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1. Introduction

In this note we prove that the two flag-transitive translation planes of order 52
which were defined by D.A. Foulser in [7] are a mutually polar pair. Although
these translation planes are well known it does not appear to have been noticed
previously that they have this property.

We establish this result using Conway’s isomorphism invariant of projective
planes. This invariant, as well as another isomorphism invariant of translation
planes are described in [4] and [5]. We have also determined the translation com-
plements of both Foulser planes using this invariant. (This was also done in {91,
[10], with standard arguments.) However our approach requires minimal back-
ground and the automorphism groups of other translation planes can also be de-
termined by this method, thus we include here a fairly complete description of this
method.

We conclude with an observation about a possible extension of our result to a
family of two dimensional flag-transitive planes.

2. The Quadratic matrix

In the next two sections we shall prove that the two flag-transitive planes of order

52 7 and 7' defined by Foulser in [7] are a mutually polar pair. This concept
will be defined in the course of our discussion; we refer the reader to [S] for an
explanation of any undefined concepts.

We can use either the original description of = and %’ given in [7], or an equiv-
alent description found in [6). From either description of 7 and 7' we obtain two
spreads S; and S in the vector space V(4,5); these spreads define the transla-
tion planes. (We can also work in the corresponding projective space PG(3, 5).)
Next we calculate the quadratic matrix of each plane using the procedures which
are described in [4].

We find that both 7 and #’ have the same quadratic matrix. (See Fig. 1.) We
have suppressed the signs.

Examination of this matrix shows that we can associate with this matrix a graph
I" as follows. The vertices of I" are in one-one correspondence with the vectors
of the quadratic matrix (Since the groups of these planes act flag-transitively the
vectors are only of one type.) If we join two vertices whenever the corresponding
entry of this matrix is -8, we obtain the graph in Figure 2.
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Figure 1
The quddratic matrix for the Foulser planes, without signs.

by their distance from 0. It is evident that there is an automorphism which inter-

that there is just one edge between two of these points.

tomorphism group of I". The vertices of the graph are labelled
on the figure show that there are just four points at distance

int O varies, we obtain just the 26 edges of the outer and in-

ner 13-gons in this way, so the partition of the vertices into these 2 polygons is

ot
1n

changes the inner and outer 13-gons in Figure 2, so Aut(T") is transitive on the 26

ut(I") is of order 52, the subgroup of index 2 fixing the outer

iously a dihedral group of order 26.
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the property that inner product of any two distinct vectors is
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Figure 2

a quadratic form of Witt index 3.

Given the quadratic matrix of either Foulser plane in any ordering we can sort
it into the order used in Figure 1 by the method of the previous section, and then
display the Gram matrix of the ovoid vectors in the same order. We obtain the same
matrix (Fig. 3) for each plane. This matrix was obtained as follows. S; and Sz
correspond to two ovoids in Q* (6, 5); in this quadratic space, inner products are
given by the bilinear form B(z, y) = Q(z+y) —Q(z) —Q(y) which corresponds
canonically to Q(z) = 2124 + T225 + T3T6.

I found in this way that the 6-dimensional ovoids which correspond to the 2
planes are isomorphic (as ovoids), and concluded falsely! that these planes are
isomorphic. The true situation is much more interesting.

Despite the fact that the ovoids are isomorphic, the corresponding 4-dimensional
spreads are related by a duality of the 4-dimensional space rather that an isomor-

1'This possibility was raised in my talk at the British Combinatorics Conference 1989.
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Proof: Since the translation planes we consider are defired over GF(q) forg a
prime, any automorphism (modulo the subgroup of translations), is an element of
GL4(g). Let g be such an automorphism, then g can be put into the Jordan form

d

Now suppose that A, B, C, D are the eigenvectors corresponding to the eigen-
values a, b, ¢, drespectively, then: AANB,AANC,AAND,BAC,DAB,CAD
is a basis for the exterior square of V (4, ¢) with itself, and with respect to this ba-
sis the corresponding element of the symmetry group of the ovoid has the Jordan
form

/ ab \
b ac
: ad
: ke
SR Y
\ioE ot e

The quadratic form of this quadratic space has the matrix

00000 1
000010
looo 100
Q=10 010 0 0
01000 0
10000 0

then 0 0 0 0 0 abud

0 0 0 0 abd 0

th_ | O 0 0 abed O 0

GQG=| 4 0 abed O 0 O

0 abcd O 0 0 0

abed O 0 0 0 0

It follows that for g € GL4(gq), the determinant & of the corresponding auto-
morphism of the ovoid satisfies the relation § = A3, where ) is the scaling factor.
Now let U be a symmetry of the ovoid given by the matrix Q. The scaling factor
of U is 1, but the determinant is —1. So the inverse image of U (under the Klein
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correspondence) is an element of GL4(q) - 2 which fails to satisfy the criterion.
Since G L4(g) has index two in GL4(q) -2, it follows that all the elements of this
group which do not belong to GL4( g) have this property.

We summarise. Under the Klein correspondence an automorphism with § = A3
maps to a collineaﬁpn of projective 3-space, while one with § = ~>¥ mapstoa
correlation (duality)‘.

We can now prove our main result.

2.1.2. Theorem. | There are 2 mutually polar, but not isomorphic translation

Dplanes con'espondit')g to the 6 -dimensional ovoid described above.

Remark. These are of course, the planes proved by Foulser in [7] to be the only
flag-transitive planes of order 52.

Proof: The elemeqt of order 13 in the automorphisrﬁ group cannot induce corre-
lations so we need only consider the other elements of the group. Now the action
of the element 7 of' order 4 is described by the following matrix

Po Ps Ps Qo Q1 Q.

'R /0 2 2 4 4 4

y Ps |2 0 4 4 2 2
Ps|l2 4 0 4 2 2
T Q |4 4 4 0 4 4
Qi ({4 2 2 4 0 3
1 Qa\4 2 2 4 3 0

But 7 has the pr'pperty that 7Qr = Q, where Q is the diagonal quadratic form.
Hence the scaling factor corresponding to 7 is 1. On the other hand the determinant
of 7 is 1, so by the previous lemma 7 belongs to the subgroup of collineations of
the translation plahe corresponding to this ovoid. We conclude that every element
of the automorphism group of the ovoid induces a collineation. In other words
each ovoid autom'orphism takes each plane to itself, rather than to the polar plane.

We refer to thejI discussion of Chapter 2 in [4], as to why we get the same re-
stricted sign man)'ices for a translation plane and the polar plane. Here we only
mention that this is consistent with a conjecture regarding Conway’s invariant
which was discussed in [4].

1t now follows from the above theorem (since a dual spread has the same abstract
group in its contragradient representation), that the automorphism groups of « and
=’ have the samef order. This was originally established by Foulser in [7Jup to a
factor of two, anq the full automorphism group of both planes was determined by
lengthy arguments in [9] and [10].

In view of the phenomenon described in Theorem 2.1.2, a 6-dimensional ovoid
gives rise to eith#r just one, or just two nonisomorphic translation planes, accord-
ing as there is oni is not an automorphism with § = —)3. This is often a delicate

|
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mater. The automorphism group of the plane, modulo the subgroup of kemel ho-
mologies, is of index at most 2 consisting just of those derived from the ovoid
automorphisms with § = )3,

3. Polarity in other planes

Among the translation planes of order 72 that I have studied there is one such pair,

and again it consists of two flag-transitive planes. These planes are an instance of
a general construction for all flag-transitive translation planes of order g2 given
by Baker and Ebert in [1], [2] and [6]. In [6] Ebert was unable to decide whether
the two planes of order 72 [L;] U [L}] and [ Ly] U [ L{] were isomorphic. This
is now a consequence of Kantor’s recent work [8]. Prior to knowing about [8],
I also have established this by our methods; I showed that these two planes are
mutually polar.

This suggests that the automorphism groups of such planes acts in a special
way. For instance, when g = 7 there are three nonisomorphic non-desarguesian
flag-transitive planes planes of order 72. The automorphism group of two of these
planes [L;] U [L}] and [ L;] U [L{], coincides with the automorphism group of
their ovoid. This is not the case for the plane [L3] U [L}] of [6]). Forg = 3
there is only one non-desarguesian flag-transitive plane of order 32. Hence it is
isomorphic to its polar plane.

We know now by Baker and Ebert’s, and Kantor’s work [8], that there are (g —
1) /2 mutually nonisomorphic non-desarguesian flag-transitive translation planes
of order ¢? if ¢ is an odd prime. In view of our result and the previous remarks we
ask is the following is true for all primes g, such thatg > 7? If g = 3 (mod 4),
the set of (g — 1) /2 non-desarguesian flag-transitive planes is partitioned into one
self polar plane and (g — 3) /4 mutually polar planes. But wheng =1 (mod 4),
this set is partitioned into (g — 1) /4 pairs of mutually polar planes.
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