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Abstract. A round robin toumament on ¢ players in which draws are not permitted is
said to have property P(n, k) if each player in any subset of n players is defeated by
at least k other players. We consider the problem of determining the minimum value
J(n, k) such that every toumament of order ¢ > f(n, k) has property P(n, k). The

case k = 1 has been studied by Erdos, G. and E. Szekeres, Graham and Spencer, and
Bollobis. In this paper we present a lower bound on f(n, k) for the case of Paley
tournaments.

1. Introduction

For our purposes graphs are finite and directed. Consider a round robin tournament
T,ongplayers 1,2,..., g in which there are no draws. It is very well known that
such a tournament can be represented by a directed graph in which the vertices
represent the players. If Player ¢ defeats Player j then the graph contains the arc
(4, 7). and we say that vertex ¢ dominates vertex j. Further, we say a set of vertices
A dominates a set of vertices B if every vertex of A dominates every vertex of B.
For convenience we refer to the graph of the tournament as T.

A tournament T is said to have property P(n, k) if every subset of n vertices
of T, is dominated by at least k other vertices. An interesting problem is that
of determining the smallest integer f(n, k) such that T, has property P(n, k)
whenever ¢ > f(n, k). This problem was posed to Erdos in 1962 by Schiitte (3]
for the particular case k = 1.

Using the probabilistic method, Erd6s [3] proved that for sufficiently large n

2™ _ 1< f(n, 1) < n?2%(log2+¢)
for any € > 0. Szekeres and Szekeres [6] improved the lower bound to
f(n,1) > (n+2)2™! -1
Graham and Spencer [4] defined the following class of tournaments. Letp = 3(
mod 4) be a prime. The directed graph D, is defined as follows. The vertices of
D, are {0,1,...,p — 1} and D, contains the arc (4,7) ifand only if i — j is a

quadratic residue modulo p. The graph D, is sometimes referred to as the Paley
tournament . Graham and Spencer [4] proved, using results from number theory,
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that D,, has property P(n, 1) whenever p > n*22"~2. Further, they observed
that D; and Dy are the smallest Paley tournaments having property P(2,1) and
P(3,1) respectively. They noted that Dg7 may be the smallest Paley tournament
having property P(4,1). This is indeed the case and is a consequence of our
work.

Bollob4s [2] extended the results of Graham and Spencer to prime powers.
More specifically, if ¢ = 3( mod 4) is a prime power, the Paley tournament
D, is defined as follows. The vertex set of D, are the elements of the finite field
F,. Vertex a is joined to vertex b by an arc if and only if a — b is a quadratic residue
in F,. Bollob4s noted that D, has property P(n, 1) whenever

g> {(n—=22"" + 1} g+ 2™,
In Section 3, we improve this bound to
g>{(n=3)2""+2}/g+2" - 1.

In addition, we establish a lower bound on g so that D, has property P(n, k).
In the next section we present some preliminary results on finite fields which
we make use of in the proofs of our main theorems.

2. Preliminaries

We make use of the following basic notation and terminology. Let F, be a finite
field of order g, where g is a prime power.

A character x on Fy, the multiplicative group of the non-zero elements of F,,
is a map from F} to the multiplicative group of complex numbers with |x(z)| = 1
for all £ and with

x(zy) = x(2)x(y)
for any z,y € Fj. Since x(1) = x(1) x(1) we have x(1) = 1.

Among the characters of F; we have the principal character xo defined by
xo(z) = 1 forall z € Fg; all other characters of Fj are called non-principal. A
character x is of order dif x% = xo and d is the smallest positive integer with this
property.

Tt will be convenient to extend the definition of non-principal character x to the
whole F, by putting x(0) = 0.

The following lemma, due to Schmidt [5], is very useful in our work.

Lemma 2.1. Let x be a non-principal character on Fq of order d > 1. If
a1,62,-..,0, are distinct elements of ¥,, then

Yo x{(z—a)(z—02)...(z—a)}{ < (s — DVE.

zeF,
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Let g be a power of an odd prime. We define a quadratic (residue) character y
on F, by

n(a) = a’il, foralla € F,

Equivalently, 7 is 1 on squares, 0 at 0, and -1 otherwise. Therefore 7 is a non-
principal character of order 2.
The following two lemmas are proved in [1].

Lemma 2.2. Let 1 be a quadratic character on F. If a),02,...,a, are distinct
elements of ¥, and s is even, then

En{(z— a1)(z—a2)...(z—a,)}

z€F,
=—1% Y n{(z+bh)(z+b)...(z+b-1)}
z€F,;
for some distinct elements by, bz, ..., bs,~1 Of Fy, [ |

" Lemma 2.3. Let n be a quadratic character on F, and let A and B be disjoint
subsets of ¥,. Put

g=3 [[{1+nz-a)} {1 - n(z-B)}.

z€F; a€A beB

As usual, an empty product is defined to be 1. Then

@ g>q-—{(t—32"1+2}/g— {2 -1} wheret = |AU B|,
(b) ng—{(Zn—E})ZZ"'l +2}\/§_{22n—1 _2_”2_1} .
where n= |A| = |B|. |

We conclude this section by noting that if a and b are vertices of Dy, ¢ = 3(
mod 4) a prime power, then

1, if a dominates b,
ﬂ(a—b)={0, if¢1=b,

—1, otherwise.
Further, n(—a) = —n(a) forany a € F,.

3. Results
Our first result concerns Paley tournaments having property P(n, k).
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Theorem 3.1. Let ¢ = 3( mod 4) be a prime power and k a positive integer.
If

g>{(n=3)2"' +2}\/g+ k2" -1, (3.1)
then D, has property P(m, k).

Proof: Let A be any subset of = vertices of D,. Then there are at least & other
vertices each of which dominates A if and only if

h=3 TI{1+n(z—a)} > (k- D2"

=€Fg a€A
zfA

g= EH{1+n(z—a)}.

z€F; a€EA

By Lemma 2.3(a) with B empty, we have

9> q—{(n=-32""+2}\g - {2~ -1}

Now .
g—h= EH{] +7(z —a;)}
€A i=]

where A = {a1,02,...,a.}. If g — h # 0, then for some a; the product

TI{1+ n(ax—a} #0. (2

i=1

For (3.2) to hold we must have 7(a; — a;) # —1 forall . This means that for
i # k,n(ax — a;) = 1. Hence a; dominates all other vertices in A. Therefore a;
isuniqueandg— h =2 n=1_Then, since g — h could be 0 we conclude that

g—~h <2+t
So
h29_2n—l
>g—{(n—3)2"" +2}g-{2"-1}.

Now if inequality (3.1) holds, then A > (k—1)2*® as required. Since A is arbitrary
this completes the proof. 1
Some immediate corollaries of Theorem 3.1 are the following.



Corollary 1. If ¢ = 4t + 3 is a prime power, then D, has property P(2,k) for

everyt > k. |
Corollary 2. If ¢ =3( mod 4) is aprime powerand q > (1+ 2v/2k)?, then
D, has property P(3,k). .|
Corollary 3. If ¢ = 3( mod 4) is a prime powerand ¢ > (5+ 2v34k+ 6)2,
then D, has property P(4 k). [ |
Corollary 4. If ¢ = 3( mod 4) is a prime power,n > 5 and ¢ > ((n—

3)2™! + 3)2, then D, has property P(n,1). ]

Remark 1 We have verified, using a computer, that D7, Dy, and Dg; are
the smallest Paley tournaments having property P(2,1), P(3,1), and P(4,1)
respectively. Thus the bounds in Corollaries 1 and 2 are the best possible. Further,
our computer analysis revealed that Djgs does not have property P(4, 1) whilst
D7 and D27 do and thus the bound of 131 given in Corollary 3 is fairly close
to best possible.

Remark 2 For n= 3 and any ¢ there is always a set A for whichg — h = 4.
Expanding the g in the proof of Theorem 3.1 we get

3
9= [[{1+ n(z -}

z€F, i=1
= E 1+ E{n(x— a)) + {x—a2) + n(z—a3)}
zeF, IEF' 1
+ 3 {n((z = a1)(z — a2)) + 7((z = a1)(z — 63))
z€F,
+0((z - a)(z—a3))}+ ) n(z — a1)(z — a2)(z — a3))
z€Fy
=¢-3+ Y n((z—a1)(z - a2)(z - a3)).
z€F,

(by Lemma 2.1 and 2.2)
Thus

lg—g+3]=|> 7((z—a1)(z— a2)(z — a3))

z€F,
<24 (by Lemma 2.1)

Hence g < ¢+ 2,/g—3. Consequently h < 8k for g < (—1+2+/2(k+ 1))2.

Thus D, does not have property P(3,k) forg < (—1+ 24/2(k+ 1))2. We
suspect that this is true for all ¢ < (1+ 2v/2k)2.
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We can extend the property P(mn, k) as follows. We say a tournament T, of
order ¢ has property P(m,n, k) if for any set of m + n distinct vertices of T
there exists at least k other vertices each of which dominates the first m vemces
and is dominated by each of the latter n vertices. We have the following result.

Theorem 3.2. Let ¢ = 3( mod 4) be a prime power and k a positive integer.
If

> {(t=3)2"" +2}g+ (E+2k— 12" -1, (3.3)
then D, has property P(m,n, k), wheret = m + n.

Proof: Let A and B be disjoint subsets of vertices of D, with |A| = m and |B| =
n. Then there are at least k other vertices, each of which dominates every vertex
of A but is dominated by every vertex of B if any only if

h= EII{Hn(z—a)}H{l—n(z B} > (k- 12*.

sefy acA
sgAUB

9= [[{1+ n(z - )} ]{1 - n(z - B)}.

z€F; a€A beB

Using Lemma 2.3(a) we have

g>q— {(t—3)"l AN {2"‘l -1}

Then
g—h= E H{1+n(:z—a)}]:[{l—n($—b)}
ZEAUB a€A beB
Stzt-l,

since, in each product, each factor is at most 2 and one factor is 1, so each of these
terms is at most 2¢~!. Therefore
h>g—-t2t!
>q—{(t-32"" +2}/g-{(t+ D2 -1},
Now if inequality (3.3) holds, then h > (k— 1) 2% as required. Since A and B are

arbitrary this completes the proof. |
For m = n we have the following sharper result.

Theorem 3.3. Let ¢ = 3( mod 4) be a prime power and k a positive integer.
If
g> {(2n—3)22"" + 2} 7+ (n+2k)22" — 24" -1, (3.4)

94



then D, has property P(n,n, k).

Proof: Let A and B be disjoint subsets of vertices of D, with |A| = | B| = n. Then
there are at least & other vertices each of which dominates A and is dominated by
B if any only if

=) H{1+n<z—a>}n{1 —n(z—B)} > (k—1)22".

scFy g€A

zfAIB
Let

9= [[{1+n(z- a)}H{l —n(z-b)}.
z€Fga€A
Using Lemma 2.3 (b) we have
g2 q—{(2n-3)22"" +2}\/g - (22! — 24 —1}.
Consider .
g—h= Y JI{1+n(z—ad {1 -n(z -}, 3.5)
z€AUB i=1

where A = {a1,032,...,a,} and B = {b1, b2,...,b,}.
If g — h # 0, then for some z the product

[T+ n(z - ad}{1 = n(z - b))} #0. (3.6)

i=1

Without any loss of generality suppose = = ax. For (3.6) to hold we must have
n(ax — a;) # —1 and n(a¢ — b;) # 1 for all i. This means that 5(ax — a;) = 1
fori # k and n(ax — b;) = —1 forall i. Hence the term in (3.5) with z = q; for
i # k contributes zero to the sum. Hence we can write (3.5) as

g—h= Y J[1+nz—e)H1-n(z-b)}

z€{ar}UB i=1
< (n+ 12271,

since, in each product, each factor is at most 2 and at least one factor is 1. Hence

h>g—(n+1)22*!
>g—-{(2n-3)22"1 + 2} 1 — {(n+2)22*! _ 22 —1}.

Now if inequality (3.4) holds, then h > (k — 1)22" as required. Since A and B
are arbitrary, this completes the proof of the theorem. |

95



Acknowledgements

The authors express their thanks to Mr Peter Caccetta for his assistance with the
computational work. Thanks also to the referee for a number of useful sugges-
tions. This work has been supported by an Australian Research Council Grant
A48932119,

References

1. W. Ananchuen and L. Caccetta, On the adjacency properties of Paley graphs.
(submitted for publication).

2. B. Bollob4s, “Random Graphs”, Academic Press, London, 1985.

3. P. Erd6s, On a problem in graph theory, Math. Gaz. 47 (1963), 220-223.

4. R.L. Graham and J.H. Spencer, A constructive solution to a tournament prob-
lem, Canad. Math. Bull. 14 (1971), 45-48.

5. W.M. Schmidt, Equations Over Finite Fields, An Elementary Approach, in
“Lecture Notes in Mathematics. 5367, Springer - Verlag, Berlin, 1976.

6. E. Szekeres and G. Szekeres, On a problem of Schiitte and Erdos, Math. Gaz.
49 (1965), 290-293.

96



