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ABSTRACT: A decomposition of K, into 2-perfect 8-cycles
is shown to cxist if and only if v = 1 (modulo 16).

1 Introduction

There has been a lot of work done recently on cycle systems; see [8] for an
excellent survey. An m-cycle system of order v is an ordered pair (V,C)
where V is the vertex sct of K, and C is a set of edge-disjoint m-cycles
which partition the cdge set of K.

Additional structure may be required of the decomposition of K, into
m-cycles. One such property is that of being i-perfect. Suppose we have
an m-cycle system of K, so that when, for each cycle, we take the graph
formed by joining all vertices in the cycle at distance 4, we again have a
decomposition of K. Then the decomposition of K, is called an i-perfect
m-cycle system.

Previous work in this arca has largely concentrated on 2-perfect m-
cycle systems; sce [9, 6, 10, 7, 5] for instance, although [1] deals with
3-perfect cycle systems.

Clearly for m = 3, the decomposition will be a Steiner triple system,
and for m = 4, no 4-cycle system can be 2-perfect. Apart from m = 6 (see
[6], and also [2] for the corresponding decomposition of A K,), all work has
been on 2-perfect m-cycle systems where m is odd.

In this paper we detcrmine the spectrum of 2-perfect 8-cycle systems.
In particular, we prove:
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MAIN THEOREM

The necessary and sufficient condition for the existence of a 2-perfect 8-
cycle decomposition of K, isv = 1 (mod 16).

First we verify the necessary conditions for a 2-perfect 8-cycle system
to exist. Certainly the number of cdges of K, namely v(v—1) /2, must be
divisible by 8. Morcover, the degree of each vertex, v — 1, must be even,
and so v must be odd. These requircments mcan that v must be 1 modulo
16.

Subsequently we shall show that for all v = 1 (modulo 16) there exists
a 2-perfect 8-cycle decomposition of K.

We shall need several “starting” cases; we give some smaller oncs
here as examples, and others in the Appendix. Henceforth we shall de-
note the m-cycle consisting of the edges {z1, 22 }, {2, 23}, {23, 24}, ...,
{Zm=1,%m}, {Zm, 1} by any cyclic shiftof (z1,22,...,2Zm) or (21, T,
TnelyeeyT2).

EXAMPLE 1.1 There is a 2 -perfect 8-cycle decomposition of K\7.

With element set Z17, the starter 8-cycle (0,16,1,7,3,10,13,5) gener-
ates (mod 17) a suitablc dccomposition.

EXAMPLE 1.2 There is a 2 -perfect 8-cycle decompositionof Kaas,a.

We take as element set U?=0{(0,i),(1 ,1),(2,1),(3,4)}. Then the fol-
lowing three 8-cycles are starters modulo 4, where the second component
is fixed and the first component is cycled modulo 4.

((0,0,(2,2,(0,1),(2,3),(1,0),(3,1,(0,2),(3,3))
((0,0,(1,2),(2,1,(3,3),(1,0),(0,2),(0,3),(0, 1))
((0,0),(1,1),(1,2),(3,3),(3,0,(2,1,(1,3),(0,2).

EXAMPLE 1.3 There is a 2 -perfect 8-cycle decomposition of Ks3.

Let the vertices be Z33. Then the following two 8-cycles are suitable
starters modulo 33:

(0,7,1,31,3,17,6,29), (0,13,4,21,9,8,16,31).

EXAMPLE 1.4 There is a 2-perfect 8-cycle decomposition of Kag.
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Let the vertices be Z49. Then the following three 8-cycles are suitable
starters modulo 49:

(0,17,1,25,3,34,6,44), (0,41,4,11,9,39,16,10),
(0,14,11,40,25,16,12,48).

EXAMPLE 1.5 There is a 2-perfect 8-cycle decomposition of Ksg,.

Let the vertices be Zg). Then the following five 8-cycles are suitable
starters modulo 81:

(0,67,1,77,3,50,6,58), (0,69,4,40,9,12,16,35),
(0,32,11,62,23,14,36,63), (0,1,14,57,29,35,46,56),
(0,73,18,35,37,77,57,33).

EXAMPLE 1.6 There is a 2-perfect 8-cycle decomposition of Ko7.

Let the vertices be Zg7 . Then the following six 8-cycles are suitable starters
modulo 97:

(0,41,1,49,3,58,6,68),(0,93,4,27,9,48,16,70),
(0,16,11,48,23,89,36,50),(0,94,14,16,29,36,46,76),
(0,15,24,52,53,19,25,86),(0,24,43,76,96,21,47,59).

2 The case n=1 modulo 3

We consider K, wherev = 16n+1 andn=3m+1. Thusv=48m+17=
4(12m+ 4) + 1. So we take, as vertex sct of K, the elements

{0} U{(4,/) |1 <i<12m+4, 1<j<4})

When m = 0, we have v = 17, and a decomposition of K7 is given in
Example 1.1. So now we assume that m > 1.

There is a resolvable balanced incomplete block design (BIBD) on -
12m + 4 elements with block size 4 and A = 1. Take such a design on the
set {(4,7) | 1 €1 < 12m + 4}, and let one parallel class be fixed. For
cach block {(11, /), (42,7),(13,), (14, 7) } in that fixed parallel class, we
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place a copy of the decomposition of K17 (see Example 1.1) on the vertex
set

{oo} U {(41,7),(32,7),(3,7),(4a, ) | 1 < j <4}
For all other blocks {(z, /), (y,7),(z, ), (w, j) } of the resolvable BIBD,
we place a copy of our decomposition of K4 4 4 4 (see Example 1.2) on the
vertex set

{(z,n11<7<4} U {(,)]1<5<4})
U {(z,) |1 <j<4}u{(w,) |17 <4)
The result is a 2-perfect 8-cycle decomposition of K, where v = 16n+ 1

and nis 1 modulo 3; this construction covers all cases with n = 1 modulo
3, without exception.

3 The case n= 0 modulo 3

Now we consider K, wherev= 16n+ 1 and n=3m,sov=48m + 1.

Let the vertices of K, be

{0} U{(, ) [1Li<12m, 1<j<4})

Now there exists a group divisible design (GDD) on 12 m elements with
block size 4 and group size 12 (and A = 1) forall m > 4 (orm = 1). (See
[4, Theorem 6.3].)

For m = 1 and 2, decompositions for K49 and Ko7 are given in Ex-
amples 1.4 and 1.6. X

For m = 3, a suitable decomposition of K45 is given in the Appendix.

For m > 4, a construction is as follows:
Take the GDD described above, on the sct {(4,7) | 1 < i < 12m}. For
each group {(41,),(42,7),...,(512,) }, place on the vertex set

{oo} U {(i1, 7,2, 1),..., (12, /) | 1 <7 <4}
a copy of the decomposition of K49 given in Example 1.4. For each block

of the GDD, {(z, ), (v,7),(2,7),(w, ) }, place a copy of our decompo-
sition of K4 4 4 4 On the vertex sct

{(z,N11<7<4} U {(1,) |1<j<4}
U {(z,N11<7<4}0{(w, ) [1L7<4}

The result is a 2-perfect 8-cycle decomposition of K, where v = 48m + 1
andm > 4.
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4 The case n= 2 modulo 3

4.1 n=2 modulo6

Herev=16n+ 1 wheren=6m+ 2. Sov=4(24m + 8) + 1.
Let the vertex set of K, be

{0} U{(5,/) |1 <i<24m+8, 1<j<4).

A decomposition of K33 is given in Example 1.3. Sonow letm > 1.
Now there exists a GDD on 24 m+ 8 elements, with group size 8, block
sized(and A = 1) forall 24 m+ 8 > 32 orm = 0, thatis, forallm > 0.
(See [4, Theorem 6.3].)
Take this GDD on the set

{(i,) |1 <i<24m+8}.

For each group {(45,7) | 1 < s < 8}, place on the vertex set {oo} U
{(35,7) | 1 £ s< 8, 1< <4} acopy of the decomposition of Ka3
given in Example 1.3.

Then for each block {(z, /),(y,/),(2,7),(w,;)} of the GDD, take
the vertex set

{(z,)11<7<4} U {(wN]1<j<4}
U {(z)11<7<4}U{(w,/) 1<) <4}

and place on this a copy of the decomposition of K4 4 4 4 given in Example
1.2.
This completes the case n = 2 mod 6, with no exceptions.

4.2 n=5 modulo 6

Herev=16n+ 1 where n=6m+ 5,andsov = 16(6m+ 5) + 1.
Let the vertex sct of K, be

{oo} U{(i,/) |1 <i<6m+5, 1<j<16).

A decomposition of Kg) (when m = 0 above) is given in Example 1.5.
The case m = 1 (corresponding to K'177) is given in the Appendix. The
general construction here requires m > 3, so we now deal withm = 2.
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EXAMPLE 4.1 There exists a 2 -perfect 8-cycle decompositionof Ka73.

Note firstly that there exists a group divisible design (GDD) on 48 ele-
ments with group size 8 and block size 3 which is resolvable. This is given
explicitly in the Appendix of [11]. The 16 starter blocks given there are
developed modulo 20. Adjoin to each starter block the element (0, 3) and
develop this also modulo 20 (on the first component). The result is a GDD
on 68 elements with block size 4, one group of size 20 (namely the 20 new
elements {(7,3) | 0 < 1 < 19}) and six groups of size 8.

Now we are rcady to give our deccomposition of K273.

Let the elements be

{oo}U{(i,/) [1<i<L68, 1<j<4})

On the set {(4,7) | 1 < i < 68} we place the above-described GDD.
Without loss of gencrality let its group of size 20 be {(4,7) | 1 <1< 20},
with the six groups of sizc 8 on the remaining 48 elements. Then on {co}U
{(4,7) |1 €< 20, 1< j< 4} weplace acopy of our decomposition
of Kg; (see Example 1.5). Also for cach group {(iz,7) | 1 < z < 8} of
size 8 of the GDD, place on {(iz,7) |1 <2< 8, 1 <7< 4}U{oo}
a decomposition of K33 (sce Example 1.3). Finally, for each block of the
GDD of size 4, say {(iz,7) | 1 < = < 4}, place on U:.__,{(i,,j) |1 <
J < 4} a decomposition of K4,4,4,4. The result is a 2 -perfect 8 -cycle
decomposition of K773.

Now let m > 3. It is known ([3, Theorem 4]) that there exists a GDD
on 6 m+ 5 elements with blocks of size 4 and groups of size 2, and exactly
one group of size 5 (and A = 1) provided m # 1, 2. So take such a GDD
on the set {(4,7) | 1 < 1 < 6m + 5}, and without loss of gencrality let
{(,7) | 1 <1 <5} be the group of size 5, and {(21,7),(21+ 1,/)}
(3 < i < 3m+2) the remaining groups of size 2. Then on {oo}U{(3, ) |
1<i<5, 1< j< 16} place a decomposition of Kg; (sec Example
1.5). Andon {0} U {(24,/),(2i+1,/) |1 < j < 16}, foreach 1 with
3 < i< 3m+ 2, place a decomposition of K33 (see Example 1.3).

Finally, for each block {(z,7) | 1 < s < 4} of the GDD, place on
U:___l {(zs,7) | 1 £ j < 16} acopy of the decomposition of Ki¢,16,16,16
given in the Appendix.
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Conclusion

Combining the results in the previous sections, we have proved

MAIN THEOREM

There exists a decomposition of K, into 2 -perfect 8 -cycles if and only if

v=

1 mod 16.
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APPENDIX

A 2-perfect 8-cycle decomposition of K6,16,16,16:
Elements are

{G,) 10<i<3, 1<j<4U{(5,7) | 0<Ki<3, 5<7<8)
U{(3,/) |0<i<3, 9<j<12}U{(5,7) | 0<Ki<3, 13<5<16}.

The graph has 6 x 162 edges, and so we need 4 x 48 8-cycles. We fix the
second component and cycle the first modulo 4. We then have 48 starter
8-cycles (modulo (4, -)):

((0,1,(2,9),(0,5),(2,13),(1,1,(3,5),(0,9),(3,13)),
((0,1),(2,10),(0,6),(2,13),(1,2),(3,7),(0,12),(3,14)),
((0,1),(2,11),(0,7,(2,13),(1,3),(3,8),(0,11),(3, 15)),
((0,1,(2,12),(0,8),(2,13),(1,4),(3,6),(0,10),(3,16)),
((0,2),(2,10),(0,5,(2,14),(1,4),(3,8),(0,12), (3, 16)),
((0,2),(2,11),(0,6),(2,14),(1,3),(3,6),(0,9),(3,15)),
((0,2),(2,12),(0,7),(2,14),(1,2),(3,5), (0, 10),(3, 14)),
((0,2),(2,9),(0,8),(2,14),(1,1),(3,7,(0,11),(3,13)),
((0,3),(2,11,(0,5),(2,19),(1,2),(3,6),(0,11),(3,14)),
((0,3),(2,12),(0,6),(2,15),(1,1),(3,8),(0,10),(3,13)),
((0,3),(2,9),(0,7,(2,15,(1,4,(3,7,(0,9, (3,16)),
((0,3),(2,10),(0,8),(2,15),(1,3),(3,5),(0,12),(3,15)),
((0,4),(2,12),(0,5),(2,16),(1,3),(3,7),(0,10),(3,15)),
((0,4),(2,9),(0,6),(2,16),(1,4,(3,5),(0,11),(3,16)),
((0,4),(2,10),(0,7),(2,16),(1,1),(3,6),(0,12),(3,13)),
((0,4,(2,11),(0,8),(2,16),(1,2),(3,9),(0,9),(3,14)),
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(¢0,1),(1,9,(2,5),(3,13),(1,1),(0,9),(0,13),(0,5)),
((0,1),(1,10),(2,6),(3,13),(1,2),(0,11),(0, 16),(0,6)),
((0,1),(1,11),(2,7,(3,13),(1,3),(0,12),(0, 15),(0, 7)),
((0,1),(1,12),(2,8),(3,13),(1,4),(0,10),(0,14),(0, 8)),
((0,2),(1,10),(2,5),(3,14),(1,4),(0,12),(0,16),(0, 8)),
((0,2),(1,11),(2,6),(3,14),(1,3),(0,10), (0, 13),(0,7)),
(0,2),(1,12),(2,7),(3,14),(1,2),(0,9),(0, 14), (0, 6)),
(0,2),(1,9,(2,8),(3,14),(1,1),(0,11),(0,15),(0,5)),
((0,3),(1,11),(2,5),(3,15),(1,2),(0,10), (0, 15), (0, 6)),
((0,3),(1,12),(2,6),(3,15),(1,1),(0,12),(0, 14), (0, 5)),
((0,3),(1,9),(2,7),(3,15),(1,4),(0,11),(0,13),(0,8)),
((0,3),(1,10),(2,8),(3,15),(1,3),(0,9),(0, 16),(0, 7)),
((0,4),(1,12),(2,5),(3,16),(1,3),(0,11),(0, 14),(0,7)),
((0,4),(1,9),(2,6),(3,16),(1,4),(0,9),(0, 15),(0,8)),
((0,4),(1,10),(2,7),(3,16),(1,1),(0, 10),(0,16),(0, 5)),
((0,4),(1,11),(2,8),(3,16),(1,2),(0,12),(0, 13),(0,6)),

((0,1),(1,5),(1,9),(3,13),(3,1),(2,5),(1,13),(0,9)),
((0,1),(1,6),(1,10),(3,13),(3,2),(2,7,(1, 16), (0, 10)),
((0,1),(1,7,(1,11),(3,13),(3,3),(2,8),(1, 15), (0, 11)),
((0,1),(1,8),(1,12),(3,13),(3,4),(2,6),(1,14),(0, 12)),
((0,2),(1,6),(1,9),(3,14),(3,4),(2,8),(1,16), (0, 12)),
((0,2),(1,7,(1,10),(3,14),(3,3),(2,6),(1,13),(0, 11)),
((0,2),(1,8),(1,11),(3,14),(3,2),(2,5),(1, 14),(0,10)),
((0,2),(1,5),(1,12),(3,14),(3,1),(2,7),(1,15),(0,9)),
((0,3),(1,7),(1,9),(3,15),(3,2),(2,6),(1,15),(0, 10)),
((0,3),(1,8),(1,10),(3,15),(3,1),(2, 8),(1,14),(0,9)),
((0,3),(1,5),(1,11),(3,15),(3,4),(2,7),(1,13),(0,12)),
(€0,3),(1,6),(1,12),(3,15),(3,3),(2,5),(1,16),(0, 11)),
((0,4,(1,8),(1,9),(3,16),(3,3),(2,7),(1,14),(0, 11)),
((0,4),(1,5),(1,10),(3,16),(3,4),(2,5),(1,15),(0, 12)),
((0,4,(1,6),(1,11),(3,16),(3,1),(2,6),(1,16),(0,9)),
((0,4),(1,7),(1,12),(3,16),(3,2),(2,8),(1,13),(0, 10)).

A 2 -perfect 8 -cycle decomposition of K45, based on Z45:

(0,53,10,123,62,122,111,98), (0,38,89,120,48,30,133, 68),
(0,62,81,127,22,144,29,140), (0,93,44,144,8, 12,113, 83),
(0,14,42,45,140,82,72,16),  (0,1,3,9,17,24,39,121),
(0,12,53,124,34,144,16,70),  (0,20,57,31,140, 54,21, 48),
(0,21,99,30,8,114,35, 64).
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A 2 -perfect 8 -cycle decomposition of K77, based on Zy77:

(0,148,93,12,121,167,32,144),  (0,100,114,138,154,36,94,20),
(0,101,30,143,135,123,53,132), (0,166,50,67,175,171,54,85),
(0,83,49,96,24,50,174,142),  (0,18,156,42,92,54,106,28),
(0,5,11,4,13,23,8,56), (0,13,34,7,144,51,29,120),
(0,1,90,113,156,4,55,19), (0,2,138, 63,19, 106, 160, 49),
(0,3,100,38, 148,75, 45,82).
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