# Homogeneous Traceability In Claw-Free Graphs<sup>1</sup>

Ruqun Shen and Feng Tian

Institute of Systems Science
Academia Sinica
Beijing 100080
People's Republic of China

Abstract. A graph G is homogeneously traceable if for each vertex v of G there exists a hamiltonian path in G with initial vertex v. A graph is called claw-free if it has no induced  $K_{1,3}$  as a subgraph.

In this paper, we prove that if G is a k-connected (k > 1) claw-free graph of order n such that the sum of degrees of any k + 2 independent vertices is at least n - k, then G is homogeneously traceable. For k = 2, the bound n - k is best possible.

As a corollary we obtain that if G is a 2-connected claw-free graph of order n such that  $NC(G) \ge (n-3)/2$ , where  $NC(G) = \min\{|N(u) \cup N(v)|: uv \notin E(G)\}$ , then G is homogeneously traceable. Moreover, the bound (n-3)/2 is best possible.

### Introduction

We use [2] for terminology and notation not defined here and consider simple finite graphs only.

Throughout, let G be a graph of order n. We say G is claw-free if no induced subgraph of G is isomorphic to  $K_{1,3}$ . If G has a hamiltonian cycle (a cycle containing every vertex of G), then G is called hamiltonian. A graph G is homogeneously traceable if for each vertex v of G there exists a hamiltonian path (a path containing every vertex of G) with initial vertex v. The number of vertices in a maximum independent set of G is denoted by  $\alpha(G)$  and the set of vertices adjacent to a vertex v by N(v). For a subset S of V(G), let  $N(S) = (\bigcup_{v \in S} N(v)) \setminus S$ . We denote by  $\sigma_t(G)$  the minimum value of the degree-sum of any t pairwise non-adjacent vertices if  $t \leq \alpha(G)$ . If  $t > \alpha(G)$ , we set  $\sigma_t(G) = t(n-1)$ . If G is noncomplete, then NC(G) denotes the min  $\{|N(u) \cup N(v)|: uv \notin E(G)\}$ . If G is complete, we set NC(G) = n-1. If no ambiguity arises, we sometimes write  $\alpha$  for  $\alpha(G)$  and  $\sigma_t$  for  $\sigma_t(G)$ .

In 1979, Chartrand, Gould and Kapoor confirmed the existence of homogeneously traceable non-hamiltonian graphs:

**Theorem 1[3].** There exists a homogeneously traceable non-hamiltonian graph of order n for all positive integers n except  $3 \le n \le 8$ .

In 1981, Gould obtained a result about the degree-set for homogeneously traceable non-hamiltonian graphs:

<sup>&</sup>lt;sup>1</sup>The project supported by National Natural Science Foundation of China

Theorem 2[5]. Suppose  $S = \{n_0, n_1, ..., n_k\}$  is a set of  $k + 1 (\geq 1)$  positive integers and  $n_i \geq 2$  for all  $i (0 \leq i \leq k)$ . Then S is the degree set of a homogeneously traceable non-hamiltonian graph unless  $S = \{2\}$ , where the degree set of a graph G is defined to be the set of degrees of the vertices of G.

In [4], Faudree, Gould and Lindquester gave a sufficient condition in terms of neighborhood unions for a claw-free graph to be homogeneously traceable.

Theorem 3[4]. If G is a 3-connected claw-free graph of order n such that NC(G) > (2n-5)/3, then G is homogeneously traceable.

Furthermore, they made the following

Conjecture 4[4]. If G is a 3-connected claw-free graph of order n such that  $NC(G) \ge (2n-5)/3$ , then G is hamiltonian.

The following result was obtained by Zhang.

Theorem 5[6]. If G is a k-connected  $(k \ge 2)$  claw-free graph of order n with  $\sigma_{k+1} \ge n - k$ , then G is hamiltonian.

As Bauer, Fan and Veldman pointed out, the following consequence of Theorem 5 improves Theorem 3 and Conjecture 4.

**Theorem 6[1].** If G is a 2-connected claw-free graph of order n with  $NC(G) \ge (2n-5)/3$ , then G is hamiltonian.

In this paper, we obtain an analogue of Theorem 5 for homogeneously traceable graphs.

Theorem 7. If G is a k-connected  $(k \ge 2)$  claw-free graph of order n with  $\sigma_{k+2} \ge n-k$ , then G is homogeneously traceable.

Obviously, when k = 2, Theorem 7 gives an improvement of Theorem 3.

Corollary 8. If G is a 2-connected claw-free graph of order n with  $NC(G) \ge (n-3)/2$ , then G is homogeneously traceable.

#### Proof of Theorem 7

To prove Theorem 7, we first give some convenient terminology and notation. For any path  $Q = u_1 u_2 \dots u_q$  of G, let  $Q[u_i, u_j]$  represent both the subpath of Q from  $u_i$  to  $u_j$  and its vertex-set. For convenience, we sometimes use  $u_i^+$  for  $u_{i+1}$  and  $u_i^-$  for  $u_{i-1}$ . For any vertex v of G, we call v insertible on Q if there exists an integer i such that  $u_i, u_{i+1} \in N(v)$  and  $\{u_i, u_{i+1}\}$  the insertion-pair of v on Q. We also denote by g(v, Q), all insertion-pairs of v on Q. If no ambiguity arises, we sometimes write g(v) instead of g(v, Q). If P is a path with initial vertex u, then we call P u-path.

Now, let G be a k-connected  $(k \ge 2)$  claw-free graph of order n with  $\sigma_{k+2} \ge n-k$ . If G is homogeneously traceable, we are done. Otherwise, for some vertex of G, say  $v_1$ , there exists no hamiltonian  $v_1$ -path in G. Let  $P = v_1 v_2 \dots v_t$  be a  $v_1$ -path, and  $v_m$  be the first vertex adjacent to  $v_t$  along  $P[v_1, v_t]$ . We choose P such that

- (A) The path P is as long as possible,
- (B) Under (A), the subscript m is as small as possible.

Let  $v_s$  be the first vertex non-adjacent to  $v_t$  along  $P[v_m, v_t]$ , and set  $A = \{v_i : v_{i-1}v_t \in E(G)\}$ . By the choice of P, we get

$$N(A) \cap (P[v_1, v_{m-1}] \cup (V(G) \setminus V(P))) = \emptyset.$$

Thus, we have s < t - 1, for otherwise  $v_m$  is a cut-vertex of G, which contradicts the 2-connectedness of G.

Because  $V(G)\setminus V(P)\neq\emptyset$ , let H be a component of  $G\setminus V(P)$ . By the k-connectedness of G, there exist h edges joining H and P ( $h\geq k\geq 2$ ). Note that  $h\geq |N(x)\cap V(P)|$  for any  $x\in H$ . Let these edges be  $\{x_iv_{j(i)}\colon i=1,2,\ldots,h\}$ , where  $x_i\in V(H),\,v_{j(i)}\in V(P),\,$  for  $i=1,2,\ldots,h$  and  $1\leq j(1)< j(2)<\cdots< j(h)< t$ . Set  $B=\{v_{j(1)},v_{j(2)},\ldots,v_{j(h)}\}$ .

We may choose H such that

(C) Under (B), the subscript j(h) is as large as possible.

Let  $x_0 \in H$  and  $x_i H x_j$  denote a path of H joining  $x_i$  and  $x_j$ . For any i(0 < i < h), along  $P[v_{j(i)+1}, v_{j(i+1)-1}]$  we choose  $\mu(i)$  such that

(D) Under (C),  $v_{j(i)+\mu(i)}$  is the first non-insertible vertex on Q(i), where  $Q(i) = v_1 v_2 \dots v_{j(i)} x_i H x_{i+1} v_{j(i+1)} v_{j(i+1)+1} \dots v_t$  i.e., for any  $\beta (0 < \beta < \mu(i)), g(v_{j(i)+\beta}, Q(i)) \neq \emptyset$ .

For any i (0 < i < h) and  $\beta$  (0 <  $\beta \le \mu(i)$ ), we denote by  $f_{j(i)}^{\beta}(Q)$  an operation of inserting  $\{v_{j(i)+1}, v_{j(i)+2}, \ldots, v_{j(i)+\beta-1}\}$  into Q, where Q is a path of G. We have

Lemma 1. The operation  $f_{j(i)}^{\beta}(Q)$  is well-defined for all  $i \ (0 < i < h)$  and  $\beta$   $(0 < \beta < \mu(i))$ .

Proof: To prove this assertion, choose the largest index q ( $0 < q < \beta$ ) such that there exists an integer r with  $\{v_r, v_{r+1}\} \in g(v_{j(i)+1}) \cap g(v_{j(i)+q})$ . Replacing edge  $v_rv_{r+1}$  of Q(i) by subpath  $v_rv_{j(i)+1} \dots v_{j(i)+q}v_{r+1}$ , we obtain a path Q'.

If  $q < \beta - 1$ , repeat this procedure for Q' and  $\{v_{j(i)+q+1}, \ldots, v_{j(i)+\beta-1}\}$  in place of Q and  $\{v_{j(i)+1}, \ldots, v_{j(i)+\beta-1}\}$  until we have inserted  $\{v_{j(i)+1}, \ldots, v_{j(i)+\beta-1}\}$  into Q.

Obviously  $V(f_{j(i)}^{\beta}(Q)) = V(Q) \cup \{v_{j(i)+1}, \dots, v_{j(i)+\beta-1}\}$ . So  $0 < \mu(i) < j(i+1) - j(i)$  by the maximality of P.

We set  $I_{h-1} = \{v_{j(1)+\mu(1)}, \ldots, v_{j(h-1)+\mu(h-1)}\}.$ 

Lemma 2. For any i, r(0 < i < r < h),  $\beta(0 < \beta < \mu(i))$  and  $\gamma(0 < \gamma < \mu(r))$ , we have

- (1)  $v_{j(i)+\beta}v_{j(\tau)+\gamma} \notin E(G)$  and
- (2)  $g(v_{j(i)+\beta}) \cap g(v_{j(r)+\gamma}) = \emptyset$ .

Proof: If it is not true, without loss of generality we suppose  $\gamma$  and  $\beta$  are the smallest integers satisfying either  $v_{j(i)+\beta}v_{(r)+\gamma} \in E(G)$  or  $g(v_{j(i)+\beta}) \cap g(v_{j(r)+\gamma}) \neq \emptyset$ .

If  $v_{j(i)+\beta}v_{j(r)+\gamma} \in E(G)$ , then the  $v_1$ -path  $f_{j(r)}^{\gamma}(f_{j(i)}^{\beta}(Q))$  is longer than P, where

$$Q=v_1v_2\dots v_{j(i)}x_iHx_rv_{j(\tau)}v_{j(\tau)-1}\dots v_{j(i)+\beta}v_{j(\tau)+\gamma}v_{j(\tau)+\gamma+1}\dots v_t.$$

It contradicts the maximality of P.

If  $\{v_p, v_{p+1}\} \in g(v_{j(i)+\beta}) \cap g(v_{j(r)+\gamma})$  and p < j(i), then the  $v_1$ -path  $f_{j(r)}^{\gamma}(f_{j(i)}^{\beta}(Q))$  is longer than P, where

$$Q = v_1 v_2 \dots v_p v_{j(i)+\beta} v_{j(i)+\beta+1} \dots v_{j(r)} x_r H x_i v_{j(i)} v_{j(i)-1} \dots v_{p+1} v_{j(r)+\gamma} v_{j(r)+\gamma+1} \dots v_t.$$

It contradicts the maximality of P. Similarly, we reach a contradiction for p > j(r) or  $j(i) \le p \le j(r)$ .

By Lemma 2, we know  $f_{j(i)}^{\beta}(f_{j(r)}^{\gamma}(Q))$  is well-defined for all  $\beta$  (0 <  $\beta \le \mu(i)$ ) and  $\gamma$  (0 <  $\gamma \le \mu(r)$ ).

Lemma 3. For all i and r (0 < i < r < h), we have

- (1)  $v_{j(i)+\mu(i)}v_{j(r)+\mu(r)} \notin E(G)$  and
- (2)  $N(v_{j(i)+\mu(i)}) \cap N(v_{j(\tau)+\mu(\tau)}) = \emptyset$ .

Proof: The assertion  $v_{j(i)+\mu(i)}v_{j(r)+\mu(r)} \notin E(G)$  results directly from Lemma 2.

If there exists  $y \in N(v_{j(i)+\mu(i)}) \cap N(v_{j(\tau)+\mu(\tau)})$ , then there exists an integer p such that  $y = v_p \in V(P)$ , otherwise the  $v_1$ -path  $f_{j(i)}^{\mu(i)}(f_{j(\tau)}^{\mu(\tau)}(Q))$  is longer than P, where

$$Q = v_1 v_2 \dots v_{j(i)} x_i H x_r v_{j(r)} v_{j(r)-1} \dots v_{j(i)+\mu(i)} y v_{j(r)+\mu(r)} v_{j(r)+\mu(r)+1} \dots v_t,$$

which contradicts the maximality of P.

If  $v_p \in N(v_{j(i)+\mu(i)}) \cap N(v_{j(\tau)+\mu(\tau)}) \cap V(P)$ , then  $p \neq j(r)$  by Lemma 3. Without loss of generality, we suppose  $p \leq j(i)$ . By the choice of  $\mu(i)$  and  $\mu(r)$ , we have  $v_{p-1} \notin N(v_{j(i)+\mu(i)}) \cup N(v_{j(\tau)+\mu(\tau)})$ . Thus the induced subgraph  $G[v_p, v_{p-1}, v_{j(i)+\mu(i)}, v_{j(\tau)+\mu(\tau)}]$  is a claw, which contradicts the maximality of P.

If  $j(i) + \mu(i) , we have <math>v_{p+1}v_{j(i)+\mu(i)} \notin E(G)$ , otherwise the  $v_1$ -path  $f_{j(i)}^{\mu(i)}(f_{j(r)}^{\mu(r)}(Q))$  is longer than P, where

$$Q = v_1 v_2 \dots v_{j(i)} x_i H x_r v_{j(r)} v_{j(r)-1} \dots v_{p+1} v_{j(i)+\mu(i)} v_{j(i)+\mu(i)+1} \dots v_p v_{j(r)+\mu(r)} v_{j(r)+\mu(r)+1} \dots v_t,$$

which contradicts the maximality of P. And by the choice of  $\mu(r)$ , the induced subgraph  $G[v_p, v_{p+1}, v_{j(i)+\mu(i)}, v_{j(r)+\mu(r)}]$  is a claw, a contradiction. Similarly, we obtain a contradiction for  $p > j(r) + \mu(r)$ .

Let 
$$I_h = I_{h-1} \cup \{x_0\}$$
, then

**Lemma 4.** The set  $I_h$  is an independent set of vertices in V(G).

Lemma 5. For all  $i, r(1 < i, r < h), v_{i(i)}v_{i(r)+u(r)} \notin E(G)$ .

Proof: Obviously,  $v_{j(i)}v_{j(i)+\mu(i)} \notin E(G)$  for all  $i (2 \le i < h)$ . Otherwise by the choice of  $\mu(i)$ , we have  $v_{j(i)-1}v_{j(i)+\mu(i)} \notin E(G)$ , then the subgraph  $G[v_{j(i)}, x_i, v_{j(i)-1}, v_{j(i)+\mu(i)}]$  is a claw, a contradiction.

If we assume that  $v_{j(i)}v_{j(r)+\mu(r)} \in E(G)$  and  $r \neq i$ , then because neither  $G[v_{j(i)}, x_i, v_{j(r)+\mu(r)}, v_{j(i)+1}]$  nor  $G[v_{j(i)}, x_i, v_{j(r)+\mu(r)}, v_{j(i)-1}]$  is a claw, we have that  $v_{j(i)+1}, v_{j(i)-1} \in N(v_{j(r)+\mu(r)})$ , and  $\{v_{j(i)+1}, v_{j(i)}\}$  or  $\{v_{j(i)-1}, v_{j(i)}\}$  is an insertion-pair of  $v_{j(r)+\mu(r)}$ , which contradicts the choice of  $\mu(r)$ .

By the maximality of P and Lemma 5, we have

**Lemma 6.** For all i(1 < i < h),  $N(x_0) \cap N(v_{j(1)+\mu(1)}) \subseteq \{v_1\}$  and  $N(x_0) \cap N(v_{j(i)+\mu(i)}) = \emptyset$ .

Combining Lemmas 1-6, we obtain

**Proposition 1.** The set  $I_h$  is an independent set of vertices in V(G).

**Proposition 2** The sets  $N(x_0)\setminus\{v_1\}$ ,  $N(v_{j(1)+\mu(1)})$ ,  $N(v_{j(2)+\mu(2)})$ , ...,  $N(v_{j(h-1)+\mu(h-1)})$  and  $I_h$  are pairwise disjoint.

Now we examine two cases according to whether m < j(h) or  $m \ge j(h)$ .

Case 1. m < j(h)

In this case, we may choose  $\mu(h)$  such that  $v_{j(h)+\mu(h)}$  is the first non-insertible vertex of  $P[v_{j(h)+1}, v_t]$  on  $Q = v_1 v_2 \dots v_{j(h)} x_h$ . We also obtain

### Claim 1.0.

- (1)  $0 < \mu(h) < t j(h)$ .
- (2)  $N(v_{j(h)+\mu(h)}) \cap I_h = \emptyset$ .
- (3)  $N(v_{j(h)+\mu(h)}) \cap N(I_h) = \emptyset$ .

Because m < j(h), there exists an integer a  $(0 \le a < h)$  such that j(a) < m < s < j(a+1) (let  $j(0) = \mu(0) = 0$ ). Obviously  $j(a) + \mu(a) < m-1$ . Choose s' such that  $v_{s+s'}$  is the first non-insertible vertex of  $v_s v_{s+1} \dots v_{j(a+1)-1}$  on  $Q = v_1 v_2 \dots v_{s-1} v_t v_{t-1} \dots v_{j(a+1)} x_{a+1}$ . By the maximality of P, we have  $0 \le s' < j(a+1) - s$  and the following claims:

Claim 1.1. 
$$N(v_{s+a}) \cap P[v_1, v_{m-1}] = \emptyset$$
 for all  $a (m-s < a < s'+1)$ .

Proof: It is true that  $N(v_{s+a}) \cap P[v_1, v_{m-1}] = \emptyset$  for all  $a \ (m-s < a \le 0)$ , as  $N(z) \cap P[v_1, v_{m-1}] = \emptyset$  for all  $z \in \{v_i : v_{i-1}v_t \in E(G)\}$ . For 0 < a < s' + 1, let a be the smallest integer such that there exists an integer p satisfying  $v_p \in N(v_{s+a}) \cap P[v_1, v_{m-1}]$ . Set  $Q = v_1v_2 \dots v_{s-1} v_t v_{t-1} \dots v_{s+a}$ . Then the  $v_1$ -path  $f_{s-1}^a(Q)$  is longer than P, a contradiction.

Claim 1.2.  $x_0v_{s+s'} \notin E(G)$  and  $N(x_0) \cap N(v_{s+s'}) = \emptyset$ .

Proof: Obviously,  $x_0 v_{s+s'} \notin E(G)$  is true.

By the choice of P and H,  $(N(x_0) \cap N(v_{s+s'})) \setminus V(P) = \emptyset$ . If  $v_{j(\tau)} \in N(v_{s+s'})$ , then r > a. By the choice of s', we have  $v_{j(\tau)+1} \notin N(v_{s+s'})$ , and the induced subgraph  $G[v_{j(\tau)}, x_{\tau}, v_{j(\tau)+1}, v_{s+s'}]$  is a claw, a contradiction.

Similarly to the proofs of Lemma 3 and Lemma 4, we get

Claim 1.3. For all  $i (0 < i \le h)$ ,  $\gamma (0 \le \gamma < s')$  and  $\beta (0 < \beta < \mu(i))$ ,

- (1)  $v_{s+\gamma}v_{j(i)+\beta} \notin E(G)$  and
- (2)  $g(v_{j(i)+\beta}) \cap g(v_{s+\gamma}) = \emptyset$ .

Claim 1.4. For all  $i (1 \le i \le h)$ ,

- (1)  $v_{s+s'}v_{j(i)+\mu(i)} \notin E(G)$  and
- (2)  $N(v_{s+s'}) \cap N(v_{j(i)+\mu(i)}) = \emptyset$ .

Let  $I_{h+2} = I_h \cup \{v_{s+s'}, v_{j(h)+\mu(h)}\}$ . By Claims 1.0-1.4, we obtain

**Proposition 3.** The set  $I_{h+2}$  is an independent set of vertices in G.

**Proposition 4** The sets  $N(x_0) \setminus \{v_1\}$ ,  $N(v_{j(1)+\mu(1)})$ ,  $N(v_{j(2)+\mu(2)})$ , ...,  $N(v_{j(h)+\mu(h)})$ ,  $N(v_{s+s'})$  and  $I_{h+2}$  are pairwise disjoint.

So, we obtain that

$$\sigma_{k+2} \le \sigma_{h+2} \le \sum_{x \in I_{h+2}} |N(x)|$$

$$\le |\bigcup_{x \in I_{h+2}} N(x)| + 1 \le |V(P) \setminus I_{h+2}| + 1$$

$$\le n - (h+2) + 1 = n - h - 1$$

$$\le n - k - 1.$$

It contradicts  $\sigma_{k+2} \geq n-k$ .

## Case 2. m > j(h)

First we have  $m \neq j(h)$ , for otherwise the subgraph  $G[v_{j(h)}, x_h, v_{j(h)-1}, v_t]$  is a claw. Moreover, by the choice of P and H,  $N(v) \setminus P[v_m, v_t] = \emptyset$  for all  $v \in P[v_{m+1}, v_t]$ . By the k-connectedness ( $k \geq 2$ ) of G, there exists an edge joining  $P[v_1, v_{m-1}]$  and  $P[v_{m+1}, v_t]$ , let  $v_j \cdot v_t$  be such an edge and

(E) Under (D), the subscript l is as large as possible,

where  $0 < j^* < m$  and s < l < t. So  $N(v) \cap P[v_1, v_{m-1}] = \emptyset$  for any  $v \in P[v_{l+1}, v_t]$ .

We choose s' (resp. l') such that  $v_{s+s'}$  (resp.  $v_{l+l'}$ ) is the first non-insertible vertex of  $P[v_s, v_l]$  (resp.  $P[v_l, v_l]$ ) on  $Q = v_1 v_2 \dots v_{s-1} v_l v_{l-1} \dots v_l$  (resp.  $Q = v_1 \dots v_l$ ). Then we reach the following claims.

#### Claim 2.1.

- (1)  $(N(v_{s+\beta}) \cup N(v_{l+\gamma})) \setminus P[v_m, v_t] = \emptyset$ , for all  $\beta$  (0  $\leq \beta \leq s'$ ) and  $\gamma$  (0  $\leq \gamma \leq l'$ ).
- (2)  $N(v_{s+s'}) \cap P[v_{l+1}, v_{l+l'}] = \emptyset$  and  $N(v_{l+l'}) \cap P[v_{m+1}, v_{s+s'}] = \emptyset$ .
- (3)  $v_m \notin N(v_{s+s'}) \cup N(v_{l+l'})$ .

Proof: The assertion (1) follows directly from the minimality of m and the choice of P, H and l.

- (2) If  $v_{s+s'}v_{l+\beta} \in E(G)$ ,  $(1 \leq \beta \leq l')$ , then the  $v_1$ -path  $f_l^{\beta}(f_{s-1}^{s'}(Q))$  is longer than P, where  $Q = v_1v_2 \dots v_{s-1}v_tv_{t-1} \dots v_{l+\beta}v_{s+s'}v_{s+s'+1} \dots v_l$ , a contradiction. So we have  $N(v_{s+s'}) \cap P[v_{l+1}, v_{l+l'}] = \emptyset$ . Similarly, we reach  $N(v_{l+l'}) \cap P[v_{s+1}, v_{s+s'}] = \emptyset$ .
- (3) If  $v_m \in N(v_{s+s'})$ , by the choice of s',  $v_{m+1} \notin N(v_{s+s'})$  and  $v_{m-1} \notin N(v_{s+s'})$ , then the induced subgraph  $G[v_m, v_{m+1}, v_{m-1}, v_{s+s'}]$  is a claw, a contradiction. Similarly,  $v_m \notin N(v_{l+l'})$ .

With the same argument used in the proof of Lemma 2, we obtain

Claim 2.2. For all  $\beta$  ( $0 \le \beta \le s'$ ) and  $\gamma$  ( $0 \le \gamma < l'$ )

- (1)  $v_{s+\beta}v_{l+\gamma} \notin E(G)$  and
- (2)  $g(v_{s+\beta}) \cap g(v_{l+\gamma}) = \emptyset$ .

Claim 2.3. For all i (0 < i < h), we have

- $(1) (N(v_{s+s'}) \cup N(v_{l+l'})) \cap (I_h \cup B) = \emptyset,$
- (2)  $N(v_{s+s'}) \cap N(v_{j(i)+\mu(i)}) = \emptyset$  and
- $(3) N(v_{l+l'}) \cap N(v_{j(i)+\mu(i)}) = \emptyset.$

Proof: By Claim 2.1(2), (1) is true,  $N(v_{l+l'}) \setminus P[v_{s+s'+1}, v_l] = \emptyset$ ,  $N(v_{s+s'}) \setminus (P[v_{m+1}, v_{l-1}] \cup P[v_{l+l'+1}, v_l]) = \emptyset$ . Moreover,  $N(v_{j(i)+\mu(i)}) \cap (P[v_{m+1}, v_{s+s'}] \cup P[v_{l+1}, v_l]) = \emptyset$ . So if  $v \in N(v_{j(i)+\mu(i)}) \cap (N(v_{s+s'}) \cup N(v_{l+l'}))$ , then  $v \in P[v_{s+s'+1}, v_l]$ .

If  $v \in N(v_{s+s'}) \cap N(v_{j(i)+\mu(i)})$ , then  $v^+, v^- \notin N(v_{j(i)+\mu(i)})$  by the choice of  $\mu(i)$ . Because the induced subgraph  $G[v, v^+, v^-, v_{j(i)+\mu(i)}]$  is not a claw, we have  $v^+v^- \in E(G)$ , and the  $v_1$ -path  $f_{s-1}^{s'}(Q)$  is as long as P, where

$$Q = v_1 v_2 \dots v_{s-1} v_t v_{t-1} \dots v^+ v^- \dots v_{s+s'} v_1$$

which contradicts the minimality of m.

If  $v \in N(v_{l+l'}) \cap N(v_{j(i)+\mu(i)})$ , then  $v^- \notin N(v_{l+l'}) \cup N(v_{j(i)+\mu(i)})$  by the choice of  $\mu(i)$  and l'. So the induced subgraph  $G[v, v^-, v_{j(i)+\mu(i)}, v_{l+l'}]$  is a claw, a contradiction.

Claim 2.4.  $v_{s+s'}v_{l+l'} \notin E(G)$  and  $N(v_{s+s'}) \cap N(v_{l+l'}) = \emptyset$ .

Proof: The assertion  $v_{s+s'}v_{l+l'} \notin E(G)$  results directly from Claim 2.3.

If  $v \in N(v_{s+s'}) \cap N(v_{l+l'})$ , then  $v \in P[v_{s+s'+1}, v_{l-1}] \cup P[v_{l+l'+1}, v_t]$  by Claim 2.1. Let  $v = v_p$ .

If  $s+s' , then <math>v_{p+1}, v_{p-1} \notin N(v_{l+l'})$  by the choice of l'. As the induced subgraph  $G[v_p, v_{p-1}, v_{p+1}, v_{l+l'}]$  is not a claw, we have  $v_{p-1}v_{p+1} \in E(G)$ , thus the  $v_1$ -path  $f_l^{l'}(f_{s-1}^{s'}(Q))$  is as long as P, where

$$Q = v_1 v_2 \dots v_{s-1} v_t v_{t-1} \dots v_{l+l'} v_p v_{s+s'} v_{s+s'+1} \dots v_{p-1} v_{p+1} v_{p+2} \dots v_l,$$

which contradicts the minimality of m. Similarly, we also get a contradiction when l + l' .

If  $v_t \in N(v_{s+s'}) \cap N(v_{l+l'})$ , then  $v_{s-1}v_{s+s'} \in E(G)$  since the induced subgraph  $G[v_t, v_{s-1}, v_{s+s'}, v_{l+l'}]$  is not a claw. Hence  $v_{s-2}v_{s+s'} \notin E(G)$  by the choice of s'. But  $v_{s-2}v_{l+l'} \notin E(G)$  (by Claim 2.1) and  $v_{s+s'}v_{l+l'} \notin E(G)$ , then the subgraph  $G[v_t, v_{s-2}, v_{s+s'}, v_{l+l'}]$  is a claw, a contradiction.

Let  $I'_{h+2} = I_h \cup \{v_{s+s'}, v_{l+l'}\}$ . By Claims 2.1-2.4 and Proposition 1 and 2 we obtain:

**Proposition 5.** The set  $I'_{h+2}$  is an independent set of vertices in G.

**Proposition 6.** The sets  $N(x_0)\setminus\{v_1\}$ ,  $N(v_{j(1)+\mu(1)}),\ldots,N(v_{j(h-1)+\mu(h-1)})$ ,  $N(v_{s+s'}),N(v_{l+l'})$  and  $I'_{h+2}$  are pairwise disjoint.

So we also have

$$\sigma_{k+2} \le \sigma_{h+2} \le \sum_{x \in I'_{h+2}} |N(x)|$$

$$\le |\bigcup_{x \in I'_{h+2}} N(x)| + 1 \le |V(P) \setminus I'_{h+2}| + 1$$

$$\le n - (h+2) + 1 = n - h - 1$$

$$< n - k - 1$$

It contradicts  $\sigma_{k+2} \ge n-k$ . The proof of Theorem 7 is complete. In the case of k=2, let  $\{x_1, x_2, x_3, x_4\}$  be an independent set of vertices in V(G) with  $\sigma_4 = \sum_{i=1}^4 |N(x_i)|$ , then we have

$$\sigma_{4} = \sum_{i=1}^{4} |N(x_{i})| = \left| \bigcup_{i=1}^{4} N(x_{i}) \right| + \sum_{1 \leq i < j \leq 4} |N(x_{i}) \cap N(x_{j})|$$

$$= \left| \bigcup_{i=1}^{4} N(x_{i}) \right| + \sum_{1 \leq i < j \leq 4} (|N(x_{i})| + |N(x_{j})| - |N(x_{i}) \cup N(x_{j})|)$$

$$= \left| \bigcup_{i=1}^{4} N(x_{i}) \right| + 3 \sum_{i=1}^{4} |N(x_{i})| - \sum_{1 \leq i < j \leq 4} |N(x_{i}) \cup N(x_{j})|$$

$$\leq n - 4 + 3\sigma_{4} - 6NC(G),$$

since G is claw-free. So  $\sigma_4(G) \ge (6NC(G) + 4 - n)/2$ . And if  $NC(G) \ge (n-3)/2$  then  $\sigma_4 \ge (2n-5)/2$ , equivalently  $\sigma_4 \ge n-2$ . By Theorem 7 G is homogeneously traceable and Corollary 8 is true.

### Remark

We note that Theorem 7 for k=2 and Corollary 8 are best possible. The graph G illustrated in Fig. 1 is 2-connected, claw-free and has n=4p+8 vertices. Note that  $\sigma_4=4p+5=n-3$ , and NC(G)=2p+2=(n-4)/2. But G is not homogeneously traceable, because there exists no hamiltonian v-path.



Figure 1

#### References

- 1. D. Bauer, G. Fan and H.J. Veldman, Hamiltonian Properties of Graphs with Large Neighborhood Unions. preprint.
- 2. J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications", Macmillan London and Elsevier, New York, 1976.
- 3. G. Chartrand, R.J. Gould and S.F. Kapoor, On Homogeneously Traceable non-Hamiltonian Graphs, Annals of the New York Academy of Sciences 319 (1979), 130-135.
- 4. R.J. Faudree, R.J. Gould and T.E. Lindquester, *Hamiltonian Properties and Adjacency Conditions in Claw-Free Graphs*, Proc. 6th Int. Conf. on Theory and Applications of Graphs, Kalamazoo, Michigan (1988).
- 5. R.J. Gould, Degree Sets for Homogeneously Traceable non-Hamiltonian Graphs, Colloquium Mathematicum VOL. XLV (1981). FASC.1.
- 6. C.Q. Zhang, Hamilton Cycles in Claw-Free Graphs, J. Graph Theory 12 (1988), 209-216.