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Abstract. A graph G = (V, E) is said to be elegant if it is possible to label its vertices
by an injective mapping g into {0, 1,...,|E]} such that the induced labeling A on the
edges defined foredge z, y by h(z, y) = 9(z)+9(y)( mod |E|+ 1) takes all the values
in {1,...,]|E|}. In the first part of this paper, we prove the existence of a coloring of
K,, with a omnicolored path on n vertices as subgraph, which had been conjectured by
Hartman [2].

In the second part we prove that the cycle on n ventices is elegant if and only if n #

1( mod 4) and we give a new constuction of an elegant labeling of the path Py, n# 4.

1. Introduction.

Two additive versions of the well known notion of graceful graphs ([3], [4], [5],
[6]) have been proposed.

A connected graph with m edges is called harmonious if it is possible to label
its vertices with distinct numbers (mod m) in such a way that the values on the
edges obtained by sums (modm) of their endpoints labelings are also distinct
(R.L. Graham and N.J.A. Sloane [7]).

A connected graph with m edges is called elegant if it is possible to label its
vertices with distinct numbers (mod m + 1) in such a way that the values on the
edges obtained by sums ( mod m+ 1) of their endpoints labelings are distinct and
non zero (G.J. Chang, D.F. Hsu and D.G. Rogers [1]).

Very few graphs are known to be elegant. In [1], the cycles Csp and Cape3 and
the paths Pyp+1, Pap+a and Pape3 were proved to be elegant. Cahit (8] proved that
Py is clegant if p > 1. We shall prove that Csp. is elegant, and give a simpler
and more geometric proof of Cahit’s result.

The concept of graph labeling can be applied to problems on edge-coloring. An
edge-coloring of a graph is said to be optimal if no two edges incident with the
same vertex have the same color, and the minimum number of colors is used.

Hartman [2] posed the problem of characterizing the family M, of graphs G
such that there exists an optimal edge-coloring of the complete graph K, in which
G appears as a omnicolored subgraph, i.e., every edge of G has a different color.

Note that an harmonious graph with 2p + 1 edges belongs to Mzp,;. In [2],
it was stated that P, is in M, for n ¥ 6(mod8), and it was conjectured that P,
belongs to M, for n # 4, 6. We shall settle this conjecture in the affirmative.
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2. An Edge-coloring problem.

Theorem 1. The paths on n vertices belongs to M, ifand only if n# 4,6.

Proof: In the classic coloring of the edges of Kzp. with 2p + 1 colors, we
label the vertices 0,1,...,2p, and then color the edges according to the sum
( mod 2p+ 1) of the labels of their endpoints. If the vertices form a regular poly-
gonO0,1,...,2p, then a color class is a set of parallel edges. The boundary is a
omnicolored cycle. By deleting one edge we obtain a omnicolored pathon 2p+ 1
vertices.

In every optimal edge-coloring of K;,.1 exactly one color is missing at each
vertex and all these missing colors are different. Thus we obtain a coloring of
Kapez with 2p + 1 colors by coloring the edges incident to the new vertex with
these missing colors.

Assume we are able to color K, in such a way that:

(a) in the boundary every color appears exactly once except one color ¢ which
does not appear and one color ¢ which appears twice.

(b) the vertex x where ¢ is missing is incident to an edge {z, y} of the boundary
colored with ¢'.

Extend this coloring to K3,.2. Let z be the new vertex then {z, 7} is colored
with c, and by deleting the edge {z,y} from the boundary and adding the edge
{z, 2z} we obtain a omnicolored path (y, ..., ,2).
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We are now going to exhibit such a coloring of K3,.; by some changes on the
classical coloring defined above.

Case 1. p= 0 (mod 3).

101

2t

(p=6)
2-1
11 - 3

21

12 2

The cycle defined by the vertices 1,0,2,2p,3,2p—1,....2p/3 + 1,4p/3+ 1,
1 has its edges colored 1,2, 1,2,...,2, 1, 4p/3 + 2. We change this coloring to
2,1,2,1,...,1,4p/3 + 2, 1. We have a required coloring of K3p+1 wWithc =1,
d=2,z=p+landy=p+2.

In the new coloring: the color missing at vertex 1 is now 4 p/3 + 2 instead of

2, the color missing at vertex 2p/3 + 1 is now 2 instead of 4p/3 + 2.
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Case 2.p=1(mod 3).

(p=7)

The path 1,0,2, 2p,3,2p—1,...,(p+2)/3.(Sp+4)/3,p+ 1iscolored 1,
2,1,2,...,2,1,(2p + 4) /3 and the color 1 is missing at p + 1. We change this
coloringt02,1,2,1,...,1,(2p+ 4)/3, 1. Now the color 1 is missing in 1 so
that we have a required coloring of Kjp,; Withc=1,d/=2,z=1andy=0.

In the new coloring: the color missing at vertex 1 is now 1 instead of 2,
the color missing at vertex p + 1 is now (2p + 4) /3 instead of 1,

the color missing at vertex (p+ 2) /3 is now 2 instead of (2p + 4) /3.

Case3.p=2 (mod 3).

Consider the sequence of vertices 1, 2,4, ...,2F%,... (taken (mod 2p+ 1)).
All these vertices are different until 1 is met again (because 2p + 1 is odd).

Case 3.1.

Assume first that 2p does not belong to the sequence 1,24, ...,2%,...,29 =
p+ 1, 1. Then all the edges between the vertex 0 and 1,24, ....2%,...,p+ 1
except the first one are not in the boundary. In the classical coloring for each &
the edge {0,2*} is colored with 2* and the color 2%*! is missing at the vertex
2. Color this edge with 25!, At the vertex 0 we did nothing else than a circular
permutation on the colors used for all these adjacent edges. Thus we still have a
coloring. This is a required coloring withc=1,d/ =2,z=1andy = 0.
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p+1

Case 3.2.

If we are not in the above case, we have a sequence of different vertices 1,2,4,
....2%, ....p.2p. In this case we cannot use the same change because the edge
{0,2p} is in the boundary.

Case3.2.1.p=5 (mod 6).

There is a path (p,p+2,p— 2,p+4,p—4,...,3,2p—1, 1), the edges of
which are colored 1,2p,1,2p, ...,1.2p.

3 (p=5)

101



Consider now the sequence of edges {0,1},{0,2},{0,4},....{0,2%},...,
{O:P}'{p-l"" 2}:{?"‘ 2,p— 2}’{"-21?"' 4}: . “*{3»2?— 1}9{21’— 1, l}
colored 1,24, ... 2%, ....p,1,2p,1,2p, ..., 1,2p. We change these colors to
2,4,8,...,2%1 . .1,2p,1,2p,...,1,2p,1. This yields a required coloring
withc=1,d=2,z=p+1andy=p+2.

Case3.2.2p=2 (mod6).

Wehavep/2 = 1( mod 3). Considerthepath P = g, t1,..., s, ..., %(2p-4)/3
with

i = pf2 —3i/4 ifi=0 (mod 4),
ui=3p/2+2+3(i—1)/4 ifi=1 (mod 4),
u;=3p/2 —1—3(i—2)/4 ifi=2 (mod 4),
u;=p/2+ 3+ 3(i—3) /4 ifi=3 (mod 4).

In other words P = (p/2,3pf2+2,3p/2 — 1,p/2+3, p/2 — 3,3p/2+5,
3p/2 —4,p/2+6,p/2 -6,...,4,2p—2,p+3,p—1,1).

5 (p=8)

The edges of P are colored 1,p,1,p,...,1, p. Consider now the sequence of
edges {0,1},{0,2}, {0,4}, ....{0,p/2}{p/2,3p/2+ 2}, {3p/2+ 2,3p/2
-1}, ...,{p—1,1} colored 1,2,4,...,2%,...,p/2, 1,p,1,p,...,1,p. We
change these colors to 2,4, ...,2%,...p/2,1,p,1,p,...,1,p, 1. We have are-
quired coloring withe=1,d/ =2, z=p+landy=p+2.

3. Elegant graphs.

Theorem 2. The cycles on n vertices are elegant if and only if n % 1(mod 4).
Notice first that in an elegant labeling of the cycle C, the sum of labels of the

edges, 1 + 2+,...,+n, is twice the sum of labels of the vertices (modn + 1).

This remark gives the necessary condition n % 1(mod 4).
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The two cases n = 0 (mod4) and n = 3 (mod4) have been previously
solved in [1]. We repeat these short arguments to make our proof self-contained

If n= 4 p an elegant labeling of Cy,, is given by:

1,2,...,2p-1,2p,
2p+2,2p+1,2p+4,2p+3,...,4p4p—1

‘We point out that the edges with even labels form a path, as do the edges with

odd labels.
If n=4p+ 3, an elegant labeling of Cype+3 is given by:

0,2p+3,1,2p+4,....3p+2,p,3p+3
p+2,3p+4,p+3,3p+5,...,2p+ 1,4p+3,2p+ 2

If n=4p+ 2, an elegant labeling of Cy 47 is given by:

1,2,...,p-1,p,
3p+2,3p+1,...,2p+3,2p+ 2,
4p+2,4p+1,...,3p+4,3p+ 3,
p+1,p+2,...,2p,2p+1

It is easy to verify that the induced values on the edges are {1,...,4p+2}. In
the two later cases the geometric representation is more interpretable:

103



4p+2 00

3ps— |

1
2pe2 2P*

case4p+ 2

Theorem 3. The paths on n vertices are elegant if and only if n+ 4.

The cases n # 0(mod4) have been proved in [1]. The labels are obtained
from the perfect shufflie of two arithmetic progressions.
Ifn=4p+ 1, we have:

3p+1,p+1,3p+2,p+2,...,p—1,3p,p.
Ifn=4p+ 2, we have:

p+1,3p+2,p+2,3p+3,...,3p+ 1,p.
Ifn=4p+ 3, we have:

p+1,3p+3,p+2,3p+4,..,3p+1,p,3p+ 2.

The remaining case n = 4 p has been solved in [8]. It requires a more compli-
cated labeling. We are going to construct another elegant labeling of P,,, which
is simpler and more geometric.

First notice that P, is not elegant and an elegant labeling of P is given in the
following figure.

An elegant labeling of Ps.
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Assume now that n= 4p withp > 3.
If p is odd , an elegant labeling of Pj, is given by:

1,

2p+1,2p+3,...,3p- 2,3,
3p+3,3p+5,...,4p-2,0,
2p,4p—1,2p—2,4p-3,...,3p+4,p+3,3p+ 2,p+ 1,
3p+1,p,3p—1,p-2,...,5,2p+4,3,2p+ 2,
2,4,....,.p—-3,p—-1,

p+2,p+4,...,2p-3,2p-1.

If p is even, an elegant labeling is given by:

1,

2p+1,2p+3,...,3p-3,3p-1,
3p+2,3p+4,...,4p-2,0,
2p4p—1,2p—2,4p-3,...,p+4,3p+3,p+2,3p+1],
p+1,3p,p-13p—-2,p—3,...,5,2p+4,3,2p+2,
2,4,...,p0-2,p,

p+3,p+5,...,2p-3,2p~-1.

In each of the two cases the given labeling is obtained by a common geometric
construction. On a regular polygon with vertices labelled 0, 1,...n — 1, edges
are parallel if and only if the sum of the labels of their endpoints are equal.

Consider the following path on 2p + 1 vertices.

Insert now the 2 p— 1 remaining vertices joined by two disjoint paths as follows.
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We obtain now a path on the 4 p vertices such that edges are not pairwise “par-
allel” and none is “parallel” to [ 1, n — 1]. It follows that the labelling is elegant.
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