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Abstract. A set T with a binary operation + is called an operation set and denoted as
(T, +). An operation set (S, +) is called g-frec if gz ¢ S forall z € S. Let $e(T) be
the maximum possible cardinality of a g-free operation subset (8, +) of (T,+).

We obtain an algorithm for finding $q(Na), ¥¢(Z,) and ¢(D,), ¢ € N, where
Np = {1,2,...,n}, (Z,, +,) is the group of integers under addition modulo n and
(D, +) is the dihedral group of order 2n.

1. Introduction

A set T with a binary operation + is called an operation set and denoted as (T, +).

The operation + may not be closed (i.e. z + y ¢ T for some z,y € T). An op-
eration set (S, +, -) is called sum-free if z + y ¢ S for all z,y € S and is called
g-freeif gz ¢ S forall z € S. Sum-free operation sets have been extensively
studied in many contexts. For a comprehensive survey, see [3]. E. Wang [4] stud-
ied the maximum cardinality of double-free (2-free) operation set (S, +) where
S C {1,2,...,n}. In this paper, we provide an elegant method to solve Wang’s
problem (including g-free subset). A group (G, +) is an operation set. The max-
imum cardinality of g-free operation subset (8, +) is also discussed here when
(S, +) is a cyclic group (Z,, +) or dihedal group (D,,, +)

Given a operation set (T',+) and function f(z) = 2z, we can construct a di-
graph G(T'), which has vertices set V(G) = T and directed edges set E(G) =
{zhly = 2z forz,y € T}. Aset I C V(G) is called independent if no two
vectices of I are adjacent in G i.e. 2y ¢ E(G) and yz ¢ E(G) forall z,y € I.
Obviously, there is a bijection between the set of all double-free subsets with the
maximum cardinality of the operation set (7', +) and the set of all independent
subsets with the maximum cardinality in the digraph G(T').

Notation

Let ¥(G) be the maximum cardinality of an independent subset in G(T). M
and | | denote the ceiling and floor functions respectively. o(n) is the Euler’s
sp-function. i.e. p(n) is the number of positve integers less than or equal to n that
are relatively prime to n. x(S) = 1 if statement S is true; x(S) = 0 otherwise.

2. Maximum cardinality of g-free subset of integers
The following two lemmas are straightforward and useful.
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Lemma 1. Let the digraph G have k components G1,G2,...Gk. Then if S;
is a maximally independent subset of G;, then the disjoint union of all S; is a
maximally independent subset of G and

WwG) = Y $(Gy).
1<i<k

Lemma 2. Let L, be the directed path of length n and C, be the directed cycle
of length m. Then Y(Ly,) = [§] and $(Cs) = | 3].

Using the above lemmas, we now prove our first theorem.
Theorem 1. Let N, = {1,2,...,n} and 2! < n< 2**1, Then

(N = ) (82— 62401)
0<i<| )

where a; = | }] if 1 < t;a; = 0 otherwise.

Proof: The digraph G(N,) has [%] components G, G?2,...,Grg) where com-
ponent G;, 1 < j < [%], is the directed path

(25 =D 222 —1) == 2°25 - 1)

where 2° < 7y < 25+,
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Figure 1. Digraph G([26])

Arrange the components G; vertically in a tableau (see Figure 1) and for each
G}, take as maximally independent subset S, the set formed by the elements on
the first row, the third row, etc. (i.e. (25 —1),22(2j — 1),...). Using lemma
1, the set S which is the disjoint union of all of the sets Sj, 1 < j < [%],isan
independent subset with the maximum possible cardinality of N,. But S is made
of all the elements in the odd numbered rows and b; is the number of elements
lying on or below row i. Therefore, counting by rows, the theorem is proved. 1§



An operation set (T, +) is called g-free if gz ¢ S for all z € S. Given an
operation set (T, +) and a function f(z) = gz, we can construct a corresponding
digraph G¢(T), which has vertices set Vo(G) = T and directed edges E,(G) =
{Zly = gz for z,y € T'}. Let 4,(G) be the maximum possible cardinality of an
independent subset in G,. The proof of the following theorem is similar to that of
theorem 1.

Theorem 2. Let N, = {1,2,...,n} and¢' < n < ¢**'. Then y,(Ny) =
Zogigp)(b2i — bais1) whereb; = | | ifi < t;b; = O otherwise.

3. Maximum cardinality of g-free subset of (Z,,, +n)

Let (Z,, +,) be the group of integers under addition modulo nand (Z, -,) denote
the group of integers relatively prime to » under multiplication mod n. Let H be
the cyclic subgroup of (Z},-,) generated by 2 when = is an odd integer. The
order of 2, ord,(2), is the size of subgroup H and the index of 2, ind,(2), is
the number of distinct right cosets of H in G. Any elementa € Z? belongs to
a unique right coset H,, that is, there exist zy,23,..., Z:, t = ind,(2), such that
Z:= Ulsgng z;.

When we write Z; C Z; we mean inclusion of the underlying sets chosen (for
convenience) tobe {0,1,...,k—1}and {0,1,...,1 - 1)}.

Now, we will discuss ¥(Z,) step by step. In these 5 steps, nis seen a (i) prime,
(ii) prime power,(iii) prower of 2, (iv) odd number (v) any integer. First, we have

Proposition 1. Let p be an odd prime and ord,(2) = d. Then (Z,) = L[ 4].
Proof: Let H = {1,2,22,...,2%'} and Z; = X,y Hz; wheret = B3L. Then

the digraph G(Z,) hast+ 1 components Gy, G\, ..., Gy, where Gy is an isolated
loop on the vertex 0 and G;, 1 > 0, is a directed cycle. i.e., '

Gi:x; o235 2235 ... 5 2%,

for 1 < 1 < t. By lemmas 1 and 2, we have

d p—1.4d
(Z,) = E: Z=E£,,8

In 1828, Abel asked a question: Is there a prime p and positive integer a such
that a®! =1 (mod p?). Jacobi gives the following partial answer: If p < 37
then the solutions of Abel’s problemarep=11,a =3 or9;p=29,a = 14 and
p=37,a=18.



Definition 1. Let p be a pime. If o' = mod p* then a is called a kth-
Fermat’s solution (k-FS) for prime p; otherwise, a is called a kth-non-Fermat's
solution (k-NFS).

Let m, n be two integers and (m,n) = 1. Itis well-known that n#(™ = 1
(mod m). Hence if (a,p) = 1 then a is a first-Fermat’s solution (1-FS) for the
prime p. In [2], 2 is proved to be a 2-FS for prime 1093. By Binomial Expansion
Theorem, the following lemma is obtained.

Lemma 3. Let p be a prime and 2 be a k-FS and (k + 1) -NFS for the prime p.
Ge p*|2P~1 — 1 but p**! f27! —1). Then

ord,(2) ifl<s<k
ord,(2) = { f’,’, . .
p*rord,(2) ifs>k

Proof: Letd, = ords(2),fors=1,2,.... According to the hypothesis, we have
27-1 = zp* + 1 where p does not divide T

from which it follows that 1 < dy < dp < ---<de <p—1.
Let
2% = yp¥ 4+ 1 where k > u > 1 and p does not divide y.

By the binomial expansion theorem that p**! does not divide 24* — 1 for 1 <

i < p. Itimplies that v = k and d = d;. Therefore d; = dy = .--=d;. Let
2% = zp* + 1 where 2 is not a multiple of p. Then p**! |2%/ — 1 < p|;. Hence
dis1 = pdy and so on inductively. |

Given a positive integer m, it is easy to use lemma 3 to decide ord,.(2) for
1 < 3 £ m. Thus, we have

Proposition 2. Let p bean odd prime and m be a positive integer. Let ordy(2) =
dy for 1 < s < m. Then Y(Zym) = Z1gogm P2 [ £].

Proof: Let H, = {1,2,22,...,2%'} and Z3 = Uygict, Hzoi Where t, = 2£2
for1 < s < m. Then

2= (U 5723 ) ul0)

1<s<m

- (Y Y vy

1<s<m 1<i<t,

Hence the digraph G(Zg») has 1 + Zi¢,gmts cOmponents Go, G, ..., Gmta
where Gy is an isolated loop on the vertex 0 and G;, i > 0 is a directed cycle.
ie.,

Gt Toip™ " — 2Z5ip" " — o0 — 2%-1 Tip™ " = Ty



for1 < s< m,1< i< ¢, Bylemmas 1 and 2, we have

Wim = ¥ T Ig- T E0 2

1<s<m 1<iLt, 1<s<m
| |
Now, we will discuss the case when n is a power of 2.
Proposition 3.
2 . .
Ry (2m-1) ifm is even.
W(Zp=) = z 2m-1=2i o { i(2m+l —1) ifm isodd.
0<ig| Bt ) 3 m '
Proof: First, we have a partition of Z, » in the following
Zrm = U U (A,'j U B,'j) §] {0}
0<jgL Bt 1<isr
where r = 2™-2-2/, A;; = {22/(2i—1),2%*! (24— 1)} and B;; = {2%/(2i —

1) +2m-1)}.

We know that 0 does not belong to any double-free subset of Z;= and any
double-free subset of Zy» can contain one element in each of the doubletons sets
A;; at most. Hence,

WZm) < D Y+ Y 2mt

0gjg| Bt 1<ir 0<i<| Bt

Wherer = 2™-2-2/ Let M = {2+2™ )]0 < j < | B5L],1 < i < 2™2-%),
Then M is a double-free subset of Zy= and [M| = 3| 21| 2™/, There-
fore, we have
WZom) = ) 277
0<i<| 7
) |
Letp = (p1,p2,...,pr) be asequence of distinct odd primes and e = (e;, ez,
..., €r) be a sequence of non-negative integers. We shall denote p* the integer
Pi'p3* ...pfr and O as the sequence (0,0,...,0). Leta = (qy,a3,...,a,) bea
sequence of non-negative integers. We writca < e if0 < a; < e;for1 < i< r.
Letn=pandord,(2) = d;jfor1 <j < ei1<i<r Let

dy = LCM {d;;]1 < i< 10; >0}

Then ordy(2) = d,. Lett, be the number p(p*) /d, and ¢ is the Euler  func-
tion,
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where

A= {2%(2i — 1)k, 2%7*1(2i — 1)k} and
Biji={2¥(2i - )k +2™'p°}.

Every double free subset can contain one element in each of the doubleton set A;;,;
at most. Hence

WZ)< Y, Y Y as+y

1<k<p* 0<jg BFL 1gig2m-2-3
=p° - $(Zz=).

LetM = {22/(2i—1)k,2/(2i—1)k+2™'p®|1 < k < p*,0 < j < Bl and
1 < i< 2m-2-2/}, Then M isadouble-free subset of Z,, and | M| = p® ¢(zzu.)
Thus, we have $(Z,) = p° - ¥(Z2n).

(i) Whenm iseven,LetD={2™i|1 <i<p®}and E=Z, — D. Then the
digraph G( D) is isomophic to G(Zy+). Therefore $(D) = $(Zp). We
have a partition of E:

E= ( U U U (AiijB:‘jk)) u{o}

1<k<p 0SS B-1 1€i2m2-2

where

Agje = {2%(24 = 1)k,2%*1(2i — 1)k} and
Bijk = {2¥(2i - 1)k + 2™ 'p°}.

Every double free subset can contain one element in each of the double sets A;;x
at most. Hence

Y(E) < Z E E (14 1) = p° - (Z2m)
1<k<pt 0SSR ~1 1€iC2m-2-2¢

Let M = {22f(21— Dk,27(2i- Dk+2™1p* |1 <k<LPp,0<i< D
and 1 < i < 2™ 277}, Then M is a double-free subset of E. Thus we have

Y(E) = p° - ¥(Zyn).
It is obvious that

¥(Z,) < Y(E) + $(D).

There is no edge between the element in D and the element in M. Therefore

¥(Z,) = Y(E) + ¢¥(D). Hence, we have



V(Za) = p*Y(Z2n) + x(m is even) P(Zps).

1
Example 1: Figures 2 and 3 give the digraphs G(Z,4) and G(Z3). We have
¥(Z2) = 15 and ¢p(Zas) = 16.

Figure 2. Digraph G(Z»4)

SYofety

Figure 3. Digraph G(Zss)

All the statements in propositions 1, 2, 3, 4 and theorem 3 can be generalized
into the g-free subset for any prime g. That is

Theorem 4. Letp = (p1,p2,...,pr) be asequence of distinct primes and let q
beaprime. p) # q for 1 < i < r. Let e be a sequence of non-negative integers
and ordy(q) = dy. Then

¢,(qu.pm) = pe . ¢,,(Zq-) + x(m is CVCH)¢q(zpo)

and _
"I)q(zq'“) = Z qm-l-z:.
0gig| =)

We can use that same method to find ¥,(Z,) when g is not a prime but the
calculation would be tedious. Therefore, we do not discuss it in detail.
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4. Maximum cardinality of g-free subset of (Dy,,+). A

A digraph is called functional if the outdegree of every vertex is equal to one. Let
G be a functional digraph and let z be a vertex that belongs to V(&) and let H
be a functional rooted digraph with root z. Then the functional digraph G, H is
the digraph obtained by identifying the two vertices z and z.

The dihedral group D, = {za + yb|z = 0 or 1,0 < y < n— 1} with
2a =nb=0andae+b=-b+a. Let A = {yb|0 <y < n—1}and
B={a+yb|0 <y < n-—1}. ThenD, = A, U B,. The digraph G,(A,) is
isomorphic to Gy(Z,). If ¢ is odd, then the digraph G,( B,,) is made of nseparate
single vertex loops since g(a + b)) = a+ bV0 < i < n— 1. If ¢ is even, then the
digraph G,(B, U {0}) is a star digraph with root 0 (i.e. the directed edges set of
Go(B,U{0)) is {20 |z € B.}).

Figures 4 and 5 give the digraphs G(D24) and G3(Dy).

Figure 4. Digraph G(D»4)

HHHDHONDA
HHHOADHAA
p0H00HDD

Figure 5. Digraph G3 (D)

Let us discuss the digraph G,(D,,) in these cases in which g is odd or even.

Case 1: When g is odd, the digraph G,(D,,) is the union of digraph G,( A,) with
n single vertex loops.

11



Case 2: When ¢ is even, the digraph Go(D,) = G,(A,.)0; 0G,(B, U {0}).
It is known that B,, is an independent subset of G¢(D,) and there are no edges

between the elements in B, and the nonzero elements in A,. Hence, $,(D,) =
¥e(As) + $4(B,). Thus, we obtain the following theorem,

Theorem 5. .
¥(Z,)  ifgisodd.

$e(Dy) = { Vo(Zs) +n  ifq iseven,
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