <1< 2). Let P be the
common arc shared by both G; and G with k = |[E(P)|. Then we have

m+m=n+k+1. (11)

By induction, there are double cycle covers C; and C; for G and G, respectively,
such that
3c(G) = |G| < m—1-b(Gy), (1LiL2). a12)

Denote C; = {C},Ci,...,Chn)s (1 < i < 2), where m(i) = |Ci|. Since P is
an arc, any cycle in C; containing an edge of P will contain all edges of P. Thus
we may assume that

E(P) C B(C) n E(CY). (13)
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LetC = (CLUC; — {C},CH)}U{GI(E(C}) UE(C?)) — E(P)1}. ThenC is
a double cycle cover of G with

ICl = ICi] + |C2| - 1.

It follows that
8¢(@) < s¢(Gh) + 3¢(Ga) — 1. (14)
Suppose first that £ = 1. Then we have
b(G1) + H(G2) < H(G) =0, (15)

since in this case, A(G) C A(G1) U.A(G2). Thus by (12), (14) and (15), we
have
sc(@) <n—1.

Suppose further that sc(G) = n— 1, then by (14), equality must hold in (12), and
so both G, and G, are in KC(3), by induction. We must show that G € K(3).

Since G1 € K(3) and since x(G) > 2, either Gy is a 3cycle or G is a
1-arc-sum of a 3-cycle and some other subgraph.

Suppose first that G; has a 3-cycle GY, such that G, is the 1-arc-sum of G
and GY, for some subgraph G} of G and such that e ¢ E(GY). Let ¢’ be the
common edge shared by G and G{. Then G is the 1-arc-sum of G and H =
GLE(G) — (E(GY) —{e'})]. Thus by induction, H € K(3). Sincee ¢ E(G}),
and since H € K(3), every 3-cycle in G containing e has at most two sum-edges.
Since GY is a subgraph of G, € K(3), and since e ¢ E(GY), every 3-cycle in G
containing e’ has at most two sum-edges. It follows that G € K(3), by definition.

Thus we may assume that every 3-cycle in G contains e, andso Gy —e = Ka ¢
for some ¢ > 1. Similarly, we may assume that G» — e = K3 , for some s > 1.
It follows that G — e = K> 4+ and so G € K(3). Hence Theorem 2 follows by
induction when k = 1.

Suppose then that k = 2. Recall that P is shared by G; and G,. Let x,y €
V(G) be the two ends of P. By (7), zy € E(G). Without loss of generality,
we may assume that z,y € E(G)). Let G} = G[E(G1) U E(P)] and G2 =
GLE(G2) — E(P)] + zy. Then G is a 1-arc-sum of G} and G2, and so we are
back to the case when k = 1. This proves Theorem 2. [ ]
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