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In this note we consider the problem of constructing magic rect-
angles of size m by n where m and n are both multiples of two.
What seems to be a new and relatively simple method for con-
structing many such rectangles is presented.

Introduction. An m X n magic rectangle is an m X n array containing the
integers 1,2, - - -, mn such that if the (7, 7)th entry of the array Z is denoted
by z5,§=1,-+-,m,7=1,+++,n, then

M

zj=n(mn+1)/2=Rfori=1,--+,m.

i=1

and .

Zz.',- =m(mn+1)/2=Cforj=1,-+,n.
=1
Magic rectangles are useful in the statistical design of experiments, e.g.,
see Phillips [8]. For example, in agricultural field trial experiments, it is
often necessary to apply treatments sequentially to plots of ground (ex-
perimental units) occurring in long narrow rows. If a linear fertility trend
exists parallel to the rows of plots to which treatments are applied, then
observations obtained occur not only as a result of the treatments applied
but also as a result of the fertility trend. The analysis of the data obtained
from such an experiment can be confusing since it may be difficult or im-
possible to separate the actual effects of the treatments from the effects of
the fertility trend. Magic rectangles can be used to apply the treatments
of a two factor factorial experiment sequentially to plots occurring in a row
so that the usual least squares estimates of the corresponding factorial ef-
fects are not contaminated by the linear trend. Similarly, magic rectangles
can be used in many other experimental situations to apply treatments se-
quentially to experimental units over space or time so that the usual least

squares estimates of the treatment effects are free of any unknown linear
trend effects.
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A number of methods for constructing magic rectangles are known. In
fact, Harmuth [4, 5] proved the existence of all magic rectangles of size mxn
where m and n are both even or odd by giving some not very precise rules
for their construction. Andrews [1] gives an excellent discussion of magic
rectangles as well as a description of another method of constructing magic
rectangles called the method of complementary differences which Andrews
(2] attributes to Planck. Phillips {7] gives a simple method of construction
when either m or n is a multiple of four. In this paper we give what seems
to be a new and fairly simple method of constructing a large number of

m X n magic rectangles which can be applied whenever m and n are both
even integers.

Construction Method. We now describe a general method for construct-
ing an m X n magic rectangle where m and n are both even integers. There
are five steps to the procedure. To make the procedure clear, we shall il-

lustrate each step by constructing a 6 x 8 magic rectangle when describing
the particular steps of the process.

Step 1.

Example 1. To construct a 6 x 8 magic rectangle, we begin by finding a
16 x 1 vector p’ = (py,* *, p16) whose entries are all +1 with p; = —p1g—i+1
fori=1,-.--,8 and which is orthogonal to both the 16 x 1 vector of 1’s and
the 16 x 1 vector (1,2,3,---,16)’. One such vector is given by

p' = (—lv 11 1) '—11 —1: 1» 1: _11 11 —17 ‘_1) 1) 1! _11 _1’ 1)°

More generally, for a given value n, in step 1 any 2n X 1 vector p' =
(P1y: -+, p2n) satisfying (i) p; = *1 for @ = 1,--+,2n, (ii) pi — p2n-i+1
2n

for s = 1,-+-,n and (iii) Zip.- = 0 will suffice. One convenient method
=1

for constructing such a vector is to begin by letting s’ = (-1,1,1,-1)
and ¢’ = (-1,1,-1,1,1,1,-1,-1,-1,1,—1,1). Now if n = 2l for some
1=2,4,6,--- let p' = (8},:--,8],—8},+-,—8]) where s; = sfori =1,---,1
orif n =6, let p = ¢ or finally if n = 2! for some { = 5,7,9:--, let
p = (8, ", ‘it-a) pt'y—83,+++, where again &; = sfori = 1,..-, (I-8)/2.
It is easy to verify that the construction methods just described yield vectors
p satisfying conditions (z), (i7) and (#43) given above.

Step 2.

Example 1 (continued). Now write down the 3 x 16 array W by writing
the integers 1,2 -, 48 sequentially in columns. For this example,
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11 14 17 20 23 26 29 32 35 38 41 44 47

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
W= 2 5 8 .
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

For arbitrary values of m and n, construct the (m/2) x (2n) array W
by sequentially writing down the numbers 1,2,--+, mn in columns, i.e. if
W= (w,-,-), then for z = 1, ---,m/2,j = 1,~-,2n,w,~,~ = (m/2)(] - 1) +1.

Step 3.

Example 1 (continued). At this step, use the vector p' = (p1, -, P1e)
from Step 1 and the 3 X 16 matrix W from Step 2 to create another 6 x 16
array X. In particular, if the ith entry in p is —1, let the first three entries
in the ith column of X be the same as the three entries in the ¢th column
of W followed by three zeros. If the ith entry of p is 1, let the 7th column
of X consist of three zeros followed by the three entries in the sth column
of W listed in reverse order. For this example,

P' = (_1' 1,1,-1,-1,1,1,-1,1,-1,-1,1,1, -1, -1, 1)

!
1 0 0 10 13 0 O 22 0 28 31 O O 40 43 O
2 0 0 11 14 0 0 23 0 29 32 0 0 41 44 0
X = 3 0 0 12 15 0 O 24 0 30 33 0 0 42 45 O
0O 6 9 0 0 18 21 0 27 0O O 36 39 0 O 48
0 s 8 0 0 17 20 0 26 0 O0 35 38 0 0 47
0 4 7 0 0 16 19 0 25 0 0 34 37 0 0 46

For the general case, p’ = (p1,+-+,p2n) and if we denote the ¢th column of
W by W; and the ith column of X by X;, then W = (Wy,-.-,W,,) with

W; = (Xo) if p; = —1, (70) if p; = 1 where O is the n x 1 vector of zeros

and X is the n x 1 vector whose entries are obtained by listing the entries
of X; in reverse order.

Step 4.

Example 1 (continued). From the 6 x 16 array X, we construct another
6 x 8 array Y. The first column of Y is obtained by adding columns 1 and

16 of X together, the second column of Y is obtained by adding columns 2
and 15 of X together, etc. Thus
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1 43 40 10 13 31 28 22
2 44 41 11 14 32 29 23
3 45 42 12 15 33 30 24
48 6 9 39 36 18 21 27
47 5 8 38 35 17T 20 26
46 4 7 37 34 16 19 25

For the general case, we construct the m x n array Y from the m x 2n
array X. If we let X; denote the ith column of X for ¢ =1,--+,2n and ¥;
denote the tth column of Y fori =1,--+,n, then ¥; = X; + Xon41-i for
i=1:,n.

Comment. After step 4 of the construction process, all colamn sums of
the array Y are equal to n{mn x 1)/2 whereas the entries in rows ¢ and
n+1—1of Y both sum to ni + mn(2n— 1)/4 fori=1,.--,m/2. Also, if
Y = (yij), thenfori =1,-++,(m/2) — L, 441, =%, +1forj=1,--+,n
and fori=1,---, (m/2) =L Ym—ij = Ym—i+1,5 +1 forj=1,:¢,n.

Step 5.

Example 1 (continued). We now create the desired 8 x 8 magic rectangle
Z = (zi;) from the 8 x 8 array Y = (y;;) obtained in step 4. In particular,
select any 4 columns from Y and interchange the elements in the first and
third rows of the columns selected. Now select again any 4 columns of Y
and interchange the elements in the fourth and sixth rows of the columns
selected. The resulting array Z obtained by making these interchanges is
a 6 x 8 magic rectangle. For instance, if columns 1,4,5 and 7 are selected
first and then columns 2,4,5 and 6 are selected and the appropriate row
interchanges are made within these columns, the resulting 6 x 8 magic
rectangle obtained from Y is

3 43 40 12 15 31 30 22
2 44 41 11 14 32 29 23
1 45 42 10 13 33 28 24
48 4 9 37 34 16 21 27
47 5 8 38 35 17 20 26
46 6 7 39 36 18 19 25

We note that the row sums of Z are all equal to 196 and the column sums
of Z are all equal to 147.
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For the general case, we obtain the desired m X n magic rectangle
Z = (2i;) from the m x n array Y = (y;) by appropriately interchang-
ing column elements of Y. In particular, if we let [y| denote the integer
part of the decimal expansion for y > 0, then for i = 1,-+-,[m/4], we cre-
ate sets A; and f; of size n/2 where the elements of each of the sets A;
and B; consist of any n/2 distinct integers selected from 1,2,:--,n. Now,
for each element j in 4;,i = 1,++,[m/4], we interchange the entries in
rows ¢ and (m/2) — ¢ of column j of Y. Similarly, for each element j in
Bi,i =1,-++,|m/4], interchange the entries in rows (m/2) +{ and m—i+1
of column 3 of Y. Using the comment made following step 4, it is easy to
verify that the array Z obtained from Y by making these interchanges is
the desired magic rectangle.

Comment. With regard to the construction process outlined above, there
is a good deal of flexibility. For example, any vector p satisfying the con-
ditions given in step 1 and any choices for the sets A; and f§; of integers
described in step 5 will be satisfactory. Thus the construction process given
here will yield a great many magic rectangles for specified values of m and
n.

We now give another example to further illustrate the construction pro-
cess outlined above.

Example 2. In this example, we construct a 8 X 10 magic rectangle.

Step 1. Let ,l" = (_ll 1,1,-4,-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1, l)

Step 2.

2 6 8 11 14 17 20 23 26 29 32 35 38 41 44 47 S50 53 56 59

1 4 7 10 13 18 19 22 25 28 31 34 37 40 43 46 49 52 55 58
W=
3 8 9 12 15 18 21 24 27 30 33 36 39 42 45 48 61 64 57 60

Step 3. Using p’ and W, we get

p'= (-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1, -1, l..l, -1,-1,1)

i
1t 00 10 13 0 19 0 O O 31 34 37 0 43 0 O 52 § 0
2 00 11 4 0 20 0 0 0 32 3 38 0 44 0 O 53 66 O
X = 3 0 0 12 t6 0 21 O O O 33 38 39 0 4 0 O 64 S§7T O
0 6 9 0 0 18 0 24 27 30 0 0 O 42 O 48 51 0 O 60
0 5§ 8 0 0 17 0 23 26 290 0 ©0 O 41 0O 47 60 O O &9
0 4 7 0 0 16 0 22 25 28 0 0 O 40 O 46 49 O O 68
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Step 4. From X, we obtain

1 55 52 10 13 43 19 37 34 31
2 56 53 11 14 44 20 38 35 32
3 57 54 12 15 45 21 39 36 33
60 6 9 51 48 18 42 24 27 30
50 5 8 50 47 17 41 23 28 29
58 4 7 49 46 16 40 22 25 28

Step 5. To obtain the desired 6 X 10 magic rectangle Z, for « = 1, suppose
A ={1,2,3,7,9} and B = {2,5,6,7,8}. Upon interchanging the elements
in rows 1 and 3 of Y corresponding to the columns given in A; and inter-
changing the elements in rows 4 and 6 of Y corresponding to the columns
given in §; we obtain

3 57 54 10 13 43 21 37 36 31
2 56 53 11 14 44 20 38 35 32
1 55 52 12 15 45 19 39 34 33
60 4 9 51 46 16 40 22 27 30
50 5 8 50 47 17 41 23 26 29
58 6 T 49 48 18 42 24 25 28

The row sums of Z are all equal to 805 and the column sums of Z are
all equal to 188.
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