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Abstract. Let m be a double occurrence word (i.e. each letter occuring in m occurs
precisely twice). An altemance of m is a nonordered pair vw of distinct letters such that
we meet altematively ...v...w...v...w... when reading m. The altemance graph
A(m) is the simple graph whose vertices are the letters of m and whose edges are the
altemances of m. We define a transformation of double occurrence words such that
whenever A(m) = A(n), m and n are related by a sequence of these transformations.

1. Introduction

A simple graph is called a circle graph if it is isomorphic to the intersection
graph of a finite collection of chords of a circle. Without loss of generality, we
.may assume that no two chords share a common endpoint. Thus if we attach a
letter to each chord, and if we write this letter near each end of the chord, we con-
struct a word m by turning around the circle and recording the successive letters.
Each letter occurs precisely twice in m, so we say that m is a double occurrence
word. We do not distinguish any two double occurrence words which are cycli-
cally equivalent (such that one of these words is obtained from the other one by a
cyclic permutation of the secquence of the letters eventually followed by a rever-
sion). The reverse construction which associates a chord configuration to a double
occurrence word is easy to perform.

Analternance of m is a pair vw of distinct letters such that we meet altemnatively
«e.¥...w...v...w... When reading m. We notice that two chords labelled by
letters v and w intersect if and only if vw is an alternance of m. The alternance
graph A(m) is the simple graph whose vertices are the letters of m and whose
edges are the alternances of m.

Clearly the class of circle graphs is equal to the class of alternance graphs, but
from a combinatorial point of view it is easier to handle double occurrence words
than chord configurations. A study of circle graphs can be found in Golumbic’s
book “Algorithmic theory and perfect graphs” [5].

If u is a word on the set V, we denote by i the word obtained by reversing the
sequence of the letters of .

Let m be a double occurrence word on the set V. A split of mis a biparti-
tion {V’ V”} of V such that [V'|, [V"| > 2 and m = m|m{mjm} where m}
and m) (m{ and mj) are subwords of m which only use lctters in V'(V"). The
replacemem of m by one of the following words m) m{m) @My, m)m{m,mj,
) mimym; is called a turnaround in m w.rt. {V',V"}.
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(1.1) Remark: We may only consider the first of these turnarounds. The second
one is similar to the first one after exchanging the roles of V' and V”. The third
one is the composition of the two first ones.

In a chord configuration associated to m, let C'(C") be the block of the chords
whose endpoints are labelled by V'(V"). Then we can interprete a turnaround in
m as the reversal of C', or C”, or both.

A split of a simple graph G is a bipartition {V', V"} of the vertex-set V(G)
satisfying the two following conditions:

@ V]IV >2
(i) there exist subsets W' € P(V') and W" € P(V") such that:
{vlvll e E(G):‘U, e VI, 'U" e VII} - {UI'U": ‘U' e WI’ vll e WII}.

A graph is said to be prime if it has no split and at least three vertices. The

following property is easy to verify.

(1.2)Property: If{V',V"} isasplitof adouble occurrence word m, then {V', V"}
is a split of the alternance graph A(m). Moreover, if = is another double occur-
rence word obtained through a turnaround in m w.rt. {V',V"} then A(m) =
A(n). i

The first part of the proposition has no converse. For example, with m =
acbdbcad, V' = {a,b}, V" = {c,d}, {V',V"} is a split of A(m) whereas it
is not a split of m. On the other side the second part of the proposition implies
that a sequence of turnarounds does not modify an altenance graph. The main
result of this paper states that the converse actually holds.

(1.3) Theorem. If n and m are two double occurrence words such that A(n) =
A(m), then, if A(n) is connected there exists a sequence of turnarounds trans-
forming n info m.

The theorem will be proved in Section 6 but we notice that, for A(n) = A(m)
prime, A. Bouchet proved in [1] that there exists a single double occurrence word
(up to cyclic equivalence) which realizes A(n) = A(m). Son= m (up to cyclic
equivalence). Thus we shall suppose in the sequel that A(n) = A(m) has some
split {V',V"}.

2.Turnarounds and 4-cocycles

To prove the theorem, we associate to any double occurrence word m on aset V
an ordered pair (G, T) where G is a 4-regular graph on the vertex-set V and T’
is an Euler tour of G. To construct (G, T) we consider a cycle T of length 2|V|
whose vertices are labelled by the successive letters of m, and we identify each
pair of vertices labelled by a same letter v € V into a single vertex which we
naturally identify to v. Conversely if (G, T) is given m is equal to the sequence
of the successive vertices of T. Thus the mapping m — (G, T) is bijective (up

58



to an isomorphism). Now to interprete a turnaround in m in terms of (G, T) we
recall some definitions.

If G is a (nondirected) graph with possible loops and/or multiple edges, then
it will be convenient to decompose each edge e into two half-edges h' and h”,
having one end each, the ends of e being the ends of A’ and h”. A transition
of G is a pair of distinct half-edges {h, k} with a same end, and we denote this
common end by o(h,k). A closed trail (also called briefly a four) is a se-
quence of pairwise distinct half-edges T = (hohihz ...hai—2h21-1), 1 > 0,
such that {{h;_1, hi}, {hi, his1}} is composed of one edge and of one transi-
tion foreverys=0,1,...,21 — 1 (with the conventioni + 1= 0 ifi=2]—1
andi—1=2{—1if{=0). Tis an Euler tour if each half-edge appears inT". Sup-
posing that {ho, h; } is a transition, the vertex-sequence of T is (a(ho, h;)o( hs,
h3) ...0(h2i-2,h21-1)). A subsequence of T, say P = h;hie1 ... hi2p-t iS
called a subpath if {h;, his1}, {his2, his3}, .. . {his2p-2, hirap-1 } are transmons
of G, and we call (o(h;, hiv1)o(hiea, hiss) ... o( h;+2p_2 , h,‘+2p_1 )) the vertex-
sequence of P.

Consider the pair (G, T') associated to m, where T is equal to the sequence of
the half-edges defined above. The vertex-sequence of T is equal to m. Consider

‘a split {V' V"} of m and the associated decomposition m = m{ m/{m}, m/ where
m} and m) (m{ and mj) are subwords of m which only use letters in V/(v").
This induces adecomposn.ion T = P{ Py P; P} where Pl , P1 , P3, Py are subpaths
whose vertex-sequences are respectively m}, m{, mj, mj.

We denote by P|_ and P;. the first and the last half-cdges of Pj, and we define
the similar notations for P{', P;, P;. Then {{P{.,P{_},{P}.,P;-},{P;., P} },
{P;.,P|_}} is a subset of edges. Moreover it is equal to the cocycle 8V’ = 8V”
because the paths P and P; are incident to vertices in V' only when P{’ and P}
are incident to vertices in V" only. Now if we consider some tumaround n =
m) M{m) M, the corresponding pair (H,U) can be constructed by replacing in
G the four edges of §V' by {{P}., P{.}, {P{~,P;_}, {P;.,P}.}, {P}-,P|_}},
which yields the graph H and transforms the Euler tour T into U = PIP ' Py Py
with its corresponding path decomposition (se¢ Figure 1).

3. Connectivity

Let A = (V, E) be a simple graph and V' € P(V). The cut-matrix wrt. V'
is the binary matrix IT = (ITyp»:v' € V', v" € V\V’) such that [Ty = 1 if
and only if v'v" € E. Let C(V') = rank(IT). The mapping C is called the
connectivity function.

Let us consider now a pair (G, T’} with a 4-regular graph G and an Euler tour
T, and suppose that A is the alternance graph of the vertex-sequence of T'. Let us
consider a bipartition {V’/,V"} of V and let I"’(I"") be the set of the components
of the induced subgraph G{V'](G[V"]). Finally let us define the binary matrix
B = (boe:d € T', " € T") such that b is the parity of the number of edges
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Figure 1

The preceding operation will be called a turnaround of (G, T) w.r.L. the cocycle
V' = 6V".

that join the component ¢’ to the component ¢”. The following property is proved
by A. Bouchet [3] by using the theory of isotropic systems.

(3.1) Lemma. The connectivity function satisfies C(V') = |6V'|/2 — |T"'| -
IT"| + rank(B) + 1. |

To have another expression of C(V'), let us define for each component c of
' UT the excess e(c) as the number of edges of §V' incident to ¢ decreased by
4,andlete=1/4 Y (e(c):ceT'UT"),

A simple computation shows thate = 1/2|6V’| — |T'’| — |T'"|. Thus Lemma
(3.1) implies the following formula:

3.2) C(V') =e+rank(B) + 1.

4. Ring configuration
Let G be a 4-regular graph and {V’,V"} a bipartitionof V = V(G). G hasa
ring configuration w.r.t. {V',V"} if V' is partitionned into V{,V; ...V} and V"
is partitioned into V{, V3’ ...V} in such a way that the following properties hold:
(i) GIV{1isacomponent of G{V'] and G[V}"] is a component of G[ V"] for
i=1,2...k
(ii) forsi=1,2...k,theedges which join V/(V}") to V/V{(V/V;") composea
4-cocycle made of two edges between V' and V;(V;” and V) and two edges
between V; and V", (V{" and V) with the convention V' = V{(V},, =
.
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Example:

(4.1) Lemma. Let (G,T) be the ordercd pair associated to a double occurrence
word m and let A(m) be the alternance graph of m. If {V',V"} is a split of
A(m), then either G{V'] and G[ V"] are connected or G has aring configuration
wrt {V',V"}.

Proof: Let T'T be cut-matrix of A(m) w.r.t. {V',V"}. Since {V',V"} is a split
of A(m), TT has the following structure:

W" VII\W"
—> (——)_
w I 1 0
n =
V'\W'I 0 0

W' and W" arc not empty otherwise A(m) will not be connected. SoC(V') =
rank(T'T) = 1. Formula (3.2) implies
C(V')=e+rmank(B) + 1,
and so
e+rank(B) =0.
We claim that e(c) > 0 for every component ¢ of I'' U T”. We consider the

diffcrent cases:
if e(c) = —4, then the number of edges of 6V’ incident to ¢ is equal to zero,

which is impossible since G is connected,
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if e(c) = —3 or —1, then there would be a vertex of odd degree in c, which
is impossible because G is 4-regular,

if e(c) = —2, then the number of edges of §V' incident to c is equal to 2;
the double occurrence word m is the sequence of the successive vertices of
T, we can decompose m into m = myma where m; only has vertices of ¢
when m; only has vertices of V'\c, so there is no alternance in m composed
of a vertex of c and a vertex of V\c, and so A(m) is not connected, that is
impossible.

So the claim is proved, which implies e > 0. Since rank(B > 0), we have
e = rank(B) = 0. Since rank(B) = 0 the number of edges between any two
components of I'/UT” is equal to 2 or4. In the first case G has aring configuration
w.r.t. {V',V"}. In the second case G[V'] and G V"] are connected. 1

S. Turnaround of (G, T)

(5.1) Lemma. If G is a 4-regular graph with a ring configuration w.r.t. a bi-
partition {V',V"} of V(G), then there exists a sequence of tumarounds making
G[V'] and GL V"] connected with |§V'| = |6V"| = 4.

Proof: We use the same notation as in Section 4 for a ring configuration. We
suppose that k > 2. We notice that §( V" U V3) is a 4-cocycle. We partition this
4-cocycle into two pairs {{h’,h"}, {k',k"}} and {{I',l"}, {m',m"}} insuch a
way that {{h', h"}, {I',1"}} is the pair of edges joining V}' and V", and {{K', "},
{m', m"}} is the pair of edges joining V; and V,' (see figure 3). We make the
turnaround as described at the end of Section 2. Then if we let W; = V{UV; and
W3 = V' U V' we have a new ring configuration with the following partitions
{V'=WiUVjU---UV]., V"= Wy UV'U---UV['} where k, the ‘half-length’,
is replaced by k — 1 (see Figure 3).

If we suppose k = 2 we do the same construction as above then G W31 and
GIW?] are connected and |[§Wj| = |6W;| = 4, which proves the lemma. If
k > 2 we use the construction to make an induction on k.

6. Proof of Theorem (1.2)

We prove the theorem by induction onp = |V|.
If p=2,itis true.
We suppose that the theorem is true for p > 2. We know this result if A(m) =
A(n) is prime (1], so we suppose that A(m) = A(n) has a split {V',V"}.
According to Section 2, we associate an ordered pair (G, T') withm and another
ordered pair ( H,U) with n. ‘
By Lemma (4.1), we know that G and H have aring configuration w.r.t. {V',V"}.
By Lemma (5.1), there exists a sequence of turnarounds transforming G into a
graph G, such that G [V'] and G, [ V"] are connected and verify |§V'| = |§V"] =
4. The Euler tour T is transformed into 77 which yiclds a pair (G1,T3), and we
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denote by p the vertex-sequence of T . Similarly we derive a pair ( H,, U, ) from
(H,U),suchthat H;[V'] and H,[V"] are connected and verify |§V'| = |6V"] =
4, moreover U is an Euler tour in A and we denote by 7 the vertex-sequence
of U;. We have A(u) = A(m) = A(n) = A(n). We consider the following
decompositions of s and n wrt. {V',V"}:u = piufpbpl and n = ninininl
where ), 43,7 and n; only have letters of V', whereas p!, 4}, ! and % only
have letters of V.

In order to use the induction on p = |V|, we consider a new elementv ¢ V
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and we construct two words ' = pjvpjv and p” = pfvpjv associated o the
decomposition of . Similarly we construct two words #' = njvnyv and 1" =
n//vnj v associated to the decomposition of . The words p' and ' are defined on
the same set of letters V' + v whereas p” and %" are defined on V" + v. We have
A(p) = A(x') and A(p") = A(n"); because {V',V"} is a split of the graph
F = A(p) = A(n), if we consider in F a vertex v of V" such that FLV' + "]
is connected then A(p') and A(#') are isomorphic images of F[V' + v"] in the
bijectioni: V'+v" — V'+vdefined by i(v') = v’ forevery v’ of V' andi(v") = v.
Similarly for A(u") and A(%").

By induction there exists a sequence of turnarounds which transforms p' into
#' and another one which transforms p” into 5. We prove that each of these
turnarounds, denoted by —, can be associated to a tunaround on x. And so the
theorem will be proved.

We suppose for example that — is applied to p'. It is associated with a split
{V{,V3} of u'. We may suppose that v € V; without loss of generality, so that
the decomposition of p/ w.r.t. {V{, V5 } can be written p’ = By A1 ClvB; A;Cyv
with s} = B} A|C} and py = By A5 Cj where A} and A; are words on Vy while
B|,C\ B} and Cj are words on V; — v. By Remark (1.1) we may suppose that
the result of — on y' is the word B} A} C}vBj A3 Cjv. Then the transformation
which changes the word g = p} /b s into the word B} A{C{vB; A3Cyvis a
turnaround w.r.t. the split {V{, V" UV; — v}, which is the expected turnaround of
. 1
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