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Abstract. A graph G is homogeneously traceable if for each vertex v of G there exists
a hamiltonian path in G with initial vertex v. A graph is called claw-free if it has no
induced K 3 as a subgraph.

In this paper,we prove that if G is a k-connected (k > 1) claw-free graph of order
n such that the sum of degrees of any k + 2 independent vertices is at least n— k, then
G is homogeneously traceable. For k = 2, the bound n — k is best possible.

As a corollary we obtain that if G is a 2-connected claw-free graph of order n such
that NC(G) 2> (n— 3)/2, where NC(G) = min{|N(u) U N(v)|:uv € E(G)},
then G is homogeneously traceable. Moreover, the bound (n — 3) /2 is best possible.

Introduction

We use [2] for terminology and notation not defined here and consider simple
finite graphs only.

Throughout, let G be a graph of order n. We say G is claw-free if no induced
subgraph of G is isomorphic to K 3. If G has a hamiltonian cycle (acycle contain-
ing every vertex of G), then G is called hamiltonian. A graph G is homogeneously
traceable if for each vertex v of G there exists a hamiltonian path (a path contain-
ing every vertex of G) with initial vertex v. The number of vertices in a maximum
independent set of G is denoted by a( G) and the set of vertices adjacent to a ver-
tex v by N(v). Forasubset S of V(G),let N(S) = (Uyes N(v))\S. We denote
by 0¢(G) the minimum value of the degree-sum of any ¢ pairwise non-adjacent
vertices if t < a(G). Ift > a(G), we set 03(G) = t(n— 1). If G is non-
complete, then NC(G) denotes the min {{N(u) UN(v)|:uv € E(G)}. IfGis
complete, we set NC(G) = n— 1. If no ambiguity arises, we sometimes write o
for a( @) and o for oy (G).

In 1979, Chartrand, Gould and Kapoor confirmed the existence of homoge-
neously traceable non-hamiltonian graphs:

Theorem 1[3]. There exists a homogeneously traceable non-hamiltonian graph
of order n for all positive integers n except 3 < n< 8.

In 1981, Gould obtained a result about the degree-set for homogeneously trace-
able non-hamiltonian graphs:
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Theorem 2[S). Suppose S = {ny,n1,...,m} is a set of k + 1(> 1) positive
integersand n; > 2 forall i (0 < 1 < k). Then S is the degree set of a homo-
geneously traceable non-hamiltonian graph unless S = {2}, where the degree set
of a graph G is defined lo be the set of degrees of the vertices of G.

In {4], Faudree, Gould énd Lindquester gave a sufficient condition in terms of
neighborhood unions for a claw-free graph to be homogeneously traceable.

Theorem 3[4). If G is a 3-connected claw-free graph of order n such that
NC(G) > (2n—5)/3, then G is homogeneously traceable.

Furthermore, they made the following

Conjecture 4[4). If G is a 3-connected claw-free graph of order n such that
NC(G) > (2n—15)/3, then G is hamiltonian.

The following result was obtained by Zhang.

Theorem 5[6). If G is a k-connected (k > 2) claw-free graph of order n with
Ok+1 2> n— k, then G is hamiltonian.

As Bauer, Fan and Veldman pointed out, the following consequence of Theorem
5 improves Theorem 3 and Conjecture 4.

Theorem 6[1]. If G is a2-connected claw-free graph of order n with NC(G) >
(2n—5)/3, then G is hamiltonian.

In this paper, we obtain an analogue of Theorem S for homogeneously traceable
graphs.

Theorem 7. If G is a k-connected (k > 2) claw-free graph of order n with
o2 2> n— k, then G is homogeneously traceable.

Obviously, when k& = 2, Theorem 7 gives an improvement of Theorem 3.

Corollary 8. If G is a 2-connected claw-free graph of order n with NC(G) >
(n—3)/2, then G is homogeneously traceable.

Proof of Theorem 7

To prove Theorem 7, we first give some convenient terminology and notation.
Forany path Q = ujuz ...u, of G, let Q[ u;, u;] represent both the subpath of Q
from u; 1o u; and its vertex-set. For convenience, we sometimes use u; for w1
and u; for u;_,. For any vertex v of G, we call v insertible on Q if there exists
an integer s such that u;, u;+1 € N(v) and {u;, us1} the insertion-pair of v on Q.
We also denote by g(v, Q), all insertion-pairs of v on Q. If no ambiguity arises,
we sometimes write g(v) instead of g(v, Q). If P is a path with initial vertex u,
then we call P u-path.
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Now, let G be a k-connected (k > 2) claw-free graph of order n with o442 >
n— k. If G is homogeneously traceable, we are done. Otherwise, for some vertex
of G, say v, there exists no hamiltonian v)-pathin G. Let P = vjvz ...y be a
v -path, and v,, be the first vertex adjacent to v; along P[v;,v:]. We choose P
such that

(A) The path P is as long as possible,

(B) Under (A), the subscript m is as small as possible.
Let v, be the first vertex non-adjacent to v; along P[ vy, v;], and set A={v;: vi_1 e €
E(QG)}. By the choice of P, we get

N(A) N(Plv1,vm1]U(V(G\V(P))) = 0.

Thus, we have s < t — 1, for otherwise vy, is a cut-vertex of G, which contradicts
the 2-connectedness of G.

Because V(G)\V(P) # 0, let H be a component of G\V(P). By the k-
connectedness of G, there exist A edges joining H and P (h > k > 2). Note that
h > |N(z)NV(P)|forany z € H. Letthese edges be {z;v;j(i:i=1,2,...,h},
where z; € V(H), vj» € V(P),fori=1,2,...,hand1 < j(1) < j(2) <
.-« < j(h) <t.SetB= {vj(l) VYH(2) 5+ o2 ViCh) }.

We may choose H such that

(C) Under (B), the subscript j( k) is as large as possible.
Let zo € H and z; H z; denote a path of H joining z; and z;. Forany i(0 < 1 <
h), along P[vj(i)+1, vj(i+1)-1] we choose u(4) such that
(D) Under (C), vj(iy+u(iy is the first non-insertible vertex on Q(1), where
QD) = vivz ...V T H Tie1 vjgie 1) Vi )+1 - - ve e, forany (0 < B <
B(9)), 9(vj+p, Q) # 0.

Foranyi (0 < i < h) and 8(0 < B8 < u(3)), we denote by f,‘f'm(Q) an
operation of inserting {vj(i)+1, Vj(i)+2,- -+, Vj(+p-1} into Q, where Q is a path
of G. We have

Lemma 1. The operation ff(,.)(Q) is well-defined for alli (0 < i < h) and B
(0 <B<Lu().

Proof: To prove this assertion, choose the largest index g (0 < ¢ < 8) such that
there exists an integer r with {v,, vr+1} € g(vj(i)+1) Ng{vjiy+4) . Replacing edge
vrvre1 Of Q(1) by subpath v,vj(i)+1 - . . Vj(i)+qUr+1, We Obtain a path Q’.

If g < B—1, repeat this procedure for Q' and {Uj(i)+q+l yooos Uj()+8-1 } inplace
of Q and {vj(i+1,...,vj(i)+s-1} until we have inserted {vj¢iys1,-..,vj()+g-1}
into Q.

Obviously V{( ff5 (@) = V(Q) U {vjt+1, ..., Yiciyep-1}. S00 < p(d) <
j(i+ 1) — j(4) by the maximality of P.

We set It = {vjc)eut)s -+ s Vih=y+uth—1) }-

343



Lemma 2, Foranyi, (0 < i<7r < h),B(0 < 8 < p(t)) and (0 < v <
(7)), we have

(1) ‘l)j(,')-;-ﬂ"j(r)wy ¢ E(G) and

@ g(vj+p) Ng(vj(r+q) = 0.

Proof: If itis not true, without loss of generality we suppose -y and 8 are the small-
estintegers satisfying either vj i+ gU(r)+q € B(G) 0r g(vj(+8) NG(Vj(r)+y) # 0.

If vj(iy+ gVj(ry+q € E(G), then the vy-path £}, (f5,(Q)) is longer than P,
where

Q = v1v2 .. Vi) T H ZrVj(n) Vjcr) =1+« - V(D + BV () 4 Vj(r) w1 -+ Ut

It contradicts the maximality of P.
If {up,vpn} € 9(vj+p) N g(vjin+y) and p < J(2), then the v;-path
Flen(fito(Q)) is longer than P, where

Q = V192 .. UpVs(i)+ BV (5) +8+1 - - 'vj(")z'”zi”i(a)"j(i)-l ..
Vpe 1Vj(r) +qVj(r) 4yl - - V2.

It contradicts the maximality of P. Similarly, we reach a contradiction for p >
j(r)orj(s) < p<Lj(r).

By Lemma 2, we know f%)( fj"(,)(Q)) is well-defined forall 8 (0 < 8 <
u() and (0 < 7 < p(r)).

Lemma 3. Forall i and r (0 < i < r < h), we have

) vi+un Vitm+un € E(G) and
(2) N(vjiyeui) N N(vjirysun) = 0.

Proof: The assertion vji)+u(i) Vitn+u(r) € E(G) results directly from Lemma 2.

If there exists y € N (vjci+ui)) N N(vj(r)+u(n) then there exists an integer p
such that y = v, € V(P), otherwise the v;-path ¢ (f47(Q)) is longer than
P, where

Q= v1v2 .. VDT HZ0j(r) Vj(n) =1 + - V(i) + () YY) +p() Vi(r) +p(r)+1 + - 1,

which contradicts the maximality of P.

If vy, € N(vj(y+ptn) N N(vjin+un) N V(P), then p # j(r) by Lemma
3. Without loss of generality, we suppose p < j(1). By the choice of u(i) and
p(r), we have vp_1 & N(vjciy+uci)) YU N(Vj(r)+un). Thus the induced subgraph
Glvp, Vp_1, V(i) +u(i)» Vi(r)+uin 1 iS @ claw, which contradicts the maximality of
P ,



If j(4) + p(i) < p < j(r), we have vpr1vj(+ui) € E(G), otherwise the
vy -path ,“((5’ ( f;‘((r')) (Q)) is longer than P, where

Q = v1v2 .. Vi) TiHTrj(r) Vi(r) =1 - - Vps 1 Vj()+ u() V(i) +u(i) 1+« o

VpVs(r)+u(r) Vi(r)+u(r)+1 -- - V¢,

which contradicts the maximality of P. And by the choice of u(r), the induced
subgraph G vp, Ype1, Vi) +u() » Vitn+u(n)] iS a claw, a contradiction. Similarly,
we obtain a contradiction forp > j(r) + u(7r).

Let I = Iy U {z0}, then

Lemma 4. The set I, is an independent set of vertices in V(QG).
Lemma S. Forall i,rv(1 < i,7 < h), vj(iyvjineun € B(G).

Proof: Obviously, vy vjiy+uiy € E(G) forall§ (2 < 1 < h). Otherwise
by the choice of u(1), we have vi_1vjty+un € E(G), then the subgraph
Glvjey, Ts, vi(i) -1, Vji(+u(n ] iS a claw, a contradiction.

If we assume that vjivj(ry+u(r) € E(G) and r # 1, then because neither
Glvjc, Tir Vitn+u(n) , Vi +1 1 10T GLvj0), Ti, Vjcryeutn) , Vit -1] is aclaw, wehave
that vj(i.1, Vj-1 € N(¥jtn+utn)» and {vjcns1,vje0} or {vjn-1,vj(n} is an
insertion-pair of vj(y)+ () » Which contradicts the choice of u(r).

By the maximality of P and Lemma 5, we have
Lemma 6. Forall i(1 < i< h), N(zo) NN (vj1)+ury) € {1} and N(zo) N
N(vjteun) = 0.

Combining Lemmas 1-6, we obtain

Proposition 1. The set I, is an independent set of vertices in V(G).
Proposition 2 The sets N(zo)\{vi}, N(vj(ysun))s N(Vj@yeu@)s ---»
N(vjcn-1)+un-1y) and I are pairwise disjoint,

Now we examine two cases according to whether m < j(h) orm > j(h).

Case 1. m < j(h)

In this case, we may choose p(h) such that vjca).ua) is the first non-insertible
vertex of Pl vjny+1,v¢e] 0N Q = viva ... vjn) Ts. We also oblain
Claim 1.0.

(1) 0 <pu(h) <t—j(h).
(@) N(vjtmyeum) NIy = 0.
(3) N(vjtme+umy) NN(Is) = 0.
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Because m < j(h), there exists an integer a (0 < a < A) such that j(a) <
m< s< jla+ 1) (let j(0) = p(0) = 0). Obviously j(a) + p(a) < m— 1.
Choose s’ such that v, is the first non-insertible vertex of v,vs+1 ... Vj(a+1y-1
on Q = viv2...Ys 1 V¥t ... Vj(a+1)Ta+1. BY the maximality of P, we have
0 < & < j(a+ 1) — s and the following claims:

Claim 1.1. N(vse) NPlvy,vmyl =0 foralla(m—-s<a< s +1).
Proof: It is true that N(vs..) N Plvy,vpm_1] = fforalle (m—s < a £ 0),
as N(z) N Plvi,vm-1] = B forall z € {viivi.jve € B(G)}. For0 < a <
s’ + 1, let a be the smallest integer such that there exists an integer p satisfying
vp € N(v540) N Pl vpm_1]. S€LQ = vivz...Vs1 Ut¥p—1...Vaeo. Thenthe
vy-path f2_,(Q) is longer than P, a contradiction.

Claim 1.2. zgv,.y & E(G) and N(z¢) N N(vsy) = 0.
Proof: Obviously, zovs,y & E(G) is true.

By the choice of P and H, (N(Zo0) N N(vs42))\V(P) = 0. Ifvyy) €
N(vsy), then r > a. By the choice of s', we have vj(;)+1 &€ N(vsy), and
the induced subgraph G vj(r), Tr, Vj(r)+1, Vs+»] is a claw, a contradiction.

Similarly to the proofs of Lemma 3 and Lemma 4, we get
Claim 1.3. Forall i (0 <i< h),7(0 < y< ) and 8 (0 < B < u(1)),

(1) Vs Vj(i)+8 g E(G) and

2) g(vjciy+p) Ng(vseq) = 0.
Claim 1.4. Forall i (1 <i< h),
(1) VaraVj(iyentn) € E(G) and
(2) N(s+0) N N(vj(iyepn) = 0.

Let Tnv2 = InU {vse o, vichy+u(ny }- By Claims 1.0-1.4, we obtain
Proposition 3. The set Iy.» is an independent set of vertices in G.

Proposition 4 The sets N(zo)\{wm1}, N(vjiyeuny)» N(vjysp2), ---»
N(vjny+p(h))» N(vsrg) and In are pairwise disjoint.
So, we obtain that

o2 Som2 < Y IN(D)]

z€lp2
< |Uzen.. N(2)|+ 1 < [V(P)\Ihe2| + 1
<n—(h+2)+1=n—h-1
<n—k-1.

It contradicts o2 > n— k.
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Case 2. m > j(h)

First we have m # j(h), for otherwise the subgraph Gl vjchy, Zh, Vj(hy-1, vl
is a claw. Moreover, by the choice of P and H, N(v)\P[v,, v] = @ for all
v € Plvpms1,v]. By the k-connectedness (k > 2) of G, there exists an edge
joining P[v1,vp_1] and P(vm+1,ve], let vj.v; be such an edge and

(E) Under (D), the subscript [ is as large as possible,

where 0 < j* < mands < ! < t. So N(v) N P[v;,vpm-1] = @ for any
veE P[”l-ﬂ:”t]-

We choose s' (resp. I') such that v, s (resp. vp.p) is the first non-insertible
vertex of P[v,,v;] (resp. P{v;, w])on Q = viva...vpm1veve_y ... vy (tesp. Q =
v1 ...v). Then we reach the following claims.

Claim 2.1.

(1) (N(vs4g) U N(uey))\Plvp,v) = 0, forall B (0 < B < &) and v
(0 < <)

(2) N(vs+o) N Plvger,visz] = 8 and N(viep) 0 Pluge1, Vool = 8.

(3) Ym ¢ N(vsg) UN(”HI’)'

Proof: The assertion (1) follows directly from the minimality of m and the choice
of P, H and L.

(2) If vgvieg € E(G), (1 < B < I), then the v, -path ff(f_l(Q)) is
longer than P, where Q T VIV2 oo Vpm VU] o« V34 V54 Vst g1 + - UL, @
contradiction. So we have N(vsey) N Plvwy,vier] = 0. Similarly, we
reach N(vpp) N Plvgeq, vsew] = 0.

(3) If um, € N(vsy), by the choice of 8, Ums1 & N(vsey) and vy &
N(v,+y), then the induced subgraph G[vm, Ym+1, Um—1, Vsss'] 1s a claw,
a contradiction. Similarly, vy, € N(vpr).

With the same argument used in the proof of Lemma 2, we obtain

Claim 2.2, Forall B(0 < B< 8') andy (0 < v < I')

(1) vsepviey & E(G) and

@) 9(vasp) Ng(vieqy) = 0.

Claim 2.3, Forall i (0 < i < h), we have

(1) (N(vsee) UN(vier)) N(InUB) =9,

(2) N(vss) N N(jtiyepn) = 0 and

3) N(vep) N N(”j(:‘)+#(t')) =0.
Proof: By Claim 2.1(2), (1) is true, N(vpp) \Plvsegs1,v] = 0, N(vsee)\
(Plvmse1, vi-1JUP[vppe1,v]) = 0. Moreover, N(vj¢iy+u(i)) W PLvme1, Vars JU
Plupy,ul) = 0. Soif v € N(vjiyapi)) N (N(vseg) U N(vpp)), then v €
Plusess1, ).
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of p(i) Because the mduced subgraph G[v vh,v” u,(,)ﬂ,(,)] is not a claw, we
have v*v— € BE(G), and the v, -path f¢ + 1(Q) is as long as P, where

+ -
Q=vV2 . Vs j YVt <. VU o VgV,

which contradicts the minimality of m.

Ifv € N(vupr) N N(v,'(,-)+“(,')), thenv- € N(vup) U N(vj(m,,(;)) by the
choice of (%) and !'. So the induced subgraph G[ v, v=, vj(iy+u(i), vier] is aclaw,
a contradiction.

Claim 2.4. vyeyvier € E(G) and N(vgy) N N(vip) = 0.

Proof: The assertion vy yvi.r € E(G) results directly from Claim 2.3.

Ifv € N(vss0) NN (vier), thenv € Plvseg41,vi-11UP[ v 41, v¢] by Claim
2.1. Letv = vy,

Ifs+3s' < p<l,thenvpy,vp1 & N(vip) by the choice of I'. As the induced-
subgraph G[v,,, v,,_l ) Up+1, Vi+r] i nOL a claw, we have v, vpe1 € E(G), thus
the y; -palh f, 5 v 1(Q)) is aslong as P, where

Q= V112 .. Vs 1 UtVp) o Vs P UpUssy Vst 41 + o+ Vp—] Ups 1 Ups2 ... U,

which contradicts the minimality of m. Similarly, we also get a oomradxcuon
whenl+l' <p<it.

Ifve € N(vse o) NN (vie1), then vy_1 v,4 ¢ € B(G) since the induced subgraph
Glvt, V51, Vsss, visp] isnotaclaw. Hencev,_av,4 ¢ € E(G) by the choice of s'.
Butv,2vip € E(G) (by Claim 2.1) and vyeyviir & E(G), then the subgraph
Glv, vs-2, Vse o, Ve 1] is a claw, a contradiction.

Let I},5 = In U {Vsey; visr}. By Claims 2.1-2.4 and Proposition 1 and 2 we
obtain;

Proposition 5. The set I}, is an independent set of vertices in G.

Proposition 6. The sets N(zo)\{v1}, N(vjcty+u))s .- » N(Vjth=1)+p(h=1))»
N(vsss), N(viep) and I, are pairwise disjoint.

So we also have

o2 Som2 < Y IN(2)]

z€l},,
< leeJ;,, N(@)|+1< IV(P)\I;nZl""l ,
<n—(h+2)+1=n—h-1
<n—k-1
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It contradicts ax+2 > n— k. The proof of Theorem 7 is complete.
In the case of k = 2, let {z;, z2, 23, T4 } be an independent set of vertices in
V(G) with o4 = ¥4, |N(z;)], then we have

4 4
ga =Y IN(z)| = | Nz |+ > IN(z) N N(z)|
i=1 i=1 1<i<j<4
=[UL N@z)l+ Y (IN(z)|+ [N(z)| - IN(z) UN(z))])
1<i<i<a

4
|Uby Nzl +3 D IN(zdl— ) IN(2:) UN(z))]

i=l 1<i<i<4
<n—4+304 —6NC(G),

since G is claw-free. So 04(G) > (6 NC(G) + 4 — n) /2. Andif NC(G) >
(n—3)/2 then o4 > (2n— 5)/2, equivalently a4 > n— 2. By Theorem 7 G
is homogeneously traceable and Corollary 8 is true.

Remark

We note that Theorem 7 for k = 2 and Corollary 8 are best possible. The graph G

illustrated in Fig. 1 is 2-connected, claw-free and has n= 4p+ 8 vertices. Note
thatos = 4p+5=n—3,and NC(G) = 2p+ 2= (n—4)/2. ButGis not
homogeneously traceable, because there exists no hamiltonian v-path.

Figure 1
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