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Abstract. The binary matroids with no three- and four-wheel minors were character-
ized by Brylawski and Oxley, respectively. The imponance of these results is that, in a
version of Seymour's Splitter Theorem, Coullard showed that the three- and four-wheel
matroids are the basic building blocks of the class of binary matroids. This paper de-
termines the structure of a class of binary matroids which almost have no four-wheel
minor. This class consists of matroids M having a four-wheel minor and an element e
such that both the deletion and contraction of e from M have no four-wheel minor.

1. Introducton

The matroid terminology used mostly follows Oxley [13], Trucmper [15], and
Welsh [17]. Let M be a matroid. The ground set of M is denoted by E(M). Let
X C E(M). The rank of X in M is denoted by either vk X or rky X. The
deletion and contraction of X from M are denoted by M\ X and M /X, respec-
tively. The restriction of M to X is denoted by M | X. Three-clement circuits
and cocircuits of M are called triangles and triads, respectively.

Let M; and M, be matroids on E( M) Ue; and E( M) Ue,, respectively, such
that M1\e; = M and M, /e; = M. We say that M, is an addition to M and
M, is an expansion of M. We say that M is a non-trivial addition to M if e is
neither a loop nor a coloop of M) and e is not in a 2-clement circuit of M.

Let N be a minor of M. A minor of M which is isomorphic to N is called an
N-minor. Lete € E(M). We say that e is in every N-minor of M if neither
M\e nor M/e has an N-minor. Evidently e is in every N -minor of M if and only
if it is in every N*-minor of M*. We say that e avoids some N-minor of M if
there exists an N -minor of M whose ground set docs not contain e. Define M 7e
to be a matroid obtained from M /e by delction of the elements of cach parallel
class except for one representative of cach class. Similarly derive M -\e from M\e
by contracting the elements of each series class except for one representative of
each class [15].

If k is a positive integer, then a bipartition (A, B) of E( M) is a k-separation
of M if |[A] > k,|B| > k,andrk A+ vk B—rk M < k—1 [16]. Foran
integer n > 2, M is n-connected if it has no k-scparations forany £k < n. Ina
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3-connected matroid with at least four elements there are no circuits or cocircuits
with fewer than three elements.

Let A be a matrix with entries in the ficld GF(2). The dependence matroid on
the columns of A is denoted by D(A). We say that A and D(A) are binary. 1If
column e is adjoined to A, then A+ e denotes the resulting matrix. If e is acolumn
of A, then A\e denotes the matrix obtained by delcting e from A. Suppose that f
is a column of A whose sole non-zero entry is a one in row 1. Then A/ f denotes
the matrix obtained by removing row ¢ and column f from A.

An example of a matrix A in standard form together with its associated dual
matrix A* is given in Figure 1. The = by r identity matrix is denoted by I;.

€] ++¢€ryCp4] .0 €y €r4] +0€5,€1 ...6¢
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Suppose that E and F' are binary matrices such that one can be obtained from
the other by interchanging columns and performing elementary row operations.
Then we say that E and F are equivalent . The unique representability of binary
matroids is used throughout the paper {5,(3.7)].

We next give the binary case of a result of Coullard [6,(8.10)]. This result is
a version of the Splitter Theorem [14]. It indicates the central role played by the
three- and four-wheel matroids in the class of binary matroids. The wheel~malr01d
of rank r is denoted by W,.

1.1 Theorem. Let N be a 3 -connected proper minor of a 3 -connected binary
matroid M such that |E(N)| > 4 and M is not a wheel. Suppose that if N &
Wi, then M has no Wy -minor. Then there is a sequence Mo, My, ..., M, of 3-
connected matroids such that Mo = N, M, = M and, foreachiin{1,2,...,n},
M; is an addition to or expansion of M;_;.

The sequence of matroids in Theorem 1.1 is said to be a chain of 3-connected
matroids from N to M.
For each r > 4 let H, be the binary matrix given in Figure 2.

a102...ay by by ... by ¢, dr ey
01... 1101
10...1[110
I, 11...1]110

— O e

i b 4s
O = s

11...1
11...0
Figure 2: H,
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Let A, and B, denote the matrices H,\b, and H,\d,,e,, respectively. Let Y, =
D(A,) and Z, = D(B,). Evidently Z} = Z,,1\b,4+1, C,+1 as the matrices B and
Bri1\by+1, cr+1 have the same columns. The matroids Y:\b,_1,d, and Y;\¢y, d,
are self-dual. This can be seen by replacing row r in A\b,1,dy and A \cy, d,
by row 1+ row r and then interchanging the first and last columns. Each of the
two resulting matrices has the same columns as its dual matrix. For r» > 5 the
matroids (Y,.,\d,_1)* and Y;\b,_,c,,d, are isomorphic. This can be seen by
replacing row ¢ of (A,_; \d,-1)* by row i+ row r for each 1 in {2,3,...,7r=1}.
Then replace row 7 of the resulting matrix by row 1+ row r. A suitable reordering
of the columns produces A,\b,-1, ¢, d;.

Brylawki [3] stated that a binary matroid has no W3 -minor if and only if it is a
series-parallel network (for graphs see [1], [8], [9]). The next theorem forms the
core of a complete decomposition of the binary matroids with no Wj -minor given
by Oxley [11,(2.1)].

1.2 Theorem. Let M be a binary matroid with vk M > 4 and vk M* > 4.
Then M is 3 -connected and has no W, -minor if and onlyif M = Z,,2?,Z,\b,,
or Z,\c, forsomer > 4.

The following result characterizes binary matroids which almost have no four-
wheel minor. This is the main result of the paper.

1.3 Theorem. Let M be a 3 -connected binary matroid with rk M > 7 and
rk M* > 7. Then the number of elements of M which are in every W, -minor
exceeds one if and only if for some v > 7 either M or M* is isomorphic to
Y \X where X is a possibly emply subset of {b,_,c,, d.}. The only elements
of Y,\X which are in every W, -minor are a,, a,,b,, and e, when d, € X, and
a1,ay,and by whend, ¢ X.

The previous theorem states that a 3-connected binary matroid M with rank
and corank at least seven has exactly 0,1, 3, or 4 elements which are in every
four-wheel minor. Suppose that M has exactly one such element e. Then, for
some m > 5, there exists a chain of 3-connected matroids My, M1, ..., M, from
one of Z,,, 2}, Zm\bm, and Z,,\cy 10 M. If n > 1, then M is an expansion
Of Zp, OF Zy\Cm, OF M) is an addition 0 Z;, or Zy,\b,. Either M 7e or M\e is
3-connected and has no W -minor. The proof of these statements is similar to the
proof of Theorem 1.3 and is omitted. The next result corresponds to Theorem 1.3
for regular matroids. The graph K's — e is obtained by deleting an edge from the
complete graph on five vertices.

1.4 Theorem. Let M be a 3 -connected regular matroid. Then M has an element
which is in every Wy -minorifandonly if M = Wa, M(Ks—e),or M *(Ks—e).

Let F'bea flat of a matroid M. we say that F' is a modular flat of M if, whenever
Eisaflatof M7k E+rk F=rk EUF+rk ENF.
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Let M, and M, be matroids whose ground sets meet in T such that M |T" =
M, |T. If T is a modular flat of M, then the generalized parallel connection
of M, and M, across T is denoted by Pr( M), M2) [4,section S]. This matroid
has the property that for cach of its flats F, rkF = rky, F 0 E(M)) + vk,
FNE(M;) —rky, FNT.

The next lemma gives the gcometric connection between the binary matroids
with no W, -minor of Theorem 1.2, and those having clements in every Wy -minor
of Theorem 1.3, It states that the matroid Y, is obtained by attaching a three-wheel
matroid 10 Z,..; using a generalized parallel connection.

Figure 3

1.5 Lemma. Forr > 5 lct G and H be the restrictions of Y, (o {a\, ey, by,
¢, dy, €.} and E(Y,)\{a1,ar, b1}, respectively, and let F = {c,,d,,e,}. Then
Y; = Pe(G,H),G & Wia,and H = Z,_,. Morcover, H\b,_, = H\d, &
Zypoa\br—1, H\C+ ¥ Z,_1\Cr-1, and H\br—1,¢6, ¥ H\C;,d, & Z;_, if 7 > 6.

Proof: The flat F'is modularin G asitis a fulllinc [4,(3.15)]. Thus Y, = Pr(G, H).
It is easy to check that G & W3. To show that H = Z,_, consider the matrix
representation A,\{a1, a,, b1 } for H. This matrix has idcntical first and last rows.
Drop its last row and order its column by (e, a2 @3 ...0,-1 d; b2 b3 ...br—1 /).
This is the matrix B,_; which represents Z,_;. Thus H = Z,_, and by this order-
ing of columns, H\br_l = Zr-l\b,_l, H\C,— £ f_l\cr_l, H\df ¥ Zr_[\b],
H\b,_1,cr & Zy_1\bs—1,Cro1,and H\cr,dr ¥ Z,_1\b1,c—1. Itis casy to check
that Z,_; \b1 =4 Zr_l\b —1 and Zr_]\br_] Jer—1 ¥ 7, _1\b| ,Cral = Z;_z if
r>6.

The following well-known lemma is frequently used in the proof of Thco-
rem 1.3,

1.6 Lemma. [6] Lct N be asimple minor of amatroid M. If e is ina 2 -clement
circuit (cocircuit) of M, then M has an N -minor if and only if M\e (M [e) has
an N -minor.

Forr > 5 and g € {a1,ar, b1} suppose that Y;\g or Y¥;/g has a W, -minor.
By using Lemmas 1.5 and 1.6 and obscrving Figure 3 we sce that Z,_, has a
W4 -minor. This contradicts Theorem 1.2, Thus
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.7). a1,a,, and b, are is every Wy -minor of Y,

2, The Proof
In this section the proofs of Theorems 1.3 and 1.4 are given. we begin with some
preliminary lemmas.

2.1 Lemma. [2,(1)] Let M be a 3 -connccted matroid and e € E(M). Then at
least one of M [e and M \e is 3-connectcd.

The next lemma is well known (see, for example, [10,(2.1)]).

2.2 Lemma. Let N be a 3 -connected matroid with |E(N)| > 3 and M be an
addition to N. Then M is 3 -connected if and only if M is a non-trivial addition
foN.

2.3 Lemma. [11,(2.6,2.8)] For r > 4 suppose that a non-emply set of columns
X is adjoined to either By\b, or By41\by+1crs1 t0 give a representation of asimple
binary matroid with no W4 -minor. If the former holds, then X = {(1,1,...,1,0)T}.
If the latter holds, then X C {(1,1,...,1,0)7,(1,1,..., )T}

Several technical lemmas which are used in the proof of Theorem 1.3 are given
next.

2.4 Lemma. For some r > 4 suppose that column f = (fi, fa,..., )T is
adjoined o B € { By, By\b;, B:\cr, By\bs, ¢, } to give arepresentaton of a simple
binary matroid M. Suppose that f; = f; or distinct i,j € {1,2,...,r}. Further
supposcthati # r and j # r if B is B/\b, or B/\b,,c,. If 7,y € {a;,q;,b;,b;},
then there exists an automorphsm 1 of M such that 7(z) = y and 9(f) = f.

Proof: In B+ f replace row k by row k+ row i+ row j foreachkin {1,2,...,7} =
{i,7}. A suitable reordering of the columns produces the matrix B + £. This in-
duces an automorphism ¢ of M such that ¢(a;) = b;, ¢( a;) = b;,and ¢( f) = f.

Interchanging rows 1 and j of B + f induces and automorphism ¥ of M such
that ¥(a;) = a;, ¥(b;) = by, and ( f) = f. The result follows from considering
compositions of ¢, ¢~!, 9, and !, ]

2.5 Lemma. Forr > 4 let f and g be binary columns of length r such that f
has exactly two zero-entries and g has exactly two one-entries. Then there exists
an isomorphism X: D(B,+g) — D(B,+ f) suchthat \(g) = f and \(¢c,) = c,.

Proof: By the symmetry of B, we may assume that ¢ = (1,1,0,...,0)7. In
B, + g replace row k by row k+ row 1+ row r for cach k in {2,3,...,7 — 1}.
Column g now has exactly two zero-entries. A suitable reordering of the rows and
columns produces B, + f. Column g is transformed into f by these operations,
while column ¢, is unchanged. R

The next lemma will be used in the proof of Theorem 1.3 to show that e, is in
every Wi -minor of Y\ X whend, € X.

37



2.6 Lemma. Let M be a 3 -connected binary matroid with f € E( M) such that
M\f = Z, forsome r > 4. Then M/ f has no Wy -minor.

Proof: By inductionon r. If r = 4, then vk M/ f = 3 and so M/ f has no W;-
minor. Suppose that » > 4 and the result holds for 3-connected binary additions
to Z, when n < r. Assume that M/ f has a W4 -minor.

Adjoin a binary column f = (fi, f2,..., )7 with at least two zero-entries
and at least two one-entries to B, to obtain a representation for M. First sup-
pose that f has exactly two one-entries. By the symmetry of B, we may assume
that f = (1,1,0,...,0)T. Then {a1,02, f} and {b,b2, f} are circuits of M
while {a;,a2,b1,b2} is a cocircuit. It follows from Lemma 1. 6 that M If
M\a1, b/ f hasaWj -minor. Since {az, b2 } is acocircuitof M\e1, b1/ f, the ma-
troid M\a1, b1 /a2, f has a W, -minor. The dependence of {ay, f} in M/a; im-
plies that M/a; \ f has a W, -minor. This contradicts Theorem 1.2as M\ f ¥ Z,.

Next suppose that f has exactly two zero-entries. Adjoin a binary column g
with exactly two one-entries to B,. By Lemma 2.5 there exists an isomorphism
X\: D(B,+g) — M suchthat\(g) = f. By the previous paragraph D( B, +g) /g
has no W -minor. Thus M/ f has no W, -minor; a contradiction. It follows that
f has at least three zero-entries and at least three one-entries. By the symmetry of
B,wemayassumethat fi=fo=fs=land fa = fs = fo = 0.

Let X,Y C E(M) be such that M_\X/Y ¥ W4 and f € Y. Suppose that
M/ ¢, has a Wy -minor. The matroid Z, /¢, is graphic and forms a cycle on r edges
[11,(2.4)]. This matroid has corank one and M\ f = Z,. Thus M 7c,-, has both
corank at most two and a W, -minor; a contradiction. Hencec, ¢ Y.

Suppose that a; € Y for some i in {1,2,...,7}. The dependence of {b;,¢,}
in M/a; implies that this set meets X UY'. Suppose thatg € X N {b;, ¢, }. Then
M/a\f,9 & Z,_, and the column corresponding to f in (B, + f) /a;\g has at
least two zero-entries and at least two one-entries. Thus M/a;\g is a non-trivial
addition to Z,_, . The induction hypothesis implies that (M /a;\g) / f has no W; -
minor. However, {a;, b;, ¢, } is a circuit of M and M/a;, f has a W4 -minor. Thus
M/a;, f\g has a W, -minor; a contradiction. Hence X N {b;,c,} = ¢. It follows
that b; is in Y as c, is not. The element c, is a loop of M/a;, b; and this matroid
has a W -minor. Thus M/c, has a Ws-minor: a contradiction. It follows that
{a1,a2,...,a,}NY = ¢.

Now suppose thatb; € Y forsome jin{1,2,...,r}. Chooseiin{1,2,...,7}
so that the entries in rows ¢ and j of f agree. Then there exists an automorphism
n of M such that n(b;) = a; and n(f) = f by Lemma 2.4. The W,-minor
in M/b;, f implies the existence of a Wy -minor in M/a;, f. This contradicts the
conclusion of the previous paragraph. Thus {b;,b2,...,5,}NY = ¢andY = {f}.

Let A = {a1,02,b1,b2}, B = {a1,083,b1,b3}, C = {a2,03,b2,03}, D =
{04,as,b4,b5}, E = {04,05,54,1)6}, and F = {05,06,bs,b5}. Then A, B, C,
D, E, and F are cocircuits of M. The dual of M\X/f = W4 must be simple.
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Thus X meets each of these cocircuits in at most one element. Each element of
AUBUC Cisintwoof the sets A, B,and C. Thus ([AUBUC) NX|< 1. It
follows that [(A U B U C)\X| > 5, and likewise |( DU EU F)\X| > 5. Thus
M\ X/ f has at least ten elements: a contradiction. ]

2.7 Corollary. Let M be a 3 -connected binary matroid with f € E(M) such
that M\f = Z,, Z}, Z,\b,, or Z,\c, for some r > 5. Then M/ f has no Wi -
minor.

Proof: If M\f & Z,, then the result follows from Lemma 2.6. Suppose that
M\f & Z}, Z\b,, or Z,\c,. Consider a representation for M obtained by ad-
joining column f t0 B,+1\by+1, cr+1, Br\by OF By\c,. Then M is a restriction of
D(B;y1+ f) or D(B, + f). By Lemma 2.6, D( Bj + )/ f has no W4 -minor for
J € {r,r+ 1}. Thus M/ f has no W, -minor. ]

2.8 Lemma. Forsome r > 5 let M be a binary matroid reprsented by adjoining
a binary column f with at least two zero-entries and at least two one-entries to
B € {B,, B:\c,}. Then each element of E(M)\{f} avoids some W4 -minor of
M.

Proof: Choose i in {1,2,...,r} so that the column corresponding to f in (B +
£)/a; has at least two zero-entries and at leat two one-entries. By Lemma 2.3,
M/a;\b; has a W,-minor for all j in {1,2,...,7}.

Let k € {1,2,...,7}. By Lemma 2.4 there exists an automorphism of M
mapping b 10 a. By the previous paragraph M\b; has a W -minor. Thus M\a;
also has a Wy -minor. If B = B,, then M \c, has a W, -minor by Lemma 2.3. |

2.9 Lemma. Forsomer > 5 let M bea binary matroid represented by adjoining
a binary column f = (fi, f2,..., f)T with at least two zero-entries and at least
two one-entries to B € { B,;\br, B:\by, ¢, }. If there is an element of E( M)\{f}
which is in every Wy -minor of M, then there exists i € {1,2,...,r — 1} such
that either f; and f, are the only zero-entries of f, or f; and f, are the only
one-entries of f.

Proof: Suppose that if f has exactly two zero-entries or exactly two one-entries,
then neither of these two entries is f,. Then the column corresponding to f in the
matrix ( B+ f) /a, has at least two zero-entries and at least two one-entries. For all
kin{1,2,...,r — 1}, M/a,\b; has a Wj-minor by Lemma 2.3. We may apply
Lemma 24 as in the proof of Lemma 2.8 to obtain that M\z has a Wj-minor
for all z in {a1,a2,...,a,1}. If B = B,\b,, then M\c,, has a Wj-minor by
Lemma 2.3. Thus each element of E( M)\{ f} avoids some W, -minor of M. §

2.10 Lemma. For some r > 5 and i € {1,2,...,7 — 1} suppose that the
binary column f = (fi, fa,...,f)T has either its only zero-entries being f;
and f, or its only one-entries being f; and f,. If M is the dependence matroid
of (B/\br,c;) + f, then the only elements of M which are in every W, -minor
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are a;, b, ar, and f. Moreover, (B/\by,c,) + f is equivalent to A,\cy,d,, and
(B,\b,) + f is equivalent to A,\d,. Thus A,\d, and A,\e, are equivalent.

Proof: Assume that f; and f, are the only one-entries of f. Letk € {1,2,...,7}\
{i,r}. It follows from Lemma 2.3 that M /a; has a Ws-minor. By Lemma 2.4
there is an automorphism of M mapping a; to by. Thus M /b, also has a W,-
minor. Hence each element of E(M)\{a;, b;,a,, f} avoids some W;-minor.
By interchanging rows 1 and 1, columns e; and a;, and columns b, and b; of
(By\br,c;) + f we obtain A,\c,,d,. It follow from (1.7) and these operations
that a;, b;, and o, are in every Wy -minor of M. The element f is in every Wj-
minor of M by Corollary 2.7. From applying the same operations to ( B;\b,) + f
we obtain that this matrix is equivalent to A,\d,.

Assume that f; and f, are the only zero-entries of f. Choose k € {1,2,...,7}\
{i,r} and replace row £ of (B,\b,,c,) + f by row i+ row k+ row £ for each £
in {1,2,...,7}\{i, k}. Next interchange rows 1 and & of the resulting matrix.
Column f now has aone inrows i and r, and a zero in all other rows. The columns
of B, \by, c, have been permuted with columns a; and b; interchanged and column
a, unchanged. It now follows from the previous paragraph that ( B;\b,,c,) + f
is equivalent to A,\c,, d, and that only a;, b;, a,, and f are in every W4 -minor of
M. The above operations can also be used to show that ( B;\b,) + f is equivalent
to A,\d,. Moreover, as A,\e, = (B,\b,) + d,, the matrix A,\e, is equivalent to
Ar\d,. 1

2.11 Lemma. Forsome r > 5 let B be a binary matrix obtained by adoining a
non-emply set of binary columns X to B,\b.,c, sothat M = D(B) is simple and
has more than one element in every W4 -minor. Then, forsomei in {1,2,...,7—
1}, X is obtained by taking a non-empty subset of {d.,e,} and interchanging
the first-entry and the ith-entry of every column in the subset, and then possibly
adding c, to this subset. Thus B is equivalent to A,, A,\c,, A\d, or A, \c,,d,.

Proof: Assuming |X| = 1. Let f € X. Then column f has at least two zero-
entries and at least two one-entries since M has a Wy-minor. It follows from
Lemma 2.9 that f is obtained from either column d, or e, by permuting entrics 1
and 1 for some ¢ < r. Moreover, by Lemma 2.10, B is equivalent to A, \c,, d,.

Assume |X| > 2. Suppose b, € X. Then, by Lemma 2.8, M has at most
one element which is in every W, -minor; a contradiction. Thus each column of
X \{c,} has at least two zero-entries and at least two one-entries.

Assume that X \{c, } contains two distinct columns f = (f1, f2,-.., )T and
9={g1,92,--.,9-}T. The dependence matroids of ( B,\b,, c: }+f and ( B, \by, cr) +
g have more than one element in every W;-minor. By Lemma 2.9 there exist
i, € {1,2,...,7— 1} such that f; = f, and all other entries of f differ from
fi» and g; = g, and all other entries of g differ from g;. Suppose # j. By
Lemma 2.10 only a;, b;, a,, and f are in every Wy -minor of D(B,\b,,¢c, + f),
and only e;, bj, a,, and g are in every Wa-minor of D( B \by, ¢, + g). Thus only
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a, could be in every W, -minor of M ; a contradiction. It follow that ¢ = j. Since
M is simple X\{c,} = {f,g}. The set { f, g} is obtained from {d,, e, } by inter-
changing the first entry and the ith entry of each of d, and e,. Thus if ¢, ¢ X,
then | X | = 2 and B is equivalent to A,\c;.

Assume ¢, € X. Suppose |X\{c,}|] = 1. Let f € X\{¢,}. Then B =
Be\bs, ¢ + X = B,\b, + f. Lemma 2.9 implies that X\{c,} is obtained from
d, or e, by permuting the first and ith entry for some 1 < r. Lemma 2.10 implies
that B is equivalent to A,\d,. Suppose | X\{c,}| > 2. The previous paragraph
implies that X \{c, } is obtained from {d,, e, } by permuting the first and ith entry.
Hence B is equivalent to A,.

The proof of Theorem 1.3

Suppose that » > 7. Let X C {b,-1,¢r,d;}. We first show that Y;\X is 3-
connected. We have previously noted that Y, \b,_1,¢;,dr & (Y;—1\ds—1) and
thus it suffices to show that ¥,_;\d,_; is 3-connected. This follows as Z;_, is
3-connected [11] and Y;_1\¢,—1,dr—1, 601 & Z)_,.

The elements a1, a,, and b are in every Wa -minor of Y;\ X by (1.7). Note that
A\b,_1,6,,dr/ar_1 = By \b;_1, 6,1 + €,_y. The clements ay, a,, b1, and e,
of Y;\b,—1, ¢r, dr respectively, correspond to the columns ey, a,-1, b1, and e,_; in
By_1\bs-1, -1 + €,—1. Lemma 2.10 implies that only a;, a,_1,b;, and e,_; can
be in every Wa-minor of D(By-1\bs—1,¢r—1 + €,-1). Thus only a,, a,,b;, and
e, can be in every W, -minor of Y;\ X. Suppose d, € X. Then e, is in every Wj-
minor of ¥,\ X by Corollary 2.7. Suppose d, ¢ X. Then Y, \e, has a W4 -minor
by Lemma 2.3. Thus the only elements of Y;\ X which are in every W, -minor
are a1, a,, b1, and e, whend, € X, and a1, a,,and b, whend, ¢ X.

Assume that M has at least two clements which are in every W, -minor and
neither M nor M* is isomorphic to Y,\X~for T > 7. Lete be in every Wy -minor
of M. By Lemma 2.1 either M 7e or M\e is 3-connected. These two matroids
have no W, -minor and cither rank or corank at least six.

Let N be a largest 3-connected minor of M which has no Wy -minor. Then, by
Theorem 1.2, N is isomorphic to Z,_1,Z2_;, Z,\bs, Or Z,\c, for some s > 6. By
Theorem 1.1 there exists a chain of 3-connected matroids My, My, M2, ..., M,
from N to M with N & M, and M, = M. The matroid M; must have a W, -
minor by the choice of N. By duality we may assume that M, is an addition to
M. If Mo = Z,_ or Z,\c,, then, by Lemma 2.8, M) has at most one element
in every W4 -minor; a contradiction. Moreover, as Z,\c,, is self-dual, a largest 3-
connected minor of M which has no W, -minor is not isomorphic to Z,\c,. Thus
Mo = Z:_, or Z,\b,. Consider a representation for M obtained by adjoining
a column to B,\bs, ¢, or B;\b,. Lemmas 2.9 and 2.10 imply that if the former
holds, then M; ¥ Y,\c,, d,, while if the latter holds, then M; % Y,\d,. In either
case M # M aseithers=6 andrk M) < rk M,ors >7 and M ¥ Y,\ X.
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Assume that Mo ¥ Z;_, and M, ¥ Y,\c,,d,. Then M is self-dual and
we may assume that M, is an addition to M;. Both Y, and Y,\d, have a Z,\b,
minor. The matroid Z,\b, is larger than N. Thus M; is isomorphic to neither Y,
nor Y,\d,. fori > 2. It follows from Lemma 2.11 that M2 ¥ Y,\c, and M3 is
an expansion of M;.

Suppose M3 /g = Y;\cs. The only elements of M which may be in every W, -
minor area; , a, and b, . When determining possible triangles and triads containing
these elements in this proof it is often convenient to consult Figure 3. The only
possible triangles of M3 containing a; or by are {a1, a5, €5} and {a,, b1, ds}. The
set {a1,a,,b1} is a triad of M3 and any other triad of M3 containing @, or b,
would also contain g. )

Suppose that a; is in every Ws-minor of M3. The matroid M3 /a; has at
least [ E( M) )| elements. It cannot be 3-connected as otherwise the choice of N
would force it to have a W -minor. It follows from Lemma 2.1 that M3 \m is
3-connected. The choice of N forces M3 \a, to have at most | E( Mo)| element.
Thus Ms\a; & Ms\a;/b1,g. However {a,,d,} is dependent in the latter ma-
troid; a contradiction. Thus a; avoids some W, -minor of M.

Suppose that b; is in every Ws-minor of M3. The matroid M3 /b; has at least
| E( M1 )| elements and hence is not 3-connected. Thus M3 \b1 is 3-connected and
has at most | E(Mp) | elements. Hence M3\b1 = M3\bi/a1,g. The set {a,,e,}
is dependent in the latter matroid; a contradiction. Thus b; avoids some Wy -minor
of M3. Hence only a, could be in every W, -minor of Mj;; a contradiction. Thus
My ¥ Z\b, and M = Y;\d,.

Assume that M> is an addition to M, . Then, by Lemma2.11, M> ¥ Y, and M3
is an expanion of M;. Suppose M3/g = Y,. Consider a representation for M3
obtained by adjoining a column g = (g1,92,...,9s+2)7 to the matrix A%. The
only elements of M3 which may be in every Ws -minor are a1, a4, and b;. The set
{a1,a,,b1} is a triad of M3 and any other triad of M3 containing a; or a, also
contains g. The only possible triangles of M3 containing a) or e, are {a1,b1,¢,},
{a1,a,,¢,} and {a,, b1,d,}. We next show that if a; or a, is in every W, -minor
of M3, then M3 2 Y,.1\b,. It will then follow that M3 2 Y,.1\b, as at least one
of these elements is in every Wy -minor of M3.

Assume that a; is in every Wy -minor of M3. If M3 ia; is 3-connected, then
M; Ka; % M;\a1/b1,g. However {a,,d,} is dependent in the latter matroid;
a contradiction. Thus M3 /ay is 3-connected with at most |E(Mo)| elements.
Hence M3 /a1 = M3 /a1\b,e, and {a1, b1, ¢,} and {a,, a,, €,} are triangles of
Ms.

Consider the matrix (A} + g)\a1/bi1, e;. Its dependence matroid has no Wy -
minor. Lemma 2.3 implies that (g2,93,...,9s+1)7 is (1,1,...,1,0,1)T or
(1,1,...,1)7. Suppose the former holds. Then Mj\a,/b,e, & Z,\c,. How-
ever, M has no such minor. Thus the latter holds. Note that g; = g, = 1 and
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9s+2 = 0 as {a1,b1,¢,} and {a1,a,,€,} are tringles of M3. After interchanging
rows s and s+ 1 in (A3 +g)* we obtain the matrix A, \b,. Thus M3 & Y,,1\b,.

stume that a, is in every W, -minor of M3. If M3 Ka,, is 3-connected, then
Mjs\a, ¥ Mj\a,/b;,g. Theset{a1,c,} is dependent in the latter matroid; a con-
tradiction. Thus M37a, is 3-connected. It follows that M3 /e, & Mj/a,\d,, e,
and {a,,a,,€,} and {a,, b, d, } are triangles of M.

Consider the matrix (A + g)\a,/ds, e,. Its dependence matroid has no Wj-
minor. Lemma 2.3 implies that (g1, 92, ...,9,)7 is(1,1,...,1,0)Tor (1,1,...,
1)T. If the former case occurs, then M3\a,/d,, e, & Z,\¢,; a contradiction.
Thus the latter holds. Note that g,,2 = 0 and g,,; = g; = 1 as {a;,a,,¢,} and
{as, b1, d, } are triangles of M3 . After interchanging rows s and s+ 1 of (A% +g)*
we obtain the matrix A,41\b,. Thus M3 = Yi.1\bs.

We next show that My can be neither an addition to nor an expansion of Y, \b,.
It will then follow from this and duality that M3 ¥ Y.1\b, and M; % Y,.1\b,.

Assume that My is an expansion of M3. Suppose Ms/h = Y,+1\b,. Then
the only elements of M4 which may be in every W,-minor are a;,a,+1, and
by. The only possible triangles of M4 containing a; or a, are {a1,b1,6se1},
{as+1,b1,ds+1}, and {a1, 6541, €541 }. The set {ay,a,541, b1 } is a triad of My and
any other triad of M, containing a; or a,.; also contains h. Both e; and g4l
are in at most two triangles and at most two triads of Ms. Thus each of My /ai,
Ma\ar, Ms/a,, and M, ia,, have at least |[E(M;)| elements. It follows from
Lemma 2.1 and the choice of N that both a, and a,,; avoid some W, -minor of
My; a contradiction. Thus My is isomorphic to an addition to Y., \bs.

Consider a representation for M4 obtained by adoining a column k = (h;, ha,
eeeyhee1)T 10 Ayu1\b,. The only elements of M, which may be in every W -
minor are ay, a,e1,and by. Thesets {ay, b1, €s+1}, {ass1,b1,d5e1},and {a1, Gss1,
es+1} are triangles of M, and any other triangle of M, containing a; Or a, also
contains h. The only possible triad of M4 containing a; Or 6,41 is {e1,8541,b1}.

The matrix [(A,+1\b;) + h]/a,\h, which represents My /a,\h, is equal to A,.
Thus M4 /a, is an addition to Y. Itcannot be 3-connected by Lemma 2.11. Thus,
by Lemma 2.2, there is an element z for which {k,z} is dependent in M; /a,.
Thus {a,, h, z} is a triangle of M;.

Assume that g, is in every W; -minor of _M4 . Then M4 \al hasatleast | E( M2 )|
elements and is not 3-connected. Thus Mj /e is 3-connected with at most | E( Mo) |
elements. It follows that M, 7a1 Y Ma/e1\Cs+1,€5+1, h and for some element
y the set {a1, h,y} is a triangle of My. From considering the element of M as
columns in the matrix 4,,;\b, + h we obtain the equation z + y = a; + a, =
(1,0,...,0,1,0)7. Itis easy to check that the only simple solution for z and
yisz=aandy = a,. Thush = (1,0,...,0,1,0)T. From considering the
matrix [(A,+1\bs) + h]/a,.1\b) we obtain that My /a,.1\b; has a W, -minor by
Lemma 2.3. Hence only a; can be in every W, -minor of My; a contradiction.
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Thus a; avoids some W, -minor of My. .

Assume that a,.1 is in every Wj-minor of Ms. Then Ms\a,.1 has at least
| E( M2)| elements and is not 3-connected. Thus My /as+1 is 3-connected with at
most | E( Mo)| elements. It follows that Ma/ase1 = Ma/ase1\dse1, €501, h and
for some element y the set {a,41, b, y} is a triangle of My. From considering the
elements of M4 as columns in the matrix A,,,\b, + h we obtain the equation z +
Y= 06s+as1 = (0,...,0,1,1)T. Itis easy to check that the only simple solution
inzand yis T = a,+1 and y = a,. Thus h = (0,...,0,1,1). From considering
the matrix (A,+1\b, + h)/a1\bi we obtain that My /a;\b; has a W, -minor by
Lemma 2.3. Hence only a,. is in every Wi -minor of My ; a contradiction. Thus
a4+ avoids some W, -minor of M, . It follows that only b; may be in every W -
minor of My ; a contradiction. Thus

(2.12). M3 ¥ Y,1\bs, and by duality M3 # Y41 \bs.

It follows that M> is an expansion of M; where M ¥ Y,\d,.

Recall that (Y,\d,)* = Y,+1\bs, Cs+1,ds4+1. Consider a representation for My
obtained by adjoining a column g = (g1,92,-..,9s+1)7 to the matrix
Aye1\bs, €5y dse1. We shall first show that g € {cs41,ds4+1}. It will then fol-
low that M3 = Y1 \bs, Cse1 OF Yau1\bs, dov1. Moreover, if M3 is an addition to
M3, then M3 = Yo \bs.

The only elements of M; which may be in every Wj-minor are a1, as+1, b1,
and e,+1. By considering the matrix (As+1\bs, Co+1,ds+1 + g) /a2 \g we sce that
M3 /a,\g = Y,\cs, ds. Thus M3 /a, is an additon to Y, \c,, d,

Suppose that M; /a, is not 3-connected. From applying Lemma 2.2 as be-
fore we obtain that {a,,g,z} is a triangle of M for some element z. By the
symmetry of A,+1\bs,cs+1,ds+1 induced by interchanging any two of rows 2
through s — 1 we may assume that z € {a1,02,0as+1,b1,02,€541}. Thus g €
{(1,0,...,0,1,0)", (0,1,0,...,0,1,00T, (0,...,0,1,D7, (0,1,...,1,
0,17, (1,0,1,...,1,0,1H7, (1,0,...,0,1,HT}. Ifg # (0,...,0,1,1)7,
then M3 /a1 \em Y M;/as1\a1 has a W4 -minor by Lemma 2 3. Thus only
b, canbe in every W, -minor of M3 ; acontradiction. Henceg = (0,...,0,1, nT.
It follows that {a1, Gs+1, e,+1} and {a,, a,+1, g} are triangles of M3 and {as, 8541,
es+1} is a triad. Thus Mj/a, is not 3-connected. Hence M3\a; = M3\a; is 3-
connected with |[E( M1)| elements. It follows that M3\a; has a Ws-minor. The
element b, is in no triangle or triad of M;. Thus, by Lemma 2.1, b; avoids some
W, -minor of M3. By Lemma 2.3, M3 /a,\a,+) has a W, -minor. Hence only e,
could be in every W, -minor of M3 ;a contradiction. Thus M3 /a, is 3-connected.

The matrix ( As+1\bs, €541, ds+1 + g) /2, can be obtained by adding the columns
(1,0,...,0,1)T and (gi1,...,9s-1,9s+1)7 10 Bs\bs,c,. Tt follows from
Lemma2.11 mat(gly'")ga—liga‘”)Tis( 1) l)"'l I)TOI'(O, 1)"') IDO)T' Sup-
pose the former holds. If g, = 0, then M3 /a1 \ese1 = Z,\c,; a contradic-
tion. Thus g, = 1 and ¢ = c,+1. Suppose the latter holds. If g, = O, then



M3 /as1\a1 = M3 /as1\es1 has a Ws-minor by Lemma 2.3. Hence only by
could be in every Wy -minor of M a contradiction. Thus g, = 1 and g = d,4;. If
follows that M3 & Y41 \bs, Cse1 OF Yyu1 \bs, dos1.

Suppose M7 is an addition to M3. Then M3 ¥ Y,.1\b,. This contradicts
(2.12). Thus is an cxpansion of M3. Suppose M3 = Y,.1\bs,ds+1. This ma-
troid is self-dual. Hence Mj; is isomorphic to an addition 10 Y41 \bs, ds+1. By
the previous arguments M3 ¥ Y,,1\b,. This contradicts (2.12). Thus M3 is an
expansion of Y. 1\bs, Cs+1.

Assume that M3 /h = Y,41\b,, co+1. The only clements of M3 which can be
in every W, -minor are a;,a,.1 and b;. The only possible triangles containing
a or by are {a1,a,+1, €541} and {ass1, b1, dss1}. The only possible triads con-
taining a, or b, are {a;,a,1,b } and possibly some containing h. Suppose a;
is in every Wa-minor of M3. Then M3 /a) has at least | E(M;)| elements and
is not 3-connected. Thus M3\a, is 3-connected with | E( Mo)| olements. Hence
Mi\a; & M3\a1 /b1, h. However {a,+1,dss1} is dependent in M3\a1 /by, h.
Thus a,, and by a similar argument b, , avoids some W, -minor of M; a contra-
diction. |

The proof of Theorem 1.4.
Itis easy to check that each of Wy, M( Ks —e),and M*( K's —e) have an element
which is in every Ws-minor. The last two matroids have three such elements.
Suppose M has an element which is in every Wy -minor and M ¥ Wy, M(Ks —
e),or M*(Ks — e). Each clement of Ws, M( K3 3), M*(K33), M(Ks), and
M*(Ks) avoids some W,-minor. Thus M has no minor isomorphic to one of
these matroids. It follows from Tutte’s excluded minor characterizations of the
regular and graphic matroids [17, sections 10.4 and 10.5] that M is graphic. By
Oxley’s characterization of the regular matroids with no Ws-minor [12,Table 1]
and Theorem 1.1, M has a minor isomorphic to the cycle matroid of the graph J
given in Figure 4.

<A

J

J
Figure 4

The following isomorphisms show that each clement of M(J) avoids some

Wa-minor. J/a\b = J/a\c = J/h\b = J/g\d = J/e\f = J/j\i & W;. Thus
M has no element which is in every W, -minor; a contradiction. |
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