# The binary matroids having an element which is in every four-wheel minor

Talmage James Reid 1

Department of Mathematics The University of Mississippi University, MS U.S.A. 38677

Abstract. The binary matroids with no three- and four-wheel minors were characterized by Brylawski and Oxley, respectively. The importance of these results is that, in a version of Seymour's Splitter Theorem, Coullard showed that the three- and four-wheel matroids are the basic building blocks of the class of binary matroids. This paper determines the structure of a class of binary matroids which almost have no four-wheel minor. This class consists of matroids M having a four-wheel minor and an element e such that both the deletion and contraction of e from M have no four-wheel minor.

#### 1. Introducton

The matroid terminology used mostly follows Oxley [13], Truemper [15], and Welsh [17]. Let M be a matroid. The ground set of M is denoted by E(M). Let  $X \subseteq E(M)$ . The rank of X in M is denoted by either  $rk \ X$  or  $rk_M X$ . The deletion and contraction of X from M are denoted by  $M \setminus X$  and M/X, respectively. The restriction of M to X is denoted by  $M \setminus X$ . Three-element circuits and cocircuits of M are called *triangles* and *triads*, respectively.

Let  $M_1$  and  $M_2$  be matroids on  $E(M) \cup e_1$  and  $E(M) \cup e_2$ , respectively, such that  $M_1 \setminus e_1 = M$  and  $M_2 / e_2 = M$ . We say that  $M_1$  is an *addition* to M and  $M_2$  is an *expansion* of M. We say that  $M_1$  is a *non-trivial* addition to M if e is neither a loop nor a coloop of  $M_1$  and e is not in a 2-element circuit of  $M_1$ .

Let N be a minor of M. A minor of M which is isomorphic to N is called an N-minor. Let  $e \in E(M)$ . We say that e is in every N-minor of M if neither  $M \setminus e$  nor M/e has an N-minor. Evidently e is in every N-minor of M if and only if it is in every  $N^*$ -minor of  $M^*$ . We say that e avoids some N-minor of M if there exists an N-minor of M whose ground set does not contain e. Define M/e to be a matroid obtained from M/e by deletion of the elements of each parallel class except for one representative of each class. Similarly derive  $M \setminus e$  from  $M \setminus e$  by contracting the elements of each series class except for one representative of each class [15].

If k is a positive integer, then a bipartition (A, B) of E(M) is a k-separation of M if  $|A| \ge k$ ,  $|B| \ge k$ , and  $rk \ A + rk \ B - rk \ M \le k - 1$  [16]. For an integer n > 2, M is n-connected if it has no k-separations for any k < n. In a

<sup>&</sup>lt;sup>1</sup>Ths research was partially supported by NSA/MSP Grant MDA 90-H-1009.

3-connected matroid with at least four elements there are no circuits or cocircuits with fewer than three elements.

Let A be a matrix with entries in the field GF(2). The dependence matroid on the columns of A is denoted by D(A). We say that A and D(A) are binary. If column e is adjoined to A, then A+e denotes the resulting matrix. If e is a column of A, then  $A \setminus e$  denotes the matrix obtained by deleting e from A. Suppose that f is a column of A whose sole non-zero entry is a one in row i. Then A/f denotes the matrix obtained by removing row i and column f from A.

An example of a matrix A in standard form together with its associated dual matrix  $A^*$  is given in Figure 1. The r by r identity matrix is denoted by  $I_r$ .

$$A = \begin{bmatrix} e_1 \dots e_r, e_{r+1} \dots e_n \\ I_r, B \end{bmatrix} \quad A^* = \begin{bmatrix} e_{r+1} \dots e_n, e_1 \dots e_r \\ I_{n+r}, B^T \end{bmatrix}$$

Suppose that E and F are binary matrices such that one can be obtained from the other by interchanging columns and performing elementary row operations. Then we say that E and F are equivalent. The unique representability of binary matroids is used throughout the paper [5,(3.7)].

We next give the binary case of a result of Coullard [6,(8.10)]. This result is a version of the Splitter Theorem [14]. It indicates the central role played by the three- and four-wheel matroids in the class of binary matroids. The wheel-matroid of rank r is denoted by  $W_r$ .

**1.1 Theorem.** Let N be a 3-connected proper minor of a 3-connected binary matroid M such that  $|E(N)| \ge 4$  and M is not a wheel. Suppose that if  $N \cong W_3$ , then M has no  $W_4$ -minor. Then there is a sequence  $M_0, M_1, \ldots, M_n$  of 3-connected matroids such that  $M_0 \cong N$ ,  $M_n = M$  and, for each i in  $\{1, 2, \ldots, n\}$ ,  $M_i$  is an addition to or expansion of  $M_{i-1}$ .

The sequence of matroids in Theorem 1.1 is said to be a *chain* of 3-connected matroids from N to M.

For each  $r \ge 4$  let  $H_r$  be the binary matrix given in Figure 2.

Figure 2:  $H_r$ 

Let  $A_r$  and  $B_r$  denote the matrices  $H_r \setminus b_r$  and  $H_r \setminus d_r$ ,  $e_r$ , respectively. Let  $Y_r = D(A_r)$  and  $Z_r = D(B_r)$ . Evidently  $Z_r^* \cong Z_{r+1} \setminus b_{r+1}$ ,  $c_{r+1}$  as the matrices  $B_r^*$  and  $B_{r+1} \setminus b_{r+1}$ ,  $c_{r+1}$  have the same columns. The matroids  $Y_r \setminus b_{r-1}$ ,  $d_r$  and  $Y_r \setminus c_r$ ,  $d_r$  are self-dual. This can be seen by replacing row r in  $A_r \setminus b_{r-1}$ ,  $d_r$  and  $A_r \setminus c_r$ ,  $d_r$  by row 1+ row r and then interchanging the first and last columns. Each of the two resulting matrices has the same columns as its dual matrix. For  $r \geq 5$  the matroids  $(Y_{r-1} \setminus d_{r-1})^*$  and  $Y_r \setminus b_{r-1}c_r$ ,  $d_r$  are isomorphic. This can be seen by replacing row i of  $(A_{r-1} \setminus d_{r-1})^*$  by row i+ row r for each i in  $\{2,3,\ldots,r-1\}$ . Then replace row r of the resulting matrix by row 1+ row r. A suitable reordering of the columns produces  $A_r \setminus b_{r-1}, c_r, d_r$ .

Brylawki [3] stated that a binary matroid has no  $W_3$ -minor if and only if it is a series-parallel network (for graphs see [1], [8], [9]). The next theorem forms the core of a complete decomposition of the binary matroids with no  $W_4$ -minor given by Oxley [11,(2.1)].

**1.2 Theorem.** Let M be a binary matroid with rk  $M \geq 4$  and rk  $M^* \geq 4$ . Then M is 3-connected and has no  $W_4$ -minor if and only if  $M \cong Z_\tau, Z_\tau^*, Z_\tau \setminus b_\tau$ , or  $Z_\tau \setminus c_\tau$  for some  $\tau \geq 4$ .

The following result characterizes binary matroids which almost have no fourwheel minor. This is the main result of the paper.

**1.3 Theorem.** Let M be a 3-connected binary matroid with rk  $M \ge 7$  and rk  $M^* \ge 7$ . Then the number of elements of M which are in every  $W_4$ -minor exceeds one if and only if for some  $r \ge 7$  either M or  $M^*$  is isomorphic to  $Y_r \setminus X$  where X is a possibly empty subset of  $\{b_{r-1}, c_r, d_r\}$ . The only elements of  $Y_r \setminus X$  which are in every  $W_4$ -minor are  $a_1, a_r, b_1$ , and  $a_r$  when  $d_r \notin X$ .

The previous theorem states that a 3-connected binary matroid M with rank and corank at least seven has exactly 0,1,3, or 4 elements which are in every four-wheel minor. Suppose that M has exactly one such element e. Then, for some  $m \geq 5$ , there exists a chain of 3-connected matroids  $M_0, M_1, \ldots, M_n$  from one of  $Z_m, Z_m^*, Z_m \backslash b_m$ , and  $Z_m \backslash c_m$  to M. If n > 1, then  $M_1$  is an expansion of  $Z_m$  or  $Z_m \backslash c_m$ , or  $M_1$  is an addition to  $Z_m^*$  or  $Z_m \backslash b_m$ . Either M/e or M/e is 3-connected and has no  $W_4$ -minor. The proof of these statements is similar to the proof of Theorem 1.3 and is omitted. The next result corresponds to Theorem 1.3 for regular matroids. The graph  $K_5 - e$  is obtained by deleting an edge from the complete graph on five vertices.

**1.4 Theorem.** Let M be a 3-connected regular matroid. Then M has an element which is in every  $W_4$ -minor if and only if  $M \cong W_4$ ,  $M(K_5-e)$ , or  $M^*(K_5-e)$ .

Let F be a flat of a matroid M, we say that F is a modular flat of M if, whenever E is a flat of M,  $rk E + rk F = rk E \cup F + rk E \cap F$ .

Let  $M_1$  and  $M_2$  be matroids whose ground sets meet in T such that  $M_1|T=M_2|T$ . If T is a modular flat of  $M_1$ , then the generalized parallel connection of  $M_1$  and  $M_2$  across T is denoted by  $P_T(M_1, M_2)$  [4,section 5]. This matroid has the property that for each of its flats F,  $rkF = rk_{M_1} F \cap E(M_1) + rk_{M_2} F \cap E(M_2) - rk_{M_1} F \cap T$ .

The next lemma gives the geometric connection between the binary matroids with no  $W_4$ -minor of Theorem 1.2, and those having elements in every  $W_4$ -minor of Theorem 1.3. It states that the matroid  $Y_r$  is obtained by attaching a three-wheel matroid to  $Z_{r-1}$  using a generalized parallel connection.



Figure 3

**1.5 Lemma.** For  $r \geq 5$  let G and H be the restrictions of  $Y_r$  to  $\{a_1, a_r, b_1, c_r, d_r, e_r\}$  and  $E(Y_r)\setminus\{a_1, a_r, b_1\}$ , respectively, and let  $F=\{c_r, d_r, e_r\}$ . Then  $Y_r=P_F(G,H)$ ,  $G\cong W_3$ , and  $H\cong Z_{r-1}$ . Moreover,  $H\setminus b_{r-1}\cong H\setminus d_r\cong Z_{r-1}\setminus b_{r-1}$ ,  $H\setminus c_r\cong Z_{r-1}\setminus c_{r-1}$ , and  $H\setminus b_{r-1}$ ,  $c_r\cong H\setminus c_r$ ,  $d_r\cong Z_{r-2}^*$  if  $r\geq 6$ .

Proof: The flat F is modular in G as it is a full line [4,(3.15)]. Thus  $Y_r = P_F(G,H)$ . It is easy to check that  $G \cong W_3$ . To show that  $H \cong Z_{r-1}$  consider the matrix representation  $A_r \setminus \{a_1, a_r, b_1\}$  for H. This matrix has identical first and last rows. Drop its last row and order its column by  $[e_r \ a_2 \ a_3 \dots a_{r-1} \ d_r \ b_2 \ b_3 \dots b_{r-1} \ c_r]$ . This is the matrix  $B_{r-1}$  which represents  $Z_{r-1}$ . Thus  $H \cong Z_{r-1}$  and by this ordering of columns,  $H \setminus b_{r-1} \cong Z_{r-1} \setminus b_{r-1}$ ,  $H \setminus c_r \cong Z_{r-1} \setminus c_{r-1}$ ,  $H \setminus d_r \cong Z_{r-1} \setminus b_1$ ,  $H \setminus b_{r-1}, c_r \cong Z_{r-1} \setminus b_{r-1}, c_{r-1}$ , and  $H \setminus c_r, d_r \cong Z_{r-1} \setminus b_1, c_{r-1}$ . It is easy to check that  $Z_{r-1} \setminus b_1 \cong Z_{r-1} \setminus b_{r-1}$  and  $Z_{r-1} \setminus b_{r-1}, c_{r-1} \cong Z_{r-1} \setminus b_1, c_{r-1} \cong Z_{r-2}^*$  if  $r \ge 6$ .

The following well-known lemma is frequently used in the proof of Theorem 1.3.

**1.6 Lemma.** [6] Let N be a simple minor of a matroid M. If e is in a 2-element circuit (cocircuit) of M, then M has an N-minor if and only if  $M \setminus e$  (M/e) has an N-minor.

For  $r \geq 5$  and  $g \in \{a_1, a_r, b_1\}$  suppose that  $Y_r \setminus g$  or  $Y_r / g$  has a  $W_4$ -minor. By using Lemmas 1.5 and 1.6 and observing Figure 3 we see that  $Z_{r-1}$  has a  $W_4$ -minor. This contradicts Theorem 1.2. Thus

(1.7).  $a_1, a_r$ , and  $b_1$  are is every  $W_4$ -minor of  $Y_r$ .

## 2. The Proof

In this section the proofs of Theorems 1.3 and 1.4 are given, we begin with some preliminary lemmas.

**2.1 Lemma.** [2,(1)] Let M be a 3-connected matroid and  $e \in E(M)$ . Then at least one of M/e and M/e is 3-connected.

The next lemma is well known (see, for example, [10,(2.1)]).

- **2.2 Lemma.** Let N be a 3-connected matroid with  $|E(N)| \ge 3$  and M be an addition to N. Then M is 3-connected if and only if M is a non-trivial addition to N.
- **2.3 Lemma.** [11,(2.6,2.8)] For  $r \ge 4$  suppose that a non-empty set of columns X is adjoined to either  $B_{\tau} \setminus b_{\tau}$  or  $B_{\tau+1} \setminus b_{\tau+1} c_{\tau+1}$  to give a representation of a simple binary matroid with no  $W_4$ -minor. If the former holds, then  $X = \{(1,1,\ldots,1,0)^T\}$ . If the latter holds, then  $X \subset \{(1,1,\ldots,1,0)^T,(1,1,\ldots,1)^T\}$ .

Several technical lemmas which are used in the proof of Theorem 1.3 are given next.

**2.4 Lemma.** For some  $r \ge 4$  suppose that column  $f = (f_1, f_2, \ldots, f_r)^T$  is adjoined to  $B \in \{B_r, B_r \setminus b_r, B_r \setminus c_r, B_r \setminus b_r, c_r\}$  to give a representation of a simple binary matroid M. Suppose that  $f_i = f_j$  or distinct  $i, j \in \{1, 2, \ldots, r\}$ . Further suppose that  $i \ne r$  and  $j \ne r$  if B is  $B_r \setminus b_r$  or  $B_r \setminus b_r$ ,  $C_r$ . If  $x, y \in \{a_i, a_j, b_i, b_j\}$ , then there exists an automorphsm  $\eta$  of M such that  $\eta(x) = y$  and  $\eta(f) = f$ .

Proof: In B+f replace row k by row k+ row i+ row j for each k in  $\{1,2,\ldots,r\}=\{i,j\}$ . A suitable reordering of the columns produces the matrix B+f. This induces an automorphism  $\phi$  of M such that  $\phi(a_i)=b_j$ ,  $\phi(a_j)=b_i$ , and  $\phi(f)=f$ .

Interchanging rows i and j of B+f induces and automorphism  $\psi$  of M such that  $\psi(a_i)=a_j, \psi(b_i)=b_j$ , and  $\psi(f)=f$ . The result follows from considering compositions of  $\phi, \phi^{-1}, \psi$ , and  $\psi^{-1}$ .

**2.5 Lemma.** For  $r \ge 4$  let f and g be binary columns of length r such that f has exactly two zero-entries and g has exactly two one-entries. Then there exists an isomorphism  $\lambda \colon D(B_r+g) \to D(B_r+f)$  such that  $\lambda(g) = f$  and  $\lambda(c_r) = c_r$ .

Proof: By the symmetry of  $B_r$  we may assume that  $g = (1, 1, 0, ..., 0)^T$ . In  $B_r + g$  replace row k by row k+ row 1+ row r for each k in  $\{2, 3, ..., r-1\}$ . Column g now has exactly two zero-entries. A suitable reordering of the rows and columns produces  $B_r + f$ . Column g is transformed into f by these operations, while column g, is unchanged.

The next lemma will be used in the proof of Theorem 1.3 to show that  $e_r$  is in every  $W_4$ -minor of  $Y_r \setminus X$  when  $d_r \in X$ .

**2.6 Lemma.** Let M be a 3 -connected binary matroid with  $f \in E(M)$  such that  $M \setminus f \cong Z_r$  for some  $r \geq 4$ . Then M/f has no  $W_4$ -minor.

Proof: By induction on r. If r = 4, then rk M/f = 3 and so M/f has no  $W_4$ -minor. Suppose that r > 4 and the result holds for 3-connected binary additions to  $Z_n$  when n < r. Assume that M/f has a  $W_4$ -minor.

Adjoin a binary column  $f = (f_1, f_2, ..., f_r)^T$  with at least two zero-entries and at least two one-entries to  $B_r$  to obtain a representation for M. First suppose that f has exactly two one-entries. By the symmetry of  $B_r$  we may assume that  $f = (1, 1, 0, ..., 0)^T$ . Then  $\{a_1, a_2, f\}$  and  $\{b_1, b_2, f\}$  are circuits of M while  $\{a_1, a_2, b_1, b_2\}$  is a cocircuit. It follows from Lemma 1. 6 that  $M/f \cong M \setminus a_1, b_1/f$  has a  $W_4$ -minor. Since  $\{a_2, b_2\}$  is a cocircuit of  $M \setminus a_1, b_1/f$ , the matroid  $M \setminus a_1, b_1/a_2, f$  has a  $W_4$ -minor. The dependence of  $\{a_1, f\}$  in  $M/a_2$  implies that  $M/a_2 \setminus f$  has a  $W_4$ -minor. This contradicts Theorem 1.2 as  $M \setminus f \cong Z_r$ .

Next suppose that f has exactly two zero-entries. Adjoin a binary column g with exactly two one-entries to  $B_r$ . By Lemma 2.5 there exists an isomorphism  $\lambda$ :  $D(B_r+g) \to M$  such that  $\lambda(g) = f$ . By the previous paragraph  $D(B_r+g)/g$  has no  $W_4$ -minor. Thus M/f has no  $W_4$ -minor; a contradiction. It follows that f has at least three zero-entries and at least three one-entries. By the symmetry of  $B_r$  we may assume that  $f_1 = f_2 = f_3 = 1$  and  $f_4 = f_5 = f_6 = 0$ .

Let  $X,Y \subseteq E(M)$  be such that  $M \setminus X/Y \cong W_4$  and  $f \in Y$ . Suppose that  $M/c_r$  has a  $W_4$ -minor. The matroid  $Z_r/c_r$  is graphic and forms a cycle on r edges [11,(2.4)]. This matroid has corank one and  $M \setminus f = Z_r$ . Thus  $M/c_r$ , has both corank at most two and a  $W_4$ -minor; a contradiction. Hence  $c_r \notin Y$ .

Suppose that  $a_i \in Y$  for some i in  $\{1,2,\ldots,r\}$ . The dependence of  $\{b_i,c_r\}$  in  $M/a_i$  implies that this set meets  $X \cup Y$ . Suppose that  $g \in X \cap \{b_i,c_r\}$ . Then  $M/a_i \setminus f, g \cong Z_{r-1}$  and the column corresponding to f in  $(B_r + f)/a_i \setminus g$  has at least two zero-entries and at least two one-entries. Thus  $M/a_i \setminus g$  is a non-trivial addition to  $Z_{r-1}$ . The induction hypothesis implies that  $(M/a_i \setminus g)/f$  has no  $W_4$ -minor. However,  $\{a_i,b_i,c_r\}$  is a circuit of M and  $M/a_i,f$  has a  $W_4$ -minor. Thus  $M/a_i,f \setminus g$  has a  $W_4$ -minor; a contradiction. Hence  $X \cap \{b_i,c_r\} = \phi$ . It follows that  $b_i$  is in Y as  $c_r$  is not. The element  $c_r$  is a loop of  $M/a_i,b_i$  and this matroid has a  $W_4$ -minor. Thus  $M/c_r$  has a  $W_4$ -minor: a contradiction. It follows that  $\{a_1,a_2,\ldots,a_r\} \cap Y = \phi$ .

Now suppose that  $b_j \in Y$  for some j in  $\{1, 2, ..., r\}$ . Choose i in  $\{1, 2, ..., r\}$  so that the entries in rows i and j of f agree. Then there exists an automorphism  $\eta$  of M such that  $\eta(b_j) = a_i$  and  $\eta(f) = f$  by Lemma 2.4. The  $W_4$ -minor in  $M/b_j$ , f implies the existence of a  $W_4$ -minor in  $M/a_i$ , f. This contradicts the conclusion of the previous paragraph. Thus  $\{b_1, b_2, ..., b_r\} \cap Y = \phi$  and  $Y = \{f\}$ .

Let  $A = \{a_1, a_2, b_1, b_2\}$ ,  $B = \{a_1, a_3, b_1, b_3\}$ ,  $C = \{a_2, a_3, b_2, b_3\}$ ,  $D = \{a_4, a_5, b_4, b_5\}$ ,  $E = \{a_4, a_6, b_4, b_6\}$ , and  $F = \{a_5, a_6, b_5, b_6\}$ . Then A, B, C, D, E, and F are cocircuits of M. The dual of  $M \setminus X/f \cong W_4$  must be simple.

Thus X meets each of these cocircuits in at most one element. Each element of  $A \cup B \cup C$  is in two of the sets A, B, and C. Thus  $|(A \cup B \cup C) \cap X| \le 1$ . It follows that  $|(A \cup B \cup C) \setminus X| \ge 5$ , and likewise  $|(D \cup E \cup F) \setminus X| \ge 5$ . Thus  $M \setminus X/f$  has at least ten elements: a contradiction.

**2.7** Corollary. Let M be a 3-connected binary matroid with  $f \in E(M)$  such that  $M \setminus f \cong Z_r, Z_r^*, Z_r \setminus b_r$ , or  $Z_r \setminus c_r$  for some  $r \geq 5$ . Then M/f has no  $W_4$ -minor.

Proof: If  $M \setminus f \cong Z_r$ , then the result follows from Lemma 2.6. Suppose that  $M \setminus f \cong Z_r^*$ ,  $Z_r \setminus b_r$ , or  $Z_r \setminus c_r$ . Consider a representation for M obtained by adjoining column f to  $B_{r+1} \setminus b_{r+1}$ ,  $c_{r+1}$ ,  $B_r \setminus b_r$  or  $B_r \setminus c_r$ . Then M is a restriction of  $D(B_{r+1} + f)$  or  $D(B_r + f)$ . By Lemma 2.6,  $D(B_j + f)/f$  has no  $W_4$ -minor for  $f \in \{r, r+1\}$ . Thus M/f has no  $W_4$ -minor.

**2.8 Lemma.** For some  $r \ge 5$  let M be a binary matroid reprsented by adjoining a binary column f with at least two zero-entries and at least two one-entries to  $B \in \{B_r, B_r \setminus c_r\}$ . Then each element of  $E(M) \setminus \{f\}$  avoids some  $W_4$ -minor of M.

Proof: Choose i in  $\{1, 2, ..., r\}$  so that the column corresponding to f in  $(B + f)/a_i$  has at least two zero-entries and at leat two one-entries. By Lemma 2.3,  $M/a_i \setminus b_j$  has a  $W_4$ -minor for all j in  $\{1, 2, ..., r\}$ .

Let  $k \in \{1, 2, ..., r\}$ . By Lemma 2.4 there exists an automorphism of M mapping  $b_k$  to  $a_k$ . By the previous paragraph  $M \setminus b_k$  has a  $W_4$ -minor. Thus  $M \setminus a_k$  also has a  $W_4$ -minor. If  $B = B_r$ , then  $M \setminus c_r$  has a  $W_4$ -minor by Lemma 2.3.

**2.9 Lemma.** For some  $r \ge 5$  let M be a binary matroid represented by adjoining a binary column  $f = (f_1, f_2, ..., f_r)^T$  with at least two zero-entries and at least two one-entries to  $B \in \{B_r \setminus b_r, B_r \setminus b_r, c_r\}$ . If there is an element of  $E(M) \setminus \{f\}$  which is in every  $W_4$ -minor of M, then there exists  $i \in \{1, 2, ..., r-1\}$  such that either  $f_i$  and  $f_r$  are the only zero-entries of f, or  $f_i$  and  $f_r$  are the only one-entries of f.

Proof: Suppose that if f has exactly two zero-entries or exactly two one-entries, then neither of these two entries is  $f_r$ . Then the column corresponding to f in the matrix  $(B+f)/a_r$  has at least two zero-entries and at least two one-entries. For all k in  $\{1,2,\ldots,r-1\}$ ,  $M/a_r\backslash b_k$  has a  $W_4$ -minor by Lemma 2.3. We may apply Lemma 2.4 as in the proof of Lemma 2.8 to obtain that  $M\backslash x$  has a  $W_4$ -minor for all x in  $\{a_1,a_2,\ldots,a_{r-1}\}$ . If  $B=B_r\backslash b_r$ , then  $M\backslash c_r$ , has a  $W_4$ -minor by Lemma 2.3. Thus each element of  $E(M)\backslash \{f\}$  avoids some  $W_4$ -minor of M.

**2.10 Lemma.** For some  $r \ge 5$  and  $i \in \{1, 2, ..., r-1\}$  suppose that the binary column  $f = (f_1, f_2, ..., f_r)^T$  has either its only zero-entries being  $f_i$  and  $f_r$  or its only one-entries being  $f_i$  and  $f_\tau$ . If M is the dependence matroid of  $(B_r \setminus b_r, c_r) + f$ , then the only elements of M which are in every  $W_4$ -minor

are  $a_i, b_i, a_\tau$ , and f. Moreover,  $(B_r \backslash b_r, c_\tau) + f$  is equivalent to  $A_r \backslash c_\tau, d_\tau$ , and  $(B_r \backslash b_r) + f$  is equivalent to  $A_r \backslash d_\tau$ . Thus  $A_r \backslash d_\tau$  and  $A_r \backslash e_\tau$  are equivalent.

Proof: Assume that  $f_i$  and  $f_r$  are the only one-entries of f. Let  $k \in \{1, 2, ..., r\} \setminus \{i, r\}$ . It follows from Lemma 2.3 that  $M/a_k$  has a  $W_4$ -minor. By Lemma 2.4 there is an automorphism of M mapping  $a_k$  to  $b_k$ . Thus  $M/b_k$  also has a  $W_4$ -minor. Hence each element of  $E(M) \setminus \{a_i, b_i, a_r, f\}$  avoids some  $W_4$ -minor. By interchanging rows 1 and i, columns  $a_1$  and  $a_i$ , and columns  $b_1$  and  $b_i$  of  $(B_r \setminus b_r, c_r) + f$  we obtain  $A_r \setminus c_r, d_r$ . It follow from (1.7) and these operations that  $a_i, b_i$ , and  $a_r$  are in every  $W_4$ -minor of M. The element f is in every  $W_4$ -minor of M by Corollary 2.7. From applying the same operations to  $(B_r \setminus b_r) + f$  we obtain that this matrix is equivalent to  $A_r \setminus d_r$ .

Assume that  $f_i$  and  $f_\tau$  are the only zero-entries of f. Choose  $k \in \{1, 2, ..., r\} \setminus \{i, r\}$  and replace row  $\ell$  of  $(B_r \setminus b_r, c_r) + f$  by row i + row k + row  $\ell$  for each  $\ell$  in  $\{1, 2, ..., r\} \setminus \{i, k\}$ . Next interchange rows i and k of the resulting matrix. Column f now has a one in rows i and r, and a zero in all other rows. The columns of  $B_r \setminus b_r$ ,  $c_r$  have been permuted with columns  $a_i$  and  $b_i$  interchanged and column  $a_r$  unchanged. It now follows from the previous paragraph that  $(B_r \setminus b_r, c_r) + f$  is equivalent to  $A_r \setminus c_r$ ,  $d_r$  and that only  $a_i$ ,  $b_i$ ,  $a_r$ , and f are in every  $W_4$ -minor of M. The above operations can also be used to show that  $(B_r \setminus b_r) + f$  is equivalent to  $A_r \setminus d_r$ . Moreover, as  $A_r \setminus e_r = (B_r \setminus b_r) + d_r$ , the matrix  $A_r \setminus e_r$  is equivalent to  $A_r \setminus d_r$ .

**2.11 Lemma.** For some  $r \ge 5$  let B be a binary matrix obtained by adoining a non-empty set of binary columns X to  $B_r \setminus b_r$ ,  $c_r$  so that M = D(B) is simple and has more than one element in every  $W_4$ -minor. Then, for some i in  $\{1, 2, ..., r-1\}$ , X is obtained by taking a non-empty subset of  $\{d_r, e_r\}$  and interchanging the first-entry and the ith-entry of every column in the subset, and then possibly adding  $c_r$  to this subset. Thus B is equivalent to  $A_r$ ,  $A_r \setminus c_r$ ,  $A_r \setminus d_r$  or  $A_r \setminus c_r$ ,  $d_r$ .

Proof: Assuming |X| = 1. Let  $f \in X$ . Then column f has at least two zero-entries and at least two one-entries since M has a  $W_4$ -minor. It follows from Lemma 2.9 that f is obtained from either column  $d_r$  or  $e_r$  by permuting entries 1 and i for some i < r. Moreover, by Lemma 2.10, B is equivalent to  $A_r \setminus c_r, d_r$ .

Assume  $|X| \ge 2$ . Suppose  $b_r \in X$ . Then, by Lemma 2.8, M has at most one element which is in every  $W_4$ -minor; a contradiction. Thus each column of  $X \setminus \{c_r\}$  has at least two zero-entries and at least two one-entries.

Assume that  $X\setminus\{c_r\}$  contains two distinct columns  $f=(f_1,f_2,\ldots,f_r)^T$  and  $g=\{g_1,g_2,\ldots,g_r\}^T$ . The dependence matroids of  $(B_r\setminus b_r,c_r)+f$  and  $(B_r\setminus b_r,c_r)+g$  have more than one element in every  $W_4$ -minor. By Lemma 2.9 there exist  $i,j\in\{1,2,\ldots,r-1\}$  such that  $f_i=f_r$  and all other entries of f differ from  $f_i$ , and  $g_j=g_r$  and all other entries of g differ from  $g_j$ . Suppose  $i\neq j$ . By Lemma 2.10 only  $a_i,b_i,a_r$ , and f are in every  $W_4$ -minor of  $D(B_r\setminus b_r,c_r+f)$ , and only  $a_j,b_j,a_r$ , and g are in every g0. Thus only

 $a_r$  could be in every  $W_4$ -minor of M; a contradiction. It follow that i = j. Since M is simple  $X \setminus \{c_r\} = \{f, g\}$ . The set  $\{f, g\}$  is obtained from  $\{d_r, e_r\}$  by interchanging the first entry and the *i*th entry of each of  $d_r$  and  $e_r$ . Thus if  $c_r \notin X$ , then |X| = 2 and B is equivalent to  $A_r \setminus c_r$ .

Assume  $c_r \in X$ . Suppose  $|X \setminus \{c_r\}| = 1$ . Let  $f \in X \setminus \{c_r\}$ . Then  $B = B_r \setminus b_r$ ,  $c_r + X = B_r \setminus b_r + f$ . Lemma 2.9 implies that  $X \setminus \{c_r\}$  is obtained from  $d_r$  or  $e_r$  by permuting the first and *i*th entry for some i < r. Lemma 2.10 implies that B is equivalent to  $A_r \setminus d_r$ . Suppose  $|X \setminus \{c_r\}| \ge 2$ . The previous paragraph implies that  $X \setminus \{c_r\}$  is obtained from  $\{d_r, e_r\}$  by permuting the first and *i*th entry. Hence B is equivalent to  $A_r$ .

## The proof of Theorem 1.3

Suppose that  $r \geq 7$ . Let  $X \subseteq \{b_{r-1}, c_r, d_r\}$ . We first show that  $Y_r \setminus X$  is 3-connected. We have previously noted that  $Y_r \setminus b_{r-1}, c_r, d_r \cong (Y_{r-1} \setminus d_{r-1})$  and thus it suffices to show that  $Y_{r-1} \setminus d_{r-1}$  is 3-connected. This follows as  $Z_{r-2}^*$  is 3-connected [11] and  $Y_{r-1} \setminus c_{r-1}, d_{r-1}, e_{r-1} \cong Z_{r-2}^*$ .

The elements  $a_1$ ,  $a_r$ , and  $b_1$  are in every  $W_4$ -minor of  $Y_r \setminus X$  by (1.7). Note that  $A_r \setminus b_{r-1}$ ,  $c_r$ ,  $d_r / a_{r-1} = B_{r-1} \setminus b_{r-1}$ ,  $c_{r-1} + e_{r-1}$ . The elements  $a_1$ ,  $a_r$ ,  $b_1$ , and  $e_r$  of  $Y_r \setminus b_{r-1}$ ,  $c_r$ ,  $d_r$  respectively, correspond to the columns  $a_1$ ,  $a_{r-1}$ ,  $b_1$ , and  $e_{r-1}$  in  $B_{r-1} \setminus b_{r-1}$ ,  $c_{r-1} + e_{r-1}$ . Lemma 2.10 implies that only  $a_1$ ,  $a_{r-1}$ ,  $b_1$ , and  $e_{r-1}$  can be in every  $W_4$ -minor of  $D(B_{r-1} \setminus b_{r-1}, c_{r-1} + e_{r-1})$ . Thus only  $a_1$ ,  $a_r$ ,  $b_1$ , and  $e_r$  can be in every  $W_4$ -minor of  $Y_r \setminus X$ . Suppose  $d_r \notin X$ . Then  $e_r$  is in every  $W_4$ -minor of  $Y_r \setminus X$  by Corollary 2.7. Suppose  $d_r \notin X$ . Then  $Y_r \setminus e_r$  has a  $W_4$ -minor by Lemma 2.3. Thus the only elements of  $Y_r \setminus X$  which are in every  $W_4$ -minor are  $a_1$ ,  $a_r$ ,  $b_1$ , and  $e_r$  when  $d_r \in X$ , and  $a_1$ ,  $a_r$ , and  $b_1$  when  $d_r \notin X$ .

Assume that M has at least two elements which are in every  $W_4$ -minor and neither M nor  $M^*$  is isomorphic to  $Y_r \setminus X$  for  $r \ge 7$ . Let e be in every  $W_4$ -minor of M. By Lemma 2.1 either M/e or M/e is 3-connected. These two matroids have no  $W_4$ -minor and either rank or corank at least six.

Let N be a largest 3-connected minor of M which has no  $W_4$ -minor. Then, by Theorem 1.2, N is isomorphic to  $Z_{s-1}$ ,  $Z_{s-1}^*$ ,  $Z_s \setminus b_s$ , or  $Z_s \setminus c_s$  for some  $s \ge 6$ . By Theorem 1.1 there exists a chain of 3-connected matroids  $M_0$ ,  $M_1$ ,  $M_2$ , ...,  $M_n$  from N to M with  $N \cong M_0$  and  $M_n = M$ . The matroid  $M_1$  must have a  $W_4$ -minor by the choice of N. By duality we may assume that  $M_1$  is an addition to  $M_0$ . If  $M_0 \cong Z_{s-1}$  or  $Z_s \setminus c_s$ , then, by Lemma 2.8,  $M_1$  has at most one element in every  $W_4$ -minor; a contradiction. Moreover, as  $Z_s \setminus c_s$ , is self-dual, a largest 3-connected minor of M which has no  $W_4$ -minor is not isomorphic to  $Z_s \setminus c_s$ . Thus  $M_0 \cong Z_{s-1}^*$  or  $Z_s \setminus b_s$ . Consider a representation for M obtained by adjoining a column to  $B_s \setminus b_s$ ,  $c_s$  or  $B_s \setminus b_s$ . Lemmas 2.9 and 2.10 imply that if the former holds, then  $M_1 \cong Y_s \setminus c_s$ ,  $d_s$ , while if the latter holds, then  $M_1 \cong Y_s \setminus d_s$ . In either case  $M_1 \neq M$  as either s = 6 and rk  $M_1 < rk$  M, or  $s \ge 7$  and  $M \ncong Y_s \setminus X$ .

Assume that  $M_0 \cong Z_{s-1}^*$  and  $M_1 \cong Y_s \setminus c_s$ ,  $d_s$ . Then  $M_1$  is self-dual and we may assume that  $M_2$  is an addition to  $M_1$ . Both  $Y_s$  and  $Y_s \setminus d_s$  have a  $Z_s \setminus b_s$  minor. The matroid  $Z_s \setminus b_s$  is larger than N. Thus  $M_i$  is isomorphic to neither  $Y_s$  nor  $Y_s \setminus d_s$ . for  $i \geq 2$ . It follows from Lemma 2.11 that  $M_2 \cong Y_s \setminus c_s$  and  $M_3$  is an expansion of  $M_2$ .

Suppose  $M_3/g = Y_s \setminus c_s$ . The only elements of M which may be in every  $W_4$ -minor are  $a_1$ ,  $a_s$  and  $b_1$ . When determining possible triangles and triads containing these elements in this proof it is often convenient to consult Figure 3. The only possible triangles of  $M_3$  containing  $a_1$  or  $b_1$  are  $\{a_1, a_s, e_s\}$  and  $\{a_s, b_1, d_s\}$ . The set  $\{a_1, a_s, b_1\}$  is a triad of  $M_3$  and any other triad of  $M_3$  containing  $a_1$  or  $b_1$  would also contain g.

Suppose that  $a_1$  is in every  $W_4$ -minor of  $M_3$ . The matroid  $M_3/a_1$  has at least  $|E(M_1)|$  elements. It cannot be 3-connected as otherwise the choice of N would force it to have a  $W_4$ -minor. It follows from Lemma 2.1 that  $M_3 \setminus a_1$  is 3-connected. The choice of N forces  $M_3 \setminus a_1$  to have at most  $|E(M_0)|$  element. Thus  $M_3 \setminus a_1 \cong M_3 \setminus a_1/b_1$ , g. However  $\{a_s, d_s\}$  is dependent in the latter matroid; a contradiction. Thus  $a_1$  avoids some  $W_4$ -minor of  $M_3$ .

Suppose that  $b_1$  is in every  $W_4$ -minor of  $M_3$ . The matroid  $M_3/b_1$  has at least  $|E(M_1)|$  elements and hence is not 3-connected. Thus  $M_3 \setminus b_1$  is 3-connected and has at most  $|E(M_0)|$  elements. Hence  $M_3 \setminus b_1 \cong M_3 \setminus b_1/a_1$ , g. The set  $\{a_s, e_s\}$  is dependent in the latter matroid; a contradiction. Thus  $b_1$  avoids some  $W_4$ -minor of  $M_3$ . Hence only  $a_s$  could be in every  $W_4$ -minor of  $M_3$ ; a contradiction. Thus  $M_0 \cong Z_s \setminus b_s$  and  $M_1 \cong Y_s \setminus d_s$ .

Assume that  $M_2$  is an addition to  $M_1$ . Then, by Lemma 2.11,  $M_2 \cong Y_s$  and  $M_3$  is an expanion of  $M_2$ . Suppose  $M_3/g = Y_s$ . Consider a representation for  $M_3^*$  obtained by adjoining a column  $g = (g_1, g_2, \ldots, g_{s+2})^T$  to the matrix  $A_s^*$ . The only elements of  $M_3$  which may be in every  $W_4$ -minor are  $a_1, a_s$ , and  $b_1$ . The set  $\{a_1, a_s, b_1\}$  is a triad of  $M_3$  and any other triad of  $M_3$  containing  $a_1$  or  $a_s$  also contains g. The only possible triangles of  $M_3$  containing  $a_1$  or  $a_s$  are  $\{a_1, b_1, c_s\}$ ,  $\{a_1, a_s, e_s\}$  and  $\{a_s, b_1, d_s\}$ . We next show that if  $a_1$  or  $a_s$  is in every  $W_4$ -minor of  $M_3$ , then  $M_3 \cong Y_{s+1} \setminus b_s$ . It will then follow that  $M_3 \cong Y_{s+1} \setminus b_s$  as at least one of these elements is in every  $W_4$ -minor of  $M_3$ .

Assume that  $a_1$  is in every  $W_4$ -minor of  $M_3$ . If  $M_3 \setminus a_1$  is 3-connected, then  $M_3 \setminus a_1 \cong M_3 \setminus a_1/b_1$ , g. However  $\{a_s, d_s\}$  is dependent in the latter matroid; a contradiction. Thus  $M_3 \setminus a_1$  is 3-connected with at most  $|E(M_0)|$  elements. Hence  $M_3 \setminus a_1 \cong M_3/a_1 \setminus b_1$ ,  $e_s$  and  $\{a_1, b_1, c_s\}$  and  $\{a_1, a_s, e_s\}$  are triangles of  $M_3$ .

Consider the matrix  $(A_s^* + g) \setminus a_1/b_1$ ,  $e_s$ . Its dependence matroid has no  $W_4$ -minor. Lemma 2.3 implies that  $(g_2, g_3, \ldots, g_{s+1})^T$  is  $(1, 1, \ldots, 1, 0, 1)^T$  or  $(1, 1, \ldots, 1)^T$ . Suppose the former holds. Then  $M_3^* \setminus a_1/b_1$ ,  $e_s \cong Z_s \setminus c_s$ . However, M has no such minor. Thus the latter holds. Note that  $g_1 = g_s = 1$  and

 $g_{s+2}=0$  as  $\{a_1,b_1,c_s\}$  and  $\{a_1,a_s,e_s\}$  are tringles of  $M_3$ . After interchanging rows s and s+1 in  $(A_s^*+g)^*$  we obtain the matrix  $A_{s+1}\setminus b_s$ . Thus  $M_3\cong Y_{s+1}\setminus b_s$ .

Assume that  $a_s$  is in every  $W_4$ -minor of  $M_3$ . If  $M_3 \setminus a_s$ , is 3-connected, then  $M_3 \setminus a_s \cong M_3 \setminus a_s/b_1$ , g. The set  $\{a_1, c_s\}$  is dependent in the latter matroid; a contradiction. Thus  $M_3 \setminus a_s$  is 3-connected. It follows that  $M_3 \setminus a_s \cong M_3/a_s \setminus d_s$ ,  $e_s$  and  $\{a_1, a_s, e_s\}$  and  $\{a_s, b_1, d_s\}$  are triangles of  $M_3$ .

Consider the matrix  $(A_s^* + g) \setminus a_s/d_s$ ,  $e_s$ . Its dependence matroid has no  $W_4$ -minor. Lemma 2.3 implies that  $(g_1, g_2, \ldots, g_s)^T$  is  $(1, 1, \ldots, 1, 0)^T$  or  $(1, 1, \ldots, 1)^T$ . If the former case occurs, then  $M_3^* \setminus a_s/d_s$ ,  $e_s \cong Z_s \setminus c_s$ ; a contradiction. Thus the latter holds. Note that  $g_{s+2} = 0$  and  $g_{s+1} = g_1 = 1$  as  $\{a_1, a_s, e_s\}$  and  $\{a_s, b_1, d_s\}$  are triangles of  $M_3$ . After interchanging rows s and s+1 of  $(A_s^* + g)^*$  we obtain the matrix  $A_{s+1} \setminus b_s$ . Thus  $M_3 \cong Y_{s+1} \setminus b_s$ .

We next show that  $M_4$  can be neither an addition to nor an expansion of  $Y_{s+1} \setminus b_s$ . It will then follow from this and duality that  $M_3 \ncong Y_{s+1} \setminus b_s$  and  $M_3^* \ncong Y_{s+1} \setminus b_s$ .

Assume that  $M_4$  is an expansion of  $M_3$ . Suppose  $M_4/h = Y_{s+1} \setminus b_s$ . Then the only elements of  $M_4$  which may be in every  $W_4$ -minor are  $a_1, a_{s+1}$ , and  $b_1$ . The only possible triangles of  $M_4$  containing  $a_1$  or  $a_s$  are  $\{a_1, b_1, c_{s+1}\}$ ,  $\{a_{s+1}, b_1, d_{s+1}\}$ , and  $\{a_1, a_{s+1}, e_{s+1}\}$ . The set  $\{a_1, a_{s+1}, b_1\}$  is a triad of  $M_4$  and any other triad of  $M_4$  containing  $a_1$  or  $a_{s+1}$  also contains h. Both  $a_1$  and  $a_{s+1}$  are in at most two triangles and at most two triads of  $M_4$ . Thus each of  $M_4/a_1$ ,  $M_4/a_1$ ,  $M_4/a_s$ , and  $M_4/a_s$ , have at least  $|E(M_1)|$  elements. It follows from Lemma 2.1 and the choice of N that both  $a_1$  and  $a_{s+1}$  avoid some  $W_4$ -minor of  $M_4$ ; a contradiction. Thus  $M_4$  is isomorphic to an addition to  $Y_{s+1}/b_s$ .

Consider a representation for  $M_4$  obtained by adoining a column  $h = (h_1, h_2, \ldots, h_{s+1})^T$  to  $A_{s+1} \setminus b_s$ . The only elements of  $M_4$  which may be in every  $W_4$ -minor are  $a_1, a_{s+1}$ , and  $b_1$ . The sets  $\{a_1, b_1, c_{s+1}\}$ ,  $\{a_{s+1}, b_1, d_{s+1}\}$ , and  $\{a_1, a_{s+1}, e_{s+1}\}$  are triangles of  $M_4$  and any other triangle of  $M_4$  containing  $a_1$  or  $a_{s+1}$  also contains  $a_1$ . The only possible triad of  $a_1$  containing  $a_2$  or  $a_{s+1}$  is  $\{a_1, a_{s+1}, b_1\}$ .

The matrix  $[(A_{s+1}\backslash b_s) + h]/a_s\backslash h$ , which represents  $M_4/a_s\backslash h$ , is equal to  $A_s$ . Thus  $M_4/a_s$  is an addition to  $Y_s$ . It cannot be 3-connected by Lemma 2.11. Thus, by Lemma 2.2, there is an element x for which  $\{h, x\}$  is dependent in  $M_4/a_s$ . Thus  $\{a_s, h, x\}$  is a triangle of  $M_4$ .

Assume that  $a_1$  is in every  $W_4$ -minor of  $M_4$ . Then  $M_4 \setminus a_1$  has at least  $|E(M_2)|$  elements and is not 3-connected. Thus  $M_4 \setminus a_1$  is 3-connected with at most  $|E(M_0)|$  elements. It follows that  $M_4 \setminus a_1 \cong M_4 \setminus a_1 \setminus c_{s+1}, e_{s+1}, h$  and for some element y the set  $\{a_1, h, y\}$  is a triangle of  $M_4$ . From considering the element of  $M_4$  as columns in the matrix  $A_{s+1} \setminus b_s + h$  we obtain the equation  $x + y = a_1 + a_s = (1, 0, \ldots, 0, 1, 0)^T$ . It is easy to check that the only simple solution for x and y is  $x = a_1$  and  $y = a_s$ . Thus  $h = (1, 0, \ldots, 0, 1, 0)^T$ . From considering the matrix  $[(A_{s+1} \setminus b_s) + h]/a_{s+1} \setminus b_1$  we obtain that  $M_4 \setminus a_{s+1} \setminus b_1$  has a  $W_4$ -minor by Lemma 2.3. Hence only  $a_1$  can be in every  $W_4$ -minor of  $M_4$ ; a contradiction.

Thus  $a_1$  avoids some  $W_4$ -minor of  $M_4$ .

Assume that  $a_{s+1}$  is in every  $W_4$ -minor of  $M_4$ . Then  $M_4 \setminus a_{s+1}$  has at least  $|E(M_2)|$  elements and is not 3-connected. Thus  $M_4 \setminus a_{s+1}$  is 3-connected with at most  $|E(M_0)|$  elements. It follows that  $M_4 \setminus a_{s+1} \cong M_4 \setminus a_{s+1} \setminus d_{s+1}$ ,  $e_{s+1}$ , h and for some element y the set  $\{a_{s+1}, h, y\}$  is a triangle of  $M_4$ . From considering the elements of  $M_4$  as columns in the matrix  $A_{s+1} \setminus b_s + h$  we obtain the equation  $x + y = a_s + a_{s+1} = (0, \ldots, 0, 1, 1)^T$ . It is easy to check that the only simple solution in x and y is  $x = a_{s+1}$  and  $y = a_s$ . Thus  $h = (0, \ldots, 0, 1, 1)$ . From considering the matrix  $(A_{s+1} \setminus b_s + h)/a_1 \setminus b_1$  we obtain that  $M_4/a_1 \setminus b_1$  has a  $W_4$ -minor by Lemma 2.3. Hence only  $a_{s+1}$  is in every  $W_4$ -minor of  $M_4$ ; a contradiction. Thus  $a_{s+1}$  avoids some  $W_4$ -minor of  $M_4$ . It follows that only  $b_1$  may be in every  $W_4$ -minor of  $M_4$ ; a contradiction. Thus

(2.12).  $M_3 \not\cong Y_{s+1} \setminus b_s$ , and by duality  $M_3^* \not\cong Y_{s+1} \setminus b_s$ .

It follows that  $M_2$  is an expansion of  $M_1$  where  $M_1 \cong Y_s \setminus d_s$ .

Recall that  $(Y_s \setminus d_s)^* \cong Y_{s+1} \setminus b_s, c_{s+1}, d_{s+1}$ . Consider a representation for  $M_2^*$  obtained by adjoining a column  $g = (g_1, g_2, \dots, g_{s+1})^T$  to the matrix  $A_{s+1} \setminus b_s, c_s, d_{s+1}$ . We shall first show that  $g \in \{c_{s+1}, d_{s+1}\}$ . It will then follow that  $M_2^* \cong Y_{s+1} \setminus b_s, c_{s+1}$  or  $Y_{s+1} \setminus b_s, d_{s+1}$ . Moreover, if  $M_3^*$  is an addition to  $M_2^*$ , then  $M_3^* \cong Y_{s+1} \setminus b_s$ .

The only elements of  $M_2^*$  which may be in every  $W_4$ -minor are  $a_1, a_{s+1}, b_1$ , and  $e_{s+1}$ . By considering the matrix  $(A_{s+1} \setminus b_s, c_{s+1}, d_{s+1} + g)/a_2 \setminus g$  we see that  $M_2^*/a_s \setminus g \cong Y_s \setminus c_s, d_s$ . Thus  $M_2^*/a_s$  is an addition to  $Y_s \setminus c_s, d_s$ .

Suppose that  $M_2^*/a_s$  is not 3-connected. From applying Lemma 2.2 as before we obtain that  $\{a_s,g,x\}$  is a triangle of  $M_2^*$  for some element x. By the symmetry of  $A_{s+1} \setminus b_s$ ,  $c_{s+1}$ ,  $d_{s+1}$  induced by interchanging any two of rows 2 through s-1 we may assume that  $x \in \{a_1,a_2,a_{s+1},b_1,b_2,e_{s+1}\}$ . Thus  $g \in \{(1,0,\ldots,0,1,0)^T,\ (0,1,0,\ldots,0,1,0)^T,\ (0,1,0,\ldots,0,1,1)^T,\ (0,1,\ldots,1,0,1)^T,\ (1,0,1,\ldots,1,0,1)^T,\ (1,0,\ldots,0,1,1)^T\}$ . If  $g \neq (0,\ldots,0,1,1)^T$ , then  $M_2^*/a_{s+1} \setminus e_{s+1} \cong M_2^*/a_{s+1} \setminus a_1$  has a  $W_4$ -minor by Lemma 2.3. Thus only  $b_1$  can be in every  $W_4$ -minor of  $M_2^*$ ; a contradiction. Hence  $g = (0,\ldots,0,1,1)^T$ . It follows that  $\{a_1,a_{s+1},e_{s+1}\}$  and  $\{a_s,a_{s+1},g\}$  are triangles of  $M_2^*$  and  $\{a_s,a_{s+1},e_{s+1}\}$  is a triad. Thus  $M_2^*/a_1$  is not 3-connected. Hence  $M_2^*\setminus a_1 = M_2^*\setminus a_1$  is 3-connected with  $|E(M_1)|$  elements. It follows that  $M_2^*\setminus a_1$  has a  $W_4$ -minor. The element  $b_1$  is in no triangle or triad of  $M_2^*$ . Thus, by Lemma 2.1,  $b_1$  avoids some  $W_4$ -minor of  $M_2^*$ . By Lemma 2.3,  $M_2^*/a_s\setminus a_{s+1}$  has a  $W_4$ -minor. Hence only  $e_{s+1}$  could be in every  $W_4$ -minor of  $M_2^*$ ; a contradiction. Thus  $M_2^*/a_s$  is 3-connected.

The matrix  $(A_{s+1} \setminus b_s, c_{s+1}, d_{s+1} + g)/a_s$  can be obtained by adding the columns  $(1,0,\ldots,0,1)^T$  and  $(g_1,\ldots,g_{s-1},g_{s+1})^T$  to  $B_s \setminus b_s, c_s$ . It follows from Lemma 2.11 that  $(g_1,\ldots,g_{s-1},g_{s+1})^T$  is  $(1,1,\ldots,1)^T$  or  $(0,1,\ldots,1,0)^T$ . Suppose the former holds. If  $g_s=0$ , then  $M_2^*/a_{s+1} \setminus e_{s+1} \cong Z_s \setminus c_s$ ; a contradiction. Thus  $g_s=1$  and  $g=c_{s+1}$ . Suppose the latter holds. If  $g_s=0$ , then

 $M_2^*/a_{s+1}\setminus a_1\cong M_2^*/a_{s+1}\setminus e_{s+1}$  has a  $W_4$ -minor by Lemma 2.3. Hence only  $b_1$  could be in every  $W_4$ -minor of  $M_2^*$  a contradiction. Thus  $g_s=1$  and  $g=d_{s+1}$ . If follows that  $M_2^*\cong Y_{s+1}\setminus b_s$ ,  $c_{s+1}$  or  $Y_{s+1}\setminus b_s$ ,  $d_{s+1}$ .

Suppose  $M_3^*$  is an addition to  $M_2^*$ . Then  $M_3^* \cong Y_{s+1} \setminus b_s$ . This contradicts (2.12). Thus is an expansion of  $M_2^*$ . Suppose  $M_2^* \cong Y_{s+1} \setminus b_s$ ,  $d_{s+1}$ . This matroid is self-dual. Hence  $M_3$  is isomorphic to an addition to  $Y_{s+1} \setminus b_s$ ,  $d_{s+1}$ . By the previous arguments  $M_3 \cong Y_{s+1} \setminus b_s$ . This contradicts (2.12). Thus  $M_3^*$  is an expansion of  $Y_{s+1} \setminus b_s$ ,  $c_{s+1}$ .

Assume that  $M_3^*/h = Y_{s+1} \setminus b_s$ ,  $c_{s+1}$ . The only elements of  $M_3^*$  which can be in every  $W_4$ -minor are  $a_1$ ,  $a_{s+1}$  and  $b_1$ . The only possible triangles containing  $a_1$  or  $b_1$  are  $\{a_1, a_{s+1}, e_{s+1}\}$  and  $\{a_{s+1}, b_1, d_{s+1}\}$ . The only possible triads containing  $a_1$  or  $b_1$  are  $\{a_1, a_{s+1}, b_1\}$  and possibly some containing h. Suppose  $a_1$  is in every  $W_4$ -minor of  $M_3^*$ . Then  $M_3^*/a_1$  has at least  $|E(M_1)|$  elements and is not 3-connected. Thus  $M_3^*/a_1$  is 3-connected with  $|E(M_0)|$  olements. Hence  $M_3^*/a_1 \cong M_3^*/a_1/b_1$ , h. However  $\{a_{s+1}, d_{s+1}\}$  is dependent in  $M_3^*/a_1/b_1$ , h. Thus  $a_1$ , and by a similar argument  $a_1$ , avoids some  $a_1$ -minor of  $a_2$ , a contradiction.

## The proof of Theorem 1.4.

It is easy to check that each of  $W_4$ ,  $M(K_5-e)$ , and  $M^*(K_5-e)$  have an element which is in every  $W_4$ -minor. The last two matroids have three such elements. Suppose M has an element which is in every  $W_4$ -minor and  $M \not\cong W_4$ ,  $M(K_5-e)$ , or  $M^*(K_5-e)$ . Each element of  $W_5$ ,  $M(K_{3,3})$ ,  $M^*(K_{3,3})$ ,  $M(K_5)$ , and  $M^*(K_5)$  avoids some  $W_4$ -minor. Thus M has no minor isomorphic to one of these matroids. It follows from Tutte's excluded minor characterizations of the regular and graphic matroids [17, sections 10.4 and 10.5] that M is graphic. By Oxley's characterization of the regular matroids with no  $W_5$ -minor [12, Table 1] and Theorem 1.1, M has a minor isomorphic to the cycle matroid of the graph J given in Figure 4.

J



The following isomorphisms show that each element of M(J) avoids some  $W_4$ -minor.  $J/a \setminus b \cong J/a \setminus c \cong J/h \setminus b \cong J/g \setminus d \cong J/e \setminus f \cong J/j \setminus i \cong W_4$ . Thus M has no element which is in every  $W_4$ -minor; a contradiction.

## References

- 1. A. Adám, Über zweipolige elektrische netze. I., Magyar Tud. Akad. Mat. Kutato Int. Közl. 2 (1957), 211–218.
- 2. R.E. Bixby, A simple theorem on 3-connectivity, Linear Algebra and its Applications 45 (1982), 123–126.
- 3. T.H. Brylawski, A combinatorial model for series-parallel networks, Trans. Amer. Math. Soc. 154 (1971), 1–22.
- 4. T.H. Brylawski, *Modular constructions for combinatorial geometries*, Trans. Amer. Math. Soc. 203 (1975), 1–44.
- T.H. Brylawski and D. Lucas, *Uniquely representable combinatorial geometries*, Internat. Colloq. (Accademia Nazionale dei Lincei, Roma, 1976), Teorie Combinatorie, Proc. (1973), 83–104.
- 6. C.R. Coullard, "Minors of 3-connected matroids and adjoints of binary matroids", Ph.D. Thesis, Northwestern Univerity, 1985.
- 7. C.R. Coullard and J.G. Oxley, Extensions of Tutte's Wheels- and Whirls-Theorem, J. Combin. Theory Ser. B. to appear.
- 8. G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952), 85-92.
- 9. R.J. Duffin, *Topology of series-parallel networks*, J. Math. Anal. Appl. 10 (1965), 303-318.
- 10. J.G. Oxley, On 3-connected matroids, Canad. J. Math. 33 (1981), 20-27.
- 11. J.G. Oxley, *The binary matroids with no 4-wheel minor*, Trans. Amer. Math. Soc. 301 (1987), 63–75.
- 12. J.G. Oxley, The regular matroid with no 5-wheel minor, J. Combin. Theory Ser. B 46 (1989), 292-305.
- 13. J.G. Oxley, "Matroid Theory", Oxford Univerity Press, Oxford. to appear.
- 14. P.D. Seymour, *Decomposition of regular matroids*, J. Combin. Theory Ser. B 28 (1980), 305–359.
- 15. K. Truemper, "Matroid Decompoition", Academic Press. to appear.
- 16. W.T. Tutte, Connectivity in matroids, Canad. J. Math. 18 (1966), 1301-1324.
- 17. D.J.A. Welsh, "Matroid Theory", Academic Pres, London, 1976.