The binary matroids having an element which is in every four-wheel minor Talmage James Reid 1 Department of Mathematics The University of Mississippi University, MS U.S.A. 38677 Abstract. The binary matroids with no three- and four-wheel minors were characterized by Brylawski and Oxley, respectively. The importance of these results is that, in a version of Seymour's Splitter Theorem, Coullard showed that the three- and four-wheel matroids are the basic building blocks of the class of binary matroids. This paper determines the structure of a class of binary matroids which almost have no four-wheel minor. This class consists of matroids M having a four-wheel minor and an element e such that both the deletion and contraction of e from M have no four-wheel minor. #### 1. Introducton The matroid terminology used mostly follows Oxley [13], Truemper [15], and Welsh [17]. Let M be a matroid. The ground set of M is denoted by E(M). Let $X \subseteq E(M)$. The rank of X in M is denoted by either $rk \ X$ or $rk_M X$. The deletion and contraction of X from M are denoted by $M \setminus X$ and M/X, respectively. The restriction of M to X is denoted by $M \setminus X$. Three-element circuits and cocircuits of M are called *triangles* and *triads*, respectively. Let M_1 and M_2 be matroids on $E(M) \cup e_1$ and $E(M) \cup e_2$, respectively, such that $M_1 \setminus e_1 = M$ and $M_2 / e_2 = M$. We say that M_1 is an *addition* to M and M_2 is an *expansion* of M. We say that M_1 is a *non-trivial* addition to M if e is neither a loop nor a coloop of M_1 and e is not in a 2-element circuit of M_1 . Let N be a minor of M. A minor of M which is isomorphic to N is called an N-minor. Let $e \in E(M)$. We say that e is in every N-minor of M if neither $M \setminus e$ nor M/e has an N-minor. Evidently e is in every N-minor of M if and only if it is in every N^* -minor of M^* . We say that e avoids some N-minor of M if there exists an N-minor of M whose ground set does not contain e. Define M/e to be a matroid obtained from M/e by deletion of the elements of each parallel class except for one representative of each class. Similarly derive $M \setminus e$ from $M \setminus e$ by contracting the elements of each series class except for one representative of each class [15]. If k is a positive integer, then a bipartition (A, B) of E(M) is a k-separation of M if $|A| \ge k$, $|B| \ge k$, and $rk \ A + rk \ B - rk \ M \le k - 1$ [16]. For an integer n > 2, M is n-connected if it has no k-separations for any k < n. In a ¹Ths research was partially supported by NSA/MSP Grant MDA 90-H-1009. 3-connected matroid with at least four elements there are no circuits or cocircuits with fewer than three elements. Let A be a matrix with entries in the field GF(2). The dependence matroid on the columns of A is denoted by D(A). We say that A and D(A) are binary. If column e is adjoined to A, then A+e denotes the resulting matrix. If e is a column of A, then $A \setminus e$ denotes the matrix obtained by deleting e from A. Suppose that f is a column of A whose sole non-zero entry is a one in row i. Then A/f denotes the matrix obtained by removing row i and column f from A. An example of a matrix A in standard form together with its associated dual matrix A^* is given in Figure 1. The r by r identity matrix is denoted by I_r . $$A = \begin{bmatrix} e_1 \dots e_r, e_{r+1} \dots e_n \\ I_r, B \end{bmatrix} \quad A^* = \begin{bmatrix} e_{r+1} \dots e_n, e_1 \dots e_r \\ I_{n+r}, B^T \end{bmatrix}$$ Suppose that E and F are binary matrices such that one can be obtained from the other by interchanging columns and performing elementary row operations. Then we say that E and F are equivalent. The unique representability of binary matroids is used throughout the paper [5,(3.7)]. We next give the binary case of a result of Coullard [6,(8.10)]. This result is a version of the Splitter Theorem [14]. It indicates the central role played by the three- and four-wheel matroids in the class of binary matroids. The wheel-matroid of rank r is denoted by W_r . **1.1 Theorem.** Let N be a 3-connected proper minor of a 3-connected binary matroid M such that $|E(N)| \ge 4$ and M is not a wheel. Suppose that if $N \cong W_3$, then M has no W_4 -minor. Then there is a sequence M_0, M_1, \ldots, M_n of 3-connected matroids such that $M_0 \cong N$, $M_n = M$ and, for each i in $\{1, 2, \ldots, n\}$, M_i is an addition to or expansion of M_{i-1} . The sequence of matroids in Theorem 1.1 is said to be a *chain* of 3-connected matroids from N to M. For each $r \ge 4$ let H_r be the binary matrix given in Figure 2. Figure 2: H_r Let A_r and B_r denote the matrices $H_r \setminus b_r$ and $H_r \setminus d_r$, e_r , respectively. Let $Y_r = D(A_r)$ and $Z_r = D(B_r)$. Evidently $Z_r^* \cong Z_{r+1} \setminus b_{r+1}$, c_{r+1} as the matrices B_r^* and $B_{r+1} \setminus b_{r+1}$, c_{r+1} have the same columns. The matroids $Y_r \setminus b_{r-1}$, d_r and $Y_r \setminus c_r$, d_r are self-dual. This can be seen by replacing row r in $A_r \setminus b_{r-1}$, d_r and $A_r \setminus c_r$, d_r by row 1+ row r and then interchanging the first and last columns. Each of the two resulting matrices has the same columns as its dual matrix. For $r \geq 5$ the matroids $(Y_{r-1} \setminus d_{r-1})^*$ and $Y_r \setminus b_{r-1}c_r$, d_r are isomorphic. This can be seen by replacing row i of $(A_{r-1} \setminus d_{r-1})^*$ by row i+ row r for each i in $\{2,3,\ldots,r-1\}$. Then replace row r of the resulting matrix by row 1+ row r. A suitable reordering of the columns produces $A_r \setminus b_{r-1}, c_r, d_r$. Brylawki [3] stated that a binary matroid has no W_3 -minor if and only if it is a series-parallel network (for graphs see [1], [8], [9]). The next theorem forms the core of a complete decomposition of the binary matroids with no W_4 -minor given by Oxley [11,(2.1)]. **1.2 Theorem.** Let M be a binary matroid with rk $M \geq 4$ and rk $M^* \geq 4$. Then M is 3-connected and has no W_4 -minor if and only if $M \cong Z_\tau, Z_\tau^*, Z_\tau \setminus b_\tau$, or $Z_\tau \setminus c_\tau$ for some $\tau \geq 4$. The following result characterizes binary matroids which almost have no fourwheel minor. This is the main result of the paper. **1.3 Theorem.** Let M be a 3-connected binary matroid with rk $M \ge 7$ and rk $M^* \ge 7$. Then the number of elements of M which are in every W_4 -minor exceeds one if and only if for some $r \ge 7$ either M or M^* is isomorphic to $Y_r \setminus X$ where X is a possibly empty subset of $\{b_{r-1}, c_r, d_r\}$. The only elements of $Y_r \setminus X$ which are in every W_4 -minor are a_1, a_r, b_1 , and a_r when $d_r \notin X$. The previous theorem states that a 3-connected binary matroid M with rank and corank at least seven has exactly 0,1,3, or 4 elements which are in every four-wheel minor. Suppose that M has exactly one such element e. Then, for some $m \geq 5$, there exists a chain of 3-connected matroids M_0, M_1, \ldots, M_n from one of $Z_m, Z_m^*, Z_m \backslash b_m$, and $Z_m \backslash c_m$ to M. If n > 1, then M_1 is an expansion of Z_m or $Z_m \backslash c_m$, or M_1 is an addition to Z_m^* or $Z_m \backslash b_m$. Either M/e or M/e is 3-connected and has no W_4 -minor. The proof of these statements is similar to the proof of Theorem 1.3 and is omitted. The next result corresponds to Theorem 1.3 for regular matroids. The graph $K_5 - e$ is obtained by deleting an edge from the complete graph on five vertices. **1.4 Theorem.** Let M be a 3-connected regular matroid. Then M has an element which is in every W_4 -minor if and only if $M \cong W_4$, $M(K_5-e)$, or $M^*(K_5-e)$. Let F be a flat of a matroid M, we say that F is a modular flat of M if, whenever E is a flat of M, $rk E + rk F = rk E \cup F + rk E \cap F$. Let M_1 and M_2 be matroids whose ground sets meet in T such that $M_1|T=M_2|T$. If T is a modular flat of M_1 , then the generalized parallel connection of M_1 and M_2 across T is denoted by $P_T(M_1, M_2)$ [4,section 5]. This matroid has the property that for each of its flats F, $rkF = rk_{M_1} F \cap E(M_1) + rk_{M_2} F \cap E(M_2) - rk_{M_1} F \cap T$. The next lemma gives the geometric connection between the binary matroids with no W_4 -minor of Theorem 1.2, and those having elements in every W_4 -minor of Theorem 1.3. It states that the matroid Y_r is obtained by attaching a three-wheel matroid to Z_{r-1} using a generalized parallel connection. Figure 3 **1.5 Lemma.** For $r \geq 5$ let G and H be the restrictions of Y_r to $\{a_1, a_r, b_1, c_r, d_r, e_r\}$ and $E(Y_r)\setminus\{a_1, a_r, b_1\}$, respectively, and let $F=\{c_r, d_r, e_r\}$. Then $Y_r=P_F(G,H)$, $G\cong W_3$, and $H\cong Z_{r-1}$. Moreover, $H\setminus b_{r-1}\cong H\setminus d_r\cong Z_{r-1}\setminus b_{r-1}$, $H\setminus c_r\cong Z_{r-1}\setminus c_{r-1}$, and $H\setminus b_{r-1}$, $c_r\cong H\setminus c_r$, $d_r\cong Z_{r-2}^*$ if $r\geq 6$. Proof: The flat F is modular in G as it is a full line [4,(3.15)]. Thus $Y_r = P_F(G,H)$. It is easy to check that $G \cong W_3$. To show that $H \cong Z_{r-1}$ consider the matrix representation $A_r \setminus \{a_1, a_r, b_1\}$ for H. This matrix has identical first and last rows. Drop its last row and order its column by $[e_r \ a_2 \ a_3 \dots a_{r-1} \ d_r \ b_2 \ b_3 \dots b_{r-1} \ c_r]$. This is the matrix B_{r-1} which represents Z_{r-1} . Thus $H \cong Z_{r-1}$ and by this ordering of columns, $H \setminus b_{r-1} \cong Z_{r-1} \setminus b_{r-1}$, $H \setminus c_r \cong Z_{r-1} \setminus c_{r-1}$, $H \setminus d_r \cong Z_{r-1} \setminus b_1$, $H \setminus b_{r-1}, c_r \cong Z_{r-1} \setminus b_{r-1}, c_{r-1}$, and $H \setminus c_r, d_r \cong Z_{r-1} \setminus b_1, c_{r-1}$. It is easy to check that $Z_{r-1} \setminus b_1 \cong Z_{r-1} \setminus b_{r-1}$ and $Z_{r-1} \setminus b_{r-1}, c_{r-1} \cong Z_{r-1} \setminus b_1, c_{r-1} \cong Z_{r-2}^*$ if $r \ge 6$. The following well-known lemma is frequently used in the proof of Theorem 1.3. **1.6 Lemma.** [6] Let N be a simple minor of a matroid M. If e is in a 2-element circuit (cocircuit) of M, then M has an N-minor if and only if $M \setminus e$ (M/e) has an N-minor. For $r \geq 5$ and $g \in \{a_1, a_r, b_1\}$ suppose that $Y_r \setminus g$ or Y_r / g has a W_4 -minor. By using Lemmas 1.5 and 1.6 and observing Figure 3 we see that Z_{r-1} has a W_4 -minor. This contradicts Theorem 1.2. Thus (1.7). a_1, a_r , and b_1 are is every W_4 -minor of Y_r . ## 2. The Proof In this section the proofs of Theorems 1.3 and 1.4 are given, we begin with some preliminary lemmas. **2.1 Lemma.** [2,(1)] Let M be a 3-connected matroid and $e \in E(M)$. Then at least one of M/e and M/e is 3-connected. The next lemma is well known (see, for example, [10,(2.1)]). - **2.2 Lemma.** Let N be a 3-connected matroid with $|E(N)| \ge 3$ and M be an addition to N. Then M is 3-connected if and only if M is a non-trivial addition to N. - **2.3 Lemma.** [11,(2.6,2.8)] For $r \ge 4$ suppose that a non-empty set of columns X is adjoined to either $B_{\tau} \setminus b_{\tau}$ or $B_{\tau+1} \setminus b_{\tau+1} c_{\tau+1}$ to give a representation of a simple binary matroid with no W_4 -minor. If the former holds, then $X = \{(1,1,\ldots,1,0)^T\}$. If the latter holds, then $X \subset \{(1,1,\ldots,1,0)^T,(1,1,\ldots,1)^T\}$. Several technical lemmas which are used in the proof of Theorem 1.3 are given next. **2.4 Lemma.** For some $r \ge 4$ suppose that column $f = (f_1, f_2, \ldots, f_r)^T$ is adjoined to $B \in \{B_r, B_r \setminus b_r, B_r \setminus c_r, B_r \setminus b_r, c_r\}$ to give a representation of a simple binary matroid M. Suppose that $f_i = f_j$ or distinct $i, j \in \{1, 2, \ldots, r\}$. Further suppose that $i \ne r$ and $j \ne r$ if B is $B_r \setminus b_r$ or $B_r \setminus b_r$, C_r . If $x, y \in \{a_i, a_j, b_i, b_j\}$, then there exists an automorphsm η of M such that $\eta(x) = y$ and $\eta(f) = f$. Proof: In B+f replace row k by row k+ row i+ row j for each k in $\{1,2,\ldots,r\}=\{i,j\}$. A suitable reordering of the columns produces the matrix B+f. This induces an automorphism ϕ of M such that $\phi(a_i)=b_j$, $\phi(a_j)=b_i$, and $\phi(f)=f$. Interchanging rows i and j of B+f induces and automorphism ψ of M such that $\psi(a_i)=a_j, \psi(b_i)=b_j$, and $\psi(f)=f$. The result follows from considering compositions of ϕ, ϕ^{-1}, ψ , and ψ^{-1} . **2.5 Lemma.** For $r \ge 4$ let f and g be binary columns of length r such that f has exactly two zero-entries and g has exactly two one-entries. Then there exists an isomorphism $\lambda \colon D(B_r+g) \to D(B_r+f)$ such that $\lambda(g) = f$ and $\lambda(c_r) = c_r$. Proof: By the symmetry of B_r we may assume that $g = (1, 1, 0, ..., 0)^T$. In $B_r + g$ replace row k by row k+ row 1+ row r for each k in $\{2, 3, ..., r-1\}$. Column g now has exactly two zero-entries. A suitable reordering of the rows and columns produces $B_r + f$. Column g is transformed into f by these operations, while column g, is unchanged. The next lemma will be used in the proof of Theorem 1.3 to show that e_r is in every W_4 -minor of $Y_r \setminus X$ when $d_r \in X$. **2.6 Lemma.** Let M be a 3 -connected binary matroid with $f \in E(M)$ such that $M \setminus f \cong Z_r$ for some $r \geq 4$. Then M/f has no W_4 -minor. Proof: By induction on r. If r = 4, then rk M/f = 3 and so M/f has no W_4 -minor. Suppose that r > 4 and the result holds for 3-connected binary additions to Z_n when n < r. Assume that M/f has a W_4 -minor. Adjoin a binary column $f = (f_1, f_2, ..., f_r)^T$ with at least two zero-entries and at least two one-entries to B_r to obtain a representation for M. First suppose that f has exactly two one-entries. By the symmetry of B_r we may assume that $f = (1, 1, 0, ..., 0)^T$. Then $\{a_1, a_2, f\}$ and $\{b_1, b_2, f\}$ are circuits of M while $\{a_1, a_2, b_1, b_2\}$ is a cocircuit. It follows from Lemma 1. 6 that $M/f \cong M \setminus a_1, b_1/f$ has a W_4 -minor. Since $\{a_2, b_2\}$ is a cocircuit of $M \setminus a_1, b_1/f$, the matroid $M \setminus a_1, b_1/a_2, f$ has a W_4 -minor. The dependence of $\{a_1, f\}$ in M/a_2 implies that $M/a_2 \setminus f$ has a W_4 -minor. This contradicts Theorem 1.2 as $M \setminus f \cong Z_r$. Next suppose that f has exactly two zero-entries. Adjoin a binary column g with exactly two one-entries to B_r . By Lemma 2.5 there exists an isomorphism λ : $D(B_r+g) \to M$ such that $\lambda(g) = f$. By the previous paragraph $D(B_r+g)/g$ has no W_4 -minor. Thus M/f has no W_4 -minor; a contradiction. It follows that f has at least three zero-entries and at least three one-entries. By the symmetry of B_r we may assume that $f_1 = f_2 = f_3 = 1$ and $f_4 = f_5 = f_6 = 0$. Let $X,Y \subseteq E(M)$ be such that $M \setminus X/Y \cong W_4$ and $f \in Y$. Suppose that M/c_r has a W_4 -minor. The matroid Z_r/c_r is graphic and forms a cycle on r edges [11,(2.4)]. This matroid has corank one and $M \setminus f = Z_r$. Thus M/c_r , has both corank at most two and a W_4 -minor; a contradiction. Hence $c_r \notin Y$. Suppose that $a_i \in Y$ for some i in $\{1,2,\ldots,r\}$. The dependence of $\{b_i,c_r\}$ in M/a_i implies that this set meets $X \cup Y$. Suppose that $g \in X \cap \{b_i,c_r\}$. Then $M/a_i \setminus f, g \cong Z_{r-1}$ and the column corresponding to f in $(B_r + f)/a_i \setminus g$ has at least two zero-entries and at least two one-entries. Thus $M/a_i \setminus g$ is a non-trivial addition to Z_{r-1} . The induction hypothesis implies that $(M/a_i \setminus g)/f$ has no W_4 -minor. However, $\{a_i,b_i,c_r\}$ is a circuit of M and $M/a_i,f$ has a W_4 -minor. Thus $M/a_i,f \setminus g$ has a W_4 -minor; a contradiction. Hence $X \cap \{b_i,c_r\} = \phi$. It follows that b_i is in Y as c_r is not. The element c_r is a loop of $M/a_i,b_i$ and this matroid has a W_4 -minor. Thus M/c_r has a W_4 -minor: a contradiction. It follows that $\{a_1,a_2,\ldots,a_r\} \cap Y = \phi$. Now suppose that $b_j \in Y$ for some j in $\{1, 2, ..., r\}$. Choose i in $\{1, 2, ..., r\}$ so that the entries in rows i and j of f agree. Then there exists an automorphism η of M such that $\eta(b_j) = a_i$ and $\eta(f) = f$ by Lemma 2.4. The W_4 -minor in M/b_j , f implies the existence of a W_4 -minor in M/a_i , f. This contradicts the conclusion of the previous paragraph. Thus $\{b_1, b_2, ..., b_r\} \cap Y = \phi$ and $Y = \{f\}$. Let $A = \{a_1, a_2, b_1, b_2\}$, $B = \{a_1, a_3, b_1, b_3\}$, $C = \{a_2, a_3, b_2, b_3\}$, $D = \{a_4, a_5, b_4, b_5\}$, $E = \{a_4, a_6, b_4, b_6\}$, and $F = \{a_5, a_6, b_5, b_6\}$. Then A, B, C, D, E, and F are cocircuits of M. The dual of $M \setminus X/f \cong W_4$ must be simple. Thus X meets each of these cocircuits in at most one element. Each element of $A \cup B \cup C$ is in two of the sets A, B, and C. Thus $|(A \cup B \cup C) \cap X| \le 1$. It follows that $|(A \cup B \cup C) \setminus X| \ge 5$, and likewise $|(D \cup E \cup F) \setminus X| \ge 5$. Thus $M \setminus X/f$ has at least ten elements: a contradiction. **2.7** Corollary. Let M be a 3-connected binary matroid with $f \in E(M)$ such that $M \setminus f \cong Z_r, Z_r^*, Z_r \setminus b_r$, or $Z_r \setminus c_r$ for some $r \geq 5$. Then M/f has no W_4 -minor. Proof: If $M \setminus f \cong Z_r$, then the result follows from Lemma 2.6. Suppose that $M \setminus f \cong Z_r^*$, $Z_r \setminus b_r$, or $Z_r \setminus c_r$. Consider a representation for M obtained by adjoining column f to $B_{r+1} \setminus b_{r+1}$, c_{r+1} , $B_r \setminus b_r$ or $B_r \setminus c_r$. Then M is a restriction of $D(B_{r+1} + f)$ or $D(B_r + f)$. By Lemma 2.6, $D(B_j + f)/f$ has no W_4 -minor for $f \in \{r, r+1\}$. Thus M/f has no W_4 -minor. **2.8 Lemma.** For some $r \ge 5$ let M be a binary matroid reprsented by adjoining a binary column f with at least two zero-entries and at least two one-entries to $B \in \{B_r, B_r \setminus c_r\}$. Then each element of $E(M) \setminus \{f\}$ avoids some W_4 -minor of M. Proof: Choose i in $\{1, 2, ..., r\}$ so that the column corresponding to f in $(B + f)/a_i$ has at least two zero-entries and at leat two one-entries. By Lemma 2.3, $M/a_i \setminus b_j$ has a W_4 -minor for all j in $\{1, 2, ..., r\}$. Let $k \in \{1, 2, ..., r\}$. By Lemma 2.4 there exists an automorphism of M mapping b_k to a_k . By the previous paragraph $M \setminus b_k$ has a W_4 -minor. Thus $M \setminus a_k$ also has a W_4 -minor. If $B = B_r$, then $M \setminus c_r$ has a W_4 -minor by Lemma 2.3. **2.9 Lemma.** For some $r \ge 5$ let M be a binary matroid represented by adjoining a binary column $f = (f_1, f_2, ..., f_r)^T$ with at least two zero-entries and at least two one-entries to $B \in \{B_r \setminus b_r, B_r \setminus b_r, c_r\}$. If there is an element of $E(M) \setminus \{f\}$ which is in every W_4 -minor of M, then there exists $i \in \{1, 2, ..., r-1\}$ such that either f_i and f_r are the only zero-entries of f, or f_i and f_r are the only one-entries of f. Proof: Suppose that if f has exactly two zero-entries or exactly two one-entries, then neither of these two entries is f_r . Then the column corresponding to f in the matrix $(B+f)/a_r$ has at least two zero-entries and at least two one-entries. For all k in $\{1,2,\ldots,r-1\}$, $M/a_r\backslash b_k$ has a W_4 -minor by Lemma 2.3. We may apply Lemma 2.4 as in the proof of Lemma 2.8 to obtain that $M\backslash x$ has a W_4 -minor for all x in $\{a_1,a_2,\ldots,a_{r-1}\}$. If $B=B_r\backslash b_r$, then $M\backslash c_r$, has a W_4 -minor by Lemma 2.3. Thus each element of $E(M)\backslash \{f\}$ avoids some W_4 -minor of M. **2.10 Lemma.** For some $r \ge 5$ and $i \in \{1, 2, ..., r-1\}$ suppose that the binary column $f = (f_1, f_2, ..., f_r)^T$ has either its only zero-entries being f_i and f_r or its only one-entries being f_i and f_τ . If M is the dependence matroid of $(B_r \setminus b_r, c_r) + f$, then the only elements of M which are in every W_4 -minor are a_i, b_i, a_τ , and f. Moreover, $(B_r \backslash b_r, c_\tau) + f$ is equivalent to $A_r \backslash c_\tau, d_\tau$, and $(B_r \backslash b_r) + f$ is equivalent to $A_r \backslash d_\tau$. Thus $A_r \backslash d_\tau$ and $A_r \backslash e_\tau$ are equivalent. Proof: Assume that f_i and f_r are the only one-entries of f. Let $k \in \{1, 2, ..., r\} \setminus \{i, r\}$. It follows from Lemma 2.3 that M/a_k has a W_4 -minor. By Lemma 2.4 there is an automorphism of M mapping a_k to b_k . Thus M/b_k also has a W_4 -minor. Hence each element of $E(M) \setminus \{a_i, b_i, a_r, f\}$ avoids some W_4 -minor. By interchanging rows 1 and i, columns a_1 and a_i , and columns b_1 and b_i of $(B_r \setminus b_r, c_r) + f$ we obtain $A_r \setminus c_r, d_r$. It follow from (1.7) and these operations that a_i, b_i , and a_r are in every W_4 -minor of M. The element f is in every W_4 -minor of M by Corollary 2.7. From applying the same operations to $(B_r \setminus b_r) + f$ we obtain that this matrix is equivalent to $A_r \setminus d_r$. Assume that f_i and f_τ are the only zero-entries of f. Choose $k \in \{1, 2, ..., r\} \setminus \{i, r\}$ and replace row ℓ of $(B_r \setminus b_r, c_r) + f$ by row i + row k + row ℓ for each ℓ in $\{1, 2, ..., r\} \setminus \{i, k\}$. Next interchange rows i and k of the resulting matrix. Column f now has a one in rows i and r, and a zero in all other rows. The columns of $B_r \setminus b_r$, c_r have been permuted with columns a_i and b_i interchanged and column a_r unchanged. It now follows from the previous paragraph that $(B_r \setminus b_r, c_r) + f$ is equivalent to $A_r \setminus c_r$, d_r and that only a_i , b_i , a_r , and f are in every W_4 -minor of M. The above operations can also be used to show that $(B_r \setminus b_r) + f$ is equivalent to $A_r \setminus d_r$. Moreover, as $A_r \setminus e_r = (B_r \setminus b_r) + d_r$, the matrix $A_r \setminus e_r$ is equivalent to $A_r \setminus d_r$. **2.11 Lemma.** For some $r \ge 5$ let B be a binary matrix obtained by adoining a non-empty set of binary columns X to $B_r \setminus b_r$, c_r so that M = D(B) is simple and has more than one element in every W_4 -minor. Then, for some i in $\{1, 2, ..., r-1\}$, X is obtained by taking a non-empty subset of $\{d_r, e_r\}$ and interchanging the first-entry and the ith-entry of every column in the subset, and then possibly adding c_r to this subset. Thus B is equivalent to A_r , $A_r \setminus c_r$, $A_r \setminus d_r$ or $A_r \setminus c_r$, d_r . Proof: Assuming |X| = 1. Let $f \in X$. Then column f has at least two zero-entries and at least two one-entries since M has a W_4 -minor. It follows from Lemma 2.9 that f is obtained from either column d_r or e_r by permuting entries 1 and i for some i < r. Moreover, by Lemma 2.10, B is equivalent to $A_r \setminus c_r, d_r$. Assume $|X| \ge 2$. Suppose $b_r \in X$. Then, by Lemma 2.8, M has at most one element which is in every W_4 -minor; a contradiction. Thus each column of $X \setminus \{c_r\}$ has at least two zero-entries and at least two one-entries. Assume that $X\setminus\{c_r\}$ contains two distinct columns $f=(f_1,f_2,\ldots,f_r)^T$ and $g=\{g_1,g_2,\ldots,g_r\}^T$. The dependence matroids of $(B_r\setminus b_r,c_r)+f$ and $(B_r\setminus b_r,c_r)+g$ have more than one element in every W_4 -minor. By Lemma 2.9 there exist $i,j\in\{1,2,\ldots,r-1\}$ such that $f_i=f_r$ and all other entries of f differ from f_i , and $g_j=g_r$ and all other entries of g differ from g_j . Suppose $i\neq j$. By Lemma 2.10 only a_i,b_i,a_r , and f are in every W_4 -minor of $D(B_r\setminus b_r,c_r+f)$, and only a_j,b_j,a_r , and g are in every g0. Thus only a_r could be in every W_4 -minor of M; a contradiction. It follow that i = j. Since M is simple $X \setminus \{c_r\} = \{f, g\}$. The set $\{f, g\}$ is obtained from $\{d_r, e_r\}$ by interchanging the first entry and the *i*th entry of each of d_r and e_r . Thus if $c_r \notin X$, then |X| = 2 and B is equivalent to $A_r \setminus c_r$. Assume $c_r \in X$. Suppose $|X \setminus \{c_r\}| = 1$. Let $f \in X \setminus \{c_r\}$. Then $B = B_r \setminus b_r$, $c_r + X = B_r \setminus b_r + f$. Lemma 2.9 implies that $X \setminus \{c_r\}$ is obtained from d_r or e_r by permuting the first and *i*th entry for some i < r. Lemma 2.10 implies that B is equivalent to $A_r \setminus d_r$. Suppose $|X \setminus \{c_r\}| \ge 2$. The previous paragraph implies that $X \setminus \{c_r\}$ is obtained from $\{d_r, e_r\}$ by permuting the first and *i*th entry. Hence B is equivalent to A_r . ## The proof of Theorem 1.3 Suppose that $r \geq 7$. Let $X \subseteq \{b_{r-1}, c_r, d_r\}$. We first show that $Y_r \setminus X$ is 3-connected. We have previously noted that $Y_r \setminus b_{r-1}, c_r, d_r \cong (Y_{r-1} \setminus d_{r-1})$ and thus it suffices to show that $Y_{r-1} \setminus d_{r-1}$ is 3-connected. This follows as Z_{r-2}^* is 3-connected [11] and $Y_{r-1} \setminus c_{r-1}, d_{r-1}, e_{r-1} \cong Z_{r-2}^*$. The elements a_1 , a_r , and b_1 are in every W_4 -minor of $Y_r \setminus X$ by (1.7). Note that $A_r \setminus b_{r-1}$, c_r , $d_r / a_{r-1} = B_{r-1} \setminus b_{r-1}$, $c_{r-1} + e_{r-1}$. The elements a_1 , a_r , b_1 , and e_r of $Y_r \setminus b_{r-1}$, c_r , d_r respectively, correspond to the columns a_1 , a_{r-1} , b_1 , and e_{r-1} in $B_{r-1} \setminus b_{r-1}$, $c_{r-1} + e_{r-1}$. Lemma 2.10 implies that only a_1 , a_{r-1} , b_1 , and e_{r-1} can be in every W_4 -minor of $D(B_{r-1} \setminus b_{r-1}, c_{r-1} + e_{r-1})$. Thus only a_1 , a_r , b_1 , and e_r can be in every W_4 -minor of $Y_r \setminus X$. Suppose $d_r \notin X$. Then e_r is in every W_4 -minor of $Y_r \setminus X$ by Corollary 2.7. Suppose $d_r \notin X$. Then $Y_r \setminus e_r$ has a W_4 -minor by Lemma 2.3. Thus the only elements of $Y_r \setminus X$ which are in every W_4 -minor are a_1 , a_r , b_1 , and e_r when $d_r \in X$, and a_1 , a_r , and b_1 when $d_r \notin X$. Assume that M has at least two elements which are in every W_4 -minor and neither M nor M^* is isomorphic to $Y_r \setminus X$ for $r \ge 7$. Let e be in every W_4 -minor of M. By Lemma 2.1 either M/e or M/e is 3-connected. These two matroids have no W_4 -minor and either rank or corank at least six. Let N be a largest 3-connected minor of M which has no W_4 -minor. Then, by Theorem 1.2, N is isomorphic to Z_{s-1} , Z_{s-1}^* , $Z_s \setminus b_s$, or $Z_s \setminus c_s$ for some $s \ge 6$. By Theorem 1.1 there exists a chain of 3-connected matroids M_0 , M_1 , M_2 , ..., M_n from N to M with $N \cong M_0$ and $M_n = M$. The matroid M_1 must have a W_4 -minor by the choice of N. By duality we may assume that M_1 is an addition to M_0 . If $M_0 \cong Z_{s-1}$ or $Z_s \setminus c_s$, then, by Lemma 2.8, M_1 has at most one element in every W_4 -minor; a contradiction. Moreover, as $Z_s \setminus c_s$, is self-dual, a largest 3-connected minor of M which has no W_4 -minor is not isomorphic to $Z_s \setminus c_s$. Thus $M_0 \cong Z_{s-1}^*$ or $Z_s \setminus b_s$. Consider a representation for M obtained by adjoining a column to $B_s \setminus b_s$, c_s or $B_s \setminus b_s$. Lemmas 2.9 and 2.10 imply that if the former holds, then $M_1 \cong Y_s \setminus c_s$, d_s , while if the latter holds, then $M_1 \cong Y_s \setminus d_s$. In either case $M_1 \neq M$ as either s = 6 and rk $M_1 < rk$ M, or $s \ge 7$ and $M \ncong Y_s \setminus X$. Assume that $M_0 \cong Z_{s-1}^*$ and $M_1 \cong Y_s \setminus c_s$, d_s . Then M_1 is self-dual and we may assume that M_2 is an addition to M_1 . Both Y_s and $Y_s \setminus d_s$ have a $Z_s \setminus b_s$ minor. The matroid $Z_s \setminus b_s$ is larger than N. Thus M_i is isomorphic to neither Y_s nor $Y_s \setminus d_s$. for $i \geq 2$. It follows from Lemma 2.11 that $M_2 \cong Y_s \setminus c_s$ and M_3 is an expansion of M_2 . Suppose $M_3/g = Y_s \setminus c_s$. The only elements of M which may be in every W_4 -minor are a_1 , a_s and b_1 . When determining possible triangles and triads containing these elements in this proof it is often convenient to consult Figure 3. The only possible triangles of M_3 containing a_1 or b_1 are $\{a_1, a_s, e_s\}$ and $\{a_s, b_1, d_s\}$. The set $\{a_1, a_s, b_1\}$ is a triad of M_3 and any other triad of M_3 containing a_1 or b_1 would also contain g. Suppose that a_1 is in every W_4 -minor of M_3 . The matroid M_3/a_1 has at least $|E(M_1)|$ elements. It cannot be 3-connected as otherwise the choice of N would force it to have a W_4 -minor. It follows from Lemma 2.1 that $M_3 \setminus a_1$ is 3-connected. The choice of N forces $M_3 \setminus a_1$ to have at most $|E(M_0)|$ element. Thus $M_3 \setminus a_1 \cong M_3 \setminus a_1/b_1$, g. However $\{a_s, d_s\}$ is dependent in the latter matroid; a contradiction. Thus a_1 avoids some W_4 -minor of M_3 . Suppose that b_1 is in every W_4 -minor of M_3 . The matroid M_3/b_1 has at least $|E(M_1)|$ elements and hence is not 3-connected. Thus $M_3 \setminus b_1$ is 3-connected and has at most $|E(M_0)|$ elements. Hence $M_3 \setminus b_1 \cong M_3 \setminus b_1/a_1$, g. The set $\{a_s, e_s\}$ is dependent in the latter matroid; a contradiction. Thus b_1 avoids some W_4 -minor of M_3 . Hence only a_s could be in every W_4 -minor of M_3 ; a contradiction. Thus $M_0 \cong Z_s \setminus b_s$ and $M_1 \cong Y_s \setminus d_s$. Assume that M_2 is an addition to M_1 . Then, by Lemma 2.11, $M_2 \cong Y_s$ and M_3 is an expanion of M_2 . Suppose $M_3/g = Y_s$. Consider a representation for M_3^* obtained by adjoining a column $g = (g_1, g_2, \ldots, g_{s+2})^T$ to the matrix A_s^* . The only elements of M_3 which may be in every W_4 -minor are a_1, a_s , and b_1 . The set $\{a_1, a_s, b_1\}$ is a triad of M_3 and any other triad of M_3 containing a_1 or a_s also contains g. The only possible triangles of M_3 containing a_1 or a_s are $\{a_1, b_1, c_s\}$, $\{a_1, a_s, e_s\}$ and $\{a_s, b_1, d_s\}$. We next show that if a_1 or a_s is in every W_4 -minor of M_3 , then $M_3 \cong Y_{s+1} \setminus b_s$. It will then follow that $M_3 \cong Y_{s+1} \setminus b_s$ as at least one of these elements is in every W_4 -minor of M_3 . Assume that a_1 is in every W_4 -minor of M_3 . If $M_3 \setminus a_1$ is 3-connected, then $M_3 \setminus a_1 \cong M_3 \setminus a_1/b_1$, g. However $\{a_s, d_s\}$ is dependent in the latter matroid; a contradiction. Thus $M_3 \setminus a_1$ is 3-connected with at most $|E(M_0)|$ elements. Hence $M_3 \setminus a_1 \cong M_3/a_1 \setminus b_1$, e_s and $\{a_1, b_1, c_s\}$ and $\{a_1, a_s, e_s\}$ are triangles of M_3 . Consider the matrix $(A_s^* + g) \setminus a_1/b_1$, e_s . Its dependence matroid has no W_4 -minor. Lemma 2.3 implies that $(g_2, g_3, \ldots, g_{s+1})^T$ is $(1, 1, \ldots, 1, 0, 1)^T$ or $(1, 1, \ldots, 1)^T$. Suppose the former holds. Then $M_3^* \setminus a_1/b_1$, $e_s \cong Z_s \setminus c_s$. However, M has no such minor. Thus the latter holds. Note that $g_1 = g_s = 1$ and $g_{s+2}=0$ as $\{a_1,b_1,c_s\}$ and $\{a_1,a_s,e_s\}$ are tringles of M_3 . After interchanging rows s and s+1 in $(A_s^*+g)^*$ we obtain the matrix $A_{s+1}\setminus b_s$. Thus $M_3\cong Y_{s+1}\setminus b_s$. Assume that a_s is in every W_4 -minor of M_3 . If $M_3 \setminus a_s$, is 3-connected, then $M_3 \setminus a_s \cong M_3 \setminus a_s/b_1$, g. The set $\{a_1, c_s\}$ is dependent in the latter matroid; a contradiction. Thus $M_3 \setminus a_s$ is 3-connected. It follows that $M_3 \setminus a_s \cong M_3/a_s \setminus d_s$, e_s and $\{a_1, a_s, e_s\}$ and $\{a_s, b_1, d_s\}$ are triangles of M_3 . Consider the matrix $(A_s^* + g) \setminus a_s/d_s$, e_s . Its dependence matroid has no W_4 -minor. Lemma 2.3 implies that $(g_1, g_2, \ldots, g_s)^T$ is $(1, 1, \ldots, 1, 0)^T$ or $(1, 1, \ldots, 1)^T$. If the former case occurs, then $M_3^* \setminus a_s/d_s$, $e_s \cong Z_s \setminus c_s$; a contradiction. Thus the latter holds. Note that $g_{s+2} = 0$ and $g_{s+1} = g_1 = 1$ as $\{a_1, a_s, e_s\}$ and $\{a_s, b_1, d_s\}$ are triangles of M_3 . After interchanging rows s and s+1 of $(A_s^* + g)^*$ we obtain the matrix $A_{s+1} \setminus b_s$. Thus $M_3 \cong Y_{s+1} \setminus b_s$. We next show that M_4 can be neither an addition to nor an expansion of $Y_{s+1} \setminus b_s$. It will then follow from this and duality that $M_3 \ncong Y_{s+1} \setminus b_s$ and $M_3^* \ncong Y_{s+1} \setminus b_s$. Assume that M_4 is an expansion of M_3 . Suppose $M_4/h = Y_{s+1} \setminus b_s$. Then the only elements of M_4 which may be in every W_4 -minor are a_1, a_{s+1} , and b_1 . The only possible triangles of M_4 containing a_1 or a_s are $\{a_1, b_1, c_{s+1}\}$, $\{a_{s+1}, b_1, d_{s+1}\}$, and $\{a_1, a_{s+1}, e_{s+1}\}$. The set $\{a_1, a_{s+1}, b_1\}$ is a triad of M_4 and any other triad of M_4 containing a_1 or a_{s+1} also contains h. Both a_1 and a_{s+1} are in at most two triangles and at most two triads of M_4 . Thus each of M_4/a_1 , M_4/a_1 , M_4/a_s , and M_4/a_s , have at least $|E(M_1)|$ elements. It follows from Lemma 2.1 and the choice of N that both a_1 and a_{s+1} avoid some W_4 -minor of M_4 ; a contradiction. Thus M_4 is isomorphic to an addition to Y_{s+1}/b_s . Consider a representation for M_4 obtained by adoining a column $h = (h_1, h_2, \ldots, h_{s+1})^T$ to $A_{s+1} \setminus b_s$. The only elements of M_4 which may be in every W_4 -minor are a_1, a_{s+1} , and b_1 . The sets $\{a_1, b_1, c_{s+1}\}$, $\{a_{s+1}, b_1, d_{s+1}\}$, and $\{a_1, a_{s+1}, e_{s+1}\}$ are triangles of M_4 and any other triangle of M_4 containing a_1 or a_{s+1} also contains a_1 . The only possible triad of a_1 containing a_2 or a_{s+1} is $\{a_1, a_{s+1}, b_1\}$. The matrix $[(A_{s+1}\backslash b_s) + h]/a_s\backslash h$, which represents $M_4/a_s\backslash h$, is equal to A_s . Thus M_4/a_s is an addition to Y_s . It cannot be 3-connected by Lemma 2.11. Thus, by Lemma 2.2, there is an element x for which $\{h, x\}$ is dependent in M_4/a_s . Thus $\{a_s, h, x\}$ is a triangle of M_4 . Assume that a_1 is in every W_4 -minor of M_4 . Then $M_4 \setminus a_1$ has at least $|E(M_2)|$ elements and is not 3-connected. Thus $M_4 \setminus a_1$ is 3-connected with at most $|E(M_0)|$ elements. It follows that $M_4 \setminus a_1 \cong M_4 \setminus a_1 \setminus c_{s+1}, e_{s+1}, h$ and for some element y the set $\{a_1, h, y\}$ is a triangle of M_4 . From considering the element of M_4 as columns in the matrix $A_{s+1} \setminus b_s + h$ we obtain the equation $x + y = a_1 + a_s = (1, 0, \ldots, 0, 1, 0)^T$. It is easy to check that the only simple solution for x and y is $x = a_1$ and $y = a_s$. Thus $h = (1, 0, \ldots, 0, 1, 0)^T$. From considering the matrix $[(A_{s+1} \setminus b_s) + h]/a_{s+1} \setminus b_1$ we obtain that $M_4 \setminus a_{s+1} \setminus b_1$ has a W_4 -minor by Lemma 2.3. Hence only a_1 can be in every W_4 -minor of M_4 ; a contradiction. Thus a_1 avoids some W_4 -minor of M_4 . Assume that a_{s+1} is in every W_4 -minor of M_4 . Then $M_4 \setminus a_{s+1}$ has at least $|E(M_2)|$ elements and is not 3-connected. Thus $M_4 \setminus a_{s+1}$ is 3-connected with at most $|E(M_0)|$ elements. It follows that $M_4 \setminus a_{s+1} \cong M_4 \setminus a_{s+1} \setminus d_{s+1}$, e_{s+1} , h and for some element y the set $\{a_{s+1}, h, y\}$ is a triangle of M_4 . From considering the elements of M_4 as columns in the matrix $A_{s+1} \setminus b_s + h$ we obtain the equation $x + y = a_s + a_{s+1} = (0, \ldots, 0, 1, 1)^T$. It is easy to check that the only simple solution in x and y is $x = a_{s+1}$ and $y = a_s$. Thus $h = (0, \ldots, 0, 1, 1)$. From considering the matrix $(A_{s+1} \setminus b_s + h)/a_1 \setminus b_1$ we obtain that $M_4/a_1 \setminus b_1$ has a W_4 -minor by Lemma 2.3. Hence only a_{s+1} is in every W_4 -minor of M_4 ; a contradiction. Thus a_{s+1} avoids some W_4 -minor of M_4 . It follows that only b_1 may be in every W_4 -minor of M_4 ; a contradiction. Thus (2.12). $M_3 \not\cong Y_{s+1} \setminus b_s$, and by duality $M_3^* \not\cong Y_{s+1} \setminus b_s$. It follows that M_2 is an expansion of M_1 where $M_1 \cong Y_s \setminus d_s$. Recall that $(Y_s \setminus d_s)^* \cong Y_{s+1} \setminus b_s, c_{s+1}, d_{s+1}$. Consider a representation for M_2^* obtained by adjoining a column $g = (g_1, g_2, \dots, g_{s+1})^T$ to the matrix $A_{s+1} \setminus b_s, c_s, d_{s+1}$. We shall first show that $g \in \{c_{s+1}, d_{s+1}\}$. It will then follow that $M_2^* \cong Y_{s+1} \setminus b_s, c_{s+1}$ or $Y_{s+1} \setminus b_s, d_{s+1}$. Moreover, if M_3^* is an addition to M_2^* , then $M_3^* \cong Y_{s+1} \setminus b_s$. The only elements of M_2^* which may be in every W_4 -minor are a_1, a_{s+1}, b_1 , and e_{s+1} . By considering the matrix $(A_{s+1} \setminus b_s, c_{s+1}, d_{s+1} + g)/a_2 \setminus g$ we see that $M_2^*/a_s \setminus g \cong Y_s \setminus c_s, d_s$. Thus M_2^*/a_s is an addition to $Y_s \setminus c_s, d_s$. Suppose that M_2^*/a_s is not 3-connected. From applying Lemma 2.2 as before we obtain that $\{a_s,g,x\}$ is a triangle of M_2^* for some element x. By the symmetry of $A_{s+1} \setminus b_s$, c_{s+1} , d_{s+1} induced by interchanging any two of rows 2 through s-1 we may assume that $x \in \{a_1,a_2,a_{s+1},b_1,b_2,e_{s+1}\}$. Thus $g \in \{(1,0,\ldots,0,1,0)^T,\ (0,1,0,\ldots,0,1,0)^T,\ (0,1,0,\ldots,0,1,1)^T,\ (0,1,\ldots,1,0,1)^T,\ (1,0,1,\ldots,1,0,1)^T,\ (1,0,\ldots,0,1,1)^T\}$. If $g \neq (0,\ldots,0,1,1)^T$, then $M_2^*/a_{s+1} \setminus e_{s+1} \cong M_2^*/a_{s+1} \setminus a_1$ has a W_4 -minor by Lemma 2.3. Thus only b_1 can be in every W_4 -minor of M_2^* ; a contradiction. Hence $g = (0,\ldots,0,1,1)^T$. It follows that $\{a_1,a_{s+1},e_{s+1}\}$ and $\{a_s,a_{s+1},g\}$ are triangles of M_2^* and $\{a_s,a_{s+1},e_{s+1}\}$ is a triad. Thus M_2^*/a_1 is not 3-connected. Hence $M_2^*\setminus a_1 = M_2^*\setminus a_1$ is 3-connected with $|E(M_1)|$ elements. It follows that $M_2^*\setminus a_1$ has a W_4 -minor. The element b_1 is in no triangle or triad of M_2^* . Thus, by Lemma 2.1, b_1 avoids some W_4 -minor of M_2^* . By Lemma 2.3, $M_2^*/a_s\setminus a_{s+1}$ has a W_4 -minor. Hence only e_{s+1} could be in every W_4 -minor of M_2^* ; a contradiction. Thus M_2^*/a_s is 3-connected. The matrix $(A_{s+1} \setminus b_s, c_{s+1}, d_{s+1} + g)/a_s$ can be obtained by adding the columns $(1,0,\ldots,0,1)^T$ and $(g_1,\ldots,g_{s-1},g_{s+1})^T$ to $B_s \setminus b_s, c_s$. It follows from Lemma 2.11 that $(g_1,\ldots,g_{s-1},g_{s+1})^T$ is $(1,1,\ldots,1)^T$ or $(0,1,\ldots,1,0)^T$. Suppose the former holds. If $g_s=0$, then $M_2^*/a_{s+1} \setminus e_{s+1} \cong Z_s \setminus c_s$; a contradiction. Thus $g_s=1$ and $g=c_{s+1}$. Suppose the latter holds. If $g_s=0$, then $M_2^*/a_{s+1}\setminus a_1\cong M_2^*/a_{s+1}\setminus e_{s+1}$ has a W_4 -minor by Lemma 2.3. Hence only b_1 could be in every W_4 -minor of M_2^* a contradiction. Thus $g_s=1$ and $g=d_{s+1}$. If follows that $M_2^*\cong Y_{s+1}\setminus b_s$, c_{s+1} or $Y_{s+1}\setminus b_s$, d_{s+1} . Suppose M_3^* is an addition to M_2^* . Then $M_3^* \cong Y_{s+1} \setminus b_s$. This contradicts (2.12). Thus is an expansion of M_2^* . Suppose $M_2^* \cong Y_{s+1} \setminus b_s$, d_{s+1} . This matroid is self-dual. Hence M_3 is isomorphic to an addition to $Y_{s+1} \setminus b_s$, d_{s+1} . By the previous arguments $M_3 \cong Y_{s+1} \setminus b_s$. This contradicts (2.12). Thus M_3^* is an expansion of $Y_{s+1} \setminus b_s$, c_{s+1} . Assume that $M_3^*/h = Y_{s+1} \setminus b_s$, c_{s+1} . The only elements of M_3^* which can be in every W_4 -minor are a_1 , a_{s+1} and b_1 . The only possible triangles containing a_1 or b_1 are $\{a_1, a_{s+1}, e_{s+1}\}$ and $\{a_{s+1}, b_1, d_{s+1}\}$. The only possible triads containing a_1 or b_1 are $\{a_1, a_{s+1}, b_1\}$ and possibly some containing h. Suppose a_1 is in every W_4 -minor of M_3^* . Then M_3^*/a_1 has at least $|E(M_1)|$ elements and is not 3-connected. Thus M_3^*/a_1 is 3-connected with $|E(M_0)|$ olements. Hence $M_3^*/a_1 \cong M_3^*/a_1/b_1$, h. However $\{a_{s+1}, d_{s+1}\}$ is dependent in $M_3^*/a_1/b_1$, h. Thus a_1 , and by a similar argument a_1 , avoids some a_1 -minor of a_2 , a contradiction. ## The proof of Theorem 1.4. It is easy to check that each of W_4 , $M(K_5-e)$, and $M^*(K_5-e)$ have an element which is in every W_4 -minor. The last two matroids have three such elements. Suppose M has an element which is in every W_4 -minor and $M \not\cong W_4$, $M(K_5-e)$, or $M^*(K_5-e)$. Each element of W_5 , $M(K_{3,3})$, $M^*(K_{3,3})$, $M(K_5)$, and $M^*(K_5)$ avoids some W_4 -minor. Thus M has no minor isomorphic to one of these matroids. It follows from Tutte's excluded minor characterizations of the regular and graphic matroids [17, sections 10.4 and 10.5] that M is graphic. By Oxley's characterization of the regular matroids with no W_5 -minor [12, Table 1] and Theorem 1.1, M has a minor isomorphic to the cycle matroid of the graph J given in Figure 4. J The following isomorphisms show that each element of M(J) avoids some W_4 -minor. $J/a \setminus b \cong J/a \setminus c \cong J/h \setminus b \cong J/g \setminus d \cong J/e \setminus f \cong J/j \setminus i \cong W_4$. Thus M has no element which is in every W_4 -minor; a contradiction. ## References - 1. A. Adám, Über zweipolige elektrische netze. I., Magyar Tud. Akad. Mat. Kutato Int. Közl. 2 (1957), 211–218. - 2. R.E. Bixby, A simple theorem on 3-connectivity, Linear Algebra and its Applications 45 (1982), 123–126. - 3. T.H. Brylawski, A combinatorial model for series-parallel networks, Trans. Amer. Math. Soc. 154 (1971), 1–22. - 4. T.H. Brylawski, *Modular constructions for combinatorial geometries*, Trans. Amer. Math. Soc. 203 (1975), 1–44. - T.H. Brylawski and D. Lucas, *Uniquely representable combinatorial geometries*, Internat. Colloq. (Accademia Nazionale dei Lincei, Roma, 1976), Teorie Combinatorie, Proc. (1973), 83–104. - 6. C.R. Coullard, "Minors of 3-connected matroids and adjoints of binary matroids", Ph.D. Thesis, Northwestern Univerity, 1985. - 7. C.R. Coullard and J.G. Oxley, Extensions of Tutte's Wheels- and Whirls-Theorem, J. Combin. Theory Ser. B. to appear. - 8. G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952), 85-92. - 9. R.J. Duffin, *Topology of series-parallel networks*, J. Math. Anal. Appl. 10 (1965), 303-318. - 10. J.G. Oxley, On 3-connected matroids, Canad. J. Math. 33 (1981), 20-27. - 11. J.G. Oxley, *The binary matroids with no 4-wheel minor*, Trans. Amer. Math. Soc. 301 (1987), 63–75. - 12. J.G. Oxley, The regular matroid with no 5-wheel minor, J. Combin. Theory Ser. B 46 (1989), 292-305. - 13. J.G. Oxley, "Matroid Theory", Oxford Univerity Press, Oxford. to appear. - 14. P.D. Seymour, *Decomposition of regular matroids*, J. Combin. Theory Ser. B 28 (1980), 305–359. - 15. K. Truemper, "Matroid Decompoition", Academic Press. to appear. - 16. W.T. Tutte, Connectivity in matroids, Canad. J. Math. 18 (1966), 1301-1324. - 17. D.J.A. Welsh, "Matroid Theory", Academic Pres, London, 1976.