On the Toughness of Some Generalized
Petersen Graphs

Kevin Ferland

Abstract

Upper and lower bounds are established for the toughness of the
generalized Petersen graphs G(n.2) for n > 5, and all non-isomorphic
disconnecting sets that achieve the toughness are presented for 5 <
n < 15. These results also provide an infinite class of G(n,2) for

which the toughness equals = , namely when n = 0 (mod 7).
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1 Introduction

Generalized Petersen graphs G(n, k) are defined as follows for n > 3 with
1<k < n—1and 2k # n: G(n, k) has vertexset V' = {uy, ..., un, v1, ..., Un},
and edge set E = {(u;, ui41)|1 <1 < n}U{(ui, v)|1 < i < n}U{(vi,vise)|1 <
¢ < n}, where all subscripts are taken modulo n. We restrict our attention
to the cases where n > 5 and k = 2. It will be convenient to refer to
a subgraph of G(n, k) induced by V = {u;, ..., %izm-1.9, ..., Yigm-1} for
some i and some m < n, as an m-section. The toughness ¢(G) of a graph
is defined [1] as oo if G = KAj, else t{(G) = min {w____(G]S-l 5)
all disconnecting subsets S of V(G) such that «(G) < |S| < |V(G)|, where
w(G — S) denotes the number of components in the subgraph induced by
G — S. We will sometimes find it convenient to refer to a disconnecting set
S and |S| both by S and refer to w(G — S) by just w, but their meanings
should be clear in context. We will also use ¢(G — S) to denote the set of
components induced by G — S. All other terms can be found in [2].
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2 Toughness

The following results were inspired by the following conjecture made in [3].

Conj a: If n > 5 and n = 1 (mod 4) then #{G(n.2)) = 3
The authors had noted that {(G(5.2)) = t{(G(9.2)) = % and wondered if
perhaps this was the sign of an infinite class of graphs for which toughness
equals 3 However, for n > 11 we have {(G(n.2)) < 3 as shown by the
following theorem.

2.1 Upper Bounds

Theorem 1 Ifn =0 (mod 7) and n > 7 then t(G(n,2)) < g
Ifn=1(modT) and n > 15 then 1(G(n,2)) < %
Ifn=2(mod7) andn>9 then t(G(n,2)) < 54";161. |
Ifn=3(modT) and n > 10 then t(G(n,2)) < 2:12
Ifn=4 (mod 7) and n > 11 then t(G(n,2)) < ;—::—}—g-
Ifn=5 (mod 7) and n > 12 then G(n, 2)) < - _':::
Ifn =6 (mod 7) and n > 13 then t(G(n,2)) < 3;‘ — ;

Proof: (by construction)

We will specify the disconnecting set S by partitioning the vertices of
G(n,2) into sections and describing which vertices of each section belong
to S. We start with an m-section of length m € {7,8,9,10,4,12,6} accord-
n—-m

ing to n = m (mod 7). Then we can complete the partition with

T-sections. The sections we will be using are shown in Figures 1-7, where
the circled points specify the vertices in S and the boxed/shaded regions
specify the components left behind. For each m-section we will denote the
number of vertices in S and the number of components left behind by Sy,
and wyy,, respectively.



Figure 1 m=17 with S7 = 5 and w; =

Figure2 m =8 withSs=8andws=6

Figure3 m =9 with S9 =8 and wg =6

PRETIA i o \Y/ \Y./ >

Figure4 m =10 with Sjo =8 andwyp=6

Figure 5 m=4withSs=4andwy=3

Figure6 m=12withS;s=%andw;3=7

67



Figure 7 m =06 with S =4 and wg =3

Note that components from different sections will not combinein G(n.2)-S
since the first vertex of the top row. the second vertex of the second row,
and the second to last vertex of the second row of the sections are always
in S. Therefore since S; = 5 and w; = 4 we have

|5|=5m+5(n:.m>= 5n+l~'5"-m-5m

{

and
_4n+Twy —4m

w(G(n.z)-5)=wm+4(""7”‘)_ -
Thus we have a disconnecting set S such that
|S] _ 4175, —5m
w(G(n,2)=S) ~ 4n+ Twm —4m’

the stated upper bound when the appropriate values of m, Sy, and wy, are
substituted. O

HG(n,2)) <

Figure 8  #(G(21,2)) < %
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We have followed the construction for G(21.2) in Figure 8. To complement
the results of Theorem 1. we have exhaustively calculated the toughness
of G(n.2) for all 5 < n < 15 (via computer) and present in Appendix A
all the non-isomorphic ways (with respect to dihedral symmetries) that the
toughness can be achieved. Also note in appendix A that Figures 10b-
10e are all isomorphic. The results in 6, 8, 10b, and 12a suggest a different
construction that may work for n even. However, this construction in which

S={wjl1<i<n-landiodd}U{n|1<;< [%z“ and 7 = 45 — 2}

vields || = 7 + H] and w(G(n.2) = §) = £ + 1. So though it is better
than our construction would be for G(6,2) and G(8, 2), it does not beat our
construction for G(10.2) and G(12.2), and it is worse than our construction
for n > 14. Thus for n > 5 we have the following upper bounds for
t(G(n,2)) as shown in Table 1, where equality is known for the numbers in
bold print. (Equality beyond n = 15 will be explained in the next section.)

Lol 0] 1 [2]3T 48T 6]

4 5

+0 3 |14
5 6 4 4 9 9 9

+Tl === |3 |=1|3]|-=
4 5 3 3 7 7 7

5 13 13 13 14 14 14

Ul 2 || |11 |1 |1
5 9 9 9 19 19 19
2713|755 5|5

Table1  Upper bounds for t(G(n,2))

2.2 Lower Bounds

The reason 5 was of such interest in Theorem 1 is that we shall show it is a
sharp lower bound in the sense that there is an infinite subclass of G(r, 2),
namely when n = 0 (mod 7), for which ¢{(G(n,2)) = é So in light of the

case where n = 8 in Table 1, we have the following theorem that we wish
to prove.
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Theorem 2 Ifn > 5 and n # & then t{(G(n.2)) >

wal o

The proof of Theorem 2 will procede by contradiction by supposing a mini-
mal counterexample exists. but. first we need to present some preliminaries
which will be used in its proof.

S -

Proposition 3 Ifg <1 anda>b. wherew >b>0. then <

L~ I ~1
€l

€

Lemma 4 Let $ C V(G) with t(G) = _W(GL5_| 5

If v € S then v is adjacent to al least 2 components of G — S.

Proof: (by contradiction)
Suppose v € S and v is adjacent to at most 1 component of G — S.
Let T =S — {v}. Then

T 1sI=1 _ s
WG-T) " w(G=-5) wG-S)

which contradicts S being a set that gives ¢(G). O

=4G),

Lemma 5 Let S be a subset of V(G(n,2)) of minimum cardinality such
that t(G(n,2)) =
in G(n,2).

G 2=35) < 1. Then no vertices of S are adjacent

Proof: (by contradiction) B

Suppose u,v € S are adjacent in G(n,2). Let T = S—{v}. By Lemma 4, v
must be adjacent to exactly 2 components of G(n.2) ~ S. So |T| = [S]| -1
and w(G(n,2) - T) = w(G(n,2) - S) - 1. By Proposition 3,

m L s
w(G(n,2)-T) — w(G(n,2)-S)’

which contradicts S being a minimum cardinality set that gives ¢(G(n,2)).
0

In the spirit of bootstrapping, we will first prove a weaker version of The-
orem 2.

Theorem 6 Ifn > 5 then t(G(n.2)) > 1.

70



Proof:

As summarized in Table 1, we have shown via exhaustive methods that
Theorem 6 holds for 5 < n < 15. From here we will procede by contradic-
tion. Suppose we have a smallest m > 16 such that {(G(m.2)) < 1. and let
S be a set of minimum cardinality for which {G(m.2)) = G =3
We will now look at what this disconnecting set S may look like locally
within any given 6-section of G(m,2). We are initially confronted with 2!2
possible local configurations of the S set. However, with the help of our
earlier lemmas we can cut down the cases considerably. By Lemma 5. we
can eliminate all cases where the G-section contains adjacent vertices in S.
Note that this eliminates more than half the cases since a 6-section can have
at most 5 vertices in S. By Lemma 4, we can eliminate all cases containing
configurations appearing in Figure 9. as they contain a vertex of S adjacent
to only 1 component of G — S.

Figure 9  forbidden by Lemma 4

For the remaining cases we will obtain the desired contradiction by finding
an h < m such that {(G(h,2)) < 1. We will accomplish this by removing
some r-section from what we know of this G(m,2) and reconnecting our
graph to form G(h,2), where h = m — r. Our contradiction will then
be obtained in the following way. The removal of the r-section and the
reconnecting of the graph to form G(k, 2) will cause some number a > 0 of
elements of S and some number b > 0 of components of G(m,2) — S to be
lost. If these numbers a and b satisfy the hypothesis of Proposition 3, then
we have found a new disconnecting set S’ such that

S 8l-a
w(G(h,2)-5)  w(Gm,2)-S)-b="
a contradiction. So next we will eliminate all cases containing configu-
rations appearing in Figure 10 as all of these cases will have the same
r-section removed with the same results. The r-section to be removed
will be the 2-section in the center of each configuration. It is easily veri-
fyable that w(G — S) will not be lowered via this extraction, thus making
t(G(h,2)) < t(G(m,2)) for our desired contradiction in these cases.

0O X7 Qi1

Figure 10  simplest extractions

HG(h,2)) <

71



We accomplish the elimination of cases by Lemma 5. Lemma 4. and simple
extractions via computer and are left with 15 remaining cases (excluding
mirror images) which we will attack by hand. For these cases. as men-
tioned before, we will have to find an appropriate r-section to remove from
G(m.2). Then counting the number a of elements of S and the number
b of components of G(m.2) — S lost in this process, we will obtain our
desired contradiction using Proposition 3. Counting a is very simple. and
counting b is for the most part straightforward. Contributions to b may be
made either by the loss of components that are completely isolated within
the r-section removed or by the gluing together of two previously sepa-
rate components via the process of reconnection to form G(h.2). However,
in counting b we must always take into account all possible cases of how
G(m.?2) might be affected by the removal of the r-section. Since we are
looking only at a subsection of G(m.2), we can not be completely sure of
what components look like if they run off the ends. The possibility exists
that a component running off one end may be the same as a component
running off the other end, though it is not attached within our field of view.
Also a single component running off both ends may again meet itself out-
side of our field of view. Whenever the first of these two possibilities exists,
we must assume that it does not take place, and whenever the second of
these two possibilities exists we must assume that it does take place. By
making these assumptions we will be considering the situtations that are
worst for us in trying to find an r-section to remove for our contradiction.
With this in mind we now present the 15 remaining cases pictorially. All
cases will have pictures of the 6-section both before and after the removal of
the r-section which will be denoted between the dotted lines. The fraction
at the end of each case will represent how the counts a and b are to be used
in Proposition 3 to obtain a contradiction.
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Thus establishing Theorem 6. O

Proposition 7 Ifé < g and 4a > 5b, wherew > b > 0, then
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Lemma 8 Lel S C V(G) with {(G) = ——=——=. H € ¢(G - S), and
w(G —5)
. |T| .
- f _— > .
TCV(H). Ifw(H-T)>1 then SH-T=1 > HG)
Proof: (by contradiction)
|7 . |S]
S ' - —_——— = —
uppose w(H —T) > 1 and SE-T=1 < tG) G =3 Then we
can construct a new disconnecting set SU T such that
S S
SUTl__ _ 1S1+17] Sl _ye.

W(G—=(SUT))  w(G=-S)+wH-T)=-1 w(G-=15)

which contradicts S being a set that gives {(G). O

|51

Corollary 9 Let S C V(G) with t(G) = 2G-3) >

If H € ¢(G ~ S) then H is a block.

1.

Proof: (by contradiction)

Suppose H € ¢(G — S) and H contains a cutpoint v. Let T = {v}. Then
T

SH-T)-1-2-1

=1<G),

which contradicts Lemma 8. O

We now return to the theorem of main interest which we will prove in a
manner similar to Theorem 6.

Theorem 2 If n > 5 and n # 8 then t(G(n,2)) >

] en

Proof:

We have already shown that Theorem 2 holds for 5 < n < 15. Now sup-
pose we have a smallest m > 16 such that ¢{(G(m,2)) < g, and let S be
5]
w(G-38)
6-sections of G(m,2) and are initially confronted with 2!2 possible local
configurations of the S set. We can now use all of our preliminary work to
eliminate most of the cases. By Lemma 4, we can eliminate all cases con-
taining configurations appearing in Figure 11 (and their mirror images), as

a set such that t{(G(m,2)) = Again we will look at all possible
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they contain a vertex of S adjacent to at most 1 component of G — S.

I O 331 3
O g L g

Figure 11  forbidden by Lemma 4

Now that we have established Theorem 6, by Corollary 9 we can eliminate
all cases containing configurations appearing in Figure 12 (and their mirror
images), as they contain a cut-vertex.

O 0 311
Q7 07 OIT

Figure 12  forbidden by Theorem 6 and Corollary 9

A\~ anan

As in the proof of Theorem 6, we are looking for an r-section to remove
from the remaining cases. However, we will now be using Proposition 7
instead of Propostion 3 to obtain our contradiction. But we can again
eliminate all cases containing configurations appearing in Figure 10, the
simplest extractions. We accomplish the elimination of cases by Lemma 4,
Corollary 9, and simple extractions via computer and are left with 86 re-
maining cases (excluding mirror images) which we will attack by hand.
These cases will be presented pictorially much the same as in the proof of
Theorem 6. In addition, Lemma 4 and Corollary 9 will often determine
the state of certain points beyond the 6-section. When this is the case,
the points in question will have superscripts containing the number of the
corollary that tells us their state. Note that in cases with more than one of
these additional points, there is sometimes a specific order that the states
of these points become known to us. Also some use of subcases is required
and will be handled in two different forms. First, any lettered subcases will
have the points relative to the subcase appropriately marked. Second, any
unlettered cases containing a triangle around one of the points will denote
that we must consider both the case when that point is in S and the case
when that point is not in S, but the fraction at the end will be the same for
both cases (though for different reasons). Also in some cases we will have to
make some additional adjustments to G(k, 2) after the r-section is removed
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and the graph is reconnected. Points to be changed in the after picture of
the corresponding cases will be additionally marked with either a bigger
circle around any point to be added to S or a bigger box around any point
to be removed from S. Thus in these cases, the fraction at the end will also
be changed to account for these adjustments. Any other variations in the
representation of a case will be dealt with in an accompanying description
as they are encountered. So we present the final 86 cases.
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Thus establishing Theorem 2. O

3 Conclusions

From Theorem 1 we note that conjecture a fails for n > 13 and that
HG(n,2)) < i for all n > 11. However, combining the results of Theorem 1
and Theorem 2, we do have an infinite class of graphs for which toughness

equals 5
q r

Corollary 10 Ifn =0 (mod 7) and n > 7 then t(G(n,2)) =

o) o

Thus we have established equality for the first instance of n modulo 7 in
Theorem 1. Also notice that all of the upper bounds in Theorem 1 converge

to our lower bound of é and suggest that our construction may be optimal.

We in fact conjecture equality for all of the inequalities in Theorem 1. We
have already established the base cases of this conjecture by the results in
Appendix A. We also believe that knowing all of the different ways that
the toughness can be achieved in these base cases may prove helpful in
establishing our conjecture, and so they are presented for your inspiration.
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