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Abstract. In this paper we study the existence of perfect Mendelsohn designs without
repeated blocks and give several general constructions. We prove that for k = 3 and any
X, and (k,)) = (4,2),(4,3) and (4,4), the necessary conditions are also sufficient
for the existence of a simple (v, k, \)-PMD, with the exceptions (k,)) = (6,1) and
(6,3

Introduction

Let v and k be given positive integers. Let X be a finite set containing v elements
and B = (zo,21,... ,Tx—1) be a cyclically ordered k—subset of X consisting
of k ordered pairs (zo,z1),(2z1,72),..-, (zk_2,zr—1) and (zx-1, o). Lett =
1,2,...,k — 1, two elements z; and z,, are said to be ¢-apart in B where i + ¢
is taken modulo k. Two cyclically ordered subsets are considered to be the same
if one can be obtained from the other by a cyclic permutation.

Let v, k and ) be given positive integers. A (v, k, \) —Mendelsohn design (or
briefly written as (v, k, \) —MD) is a pair (X, B) where X is a v-set and B is
a collection of cyclically ordered k—subsets (called blocks) of X such that each
ordered pair of distinct elements of X is contained in exactly A blocks of B.

Let (X,B) be a (v,k,\)—MD and r be an integer, 1 < r < k — 1. If for
allt = 1,2,...,r, each ordered pair of distinct elements of X appears t-apart
in exactly ) blocks, then (X, B) is called r-fold perfect. A (k — 1)-fold perfect
(v, k, \)-MD is called perfect and denoted (v, k, A)-PMD.

The concept of PMDs was introduced in the case & = 3 by N.S. Mendelsohn
[13] under the name of perfect cyclic designs. The terminology of Mendelsohn de-
signs was firstused in its general form by Hsu and Keedwell [9]. The existence and
construction of perfect Mendelsohn designs, its relationship with various mathe-
matical structures has been widely studied and many new results obtained in recent
years. The interested reader may refer to the survey paper [17].
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It is not difficult to ’verify that any (v, k, »)-PMD contains Av(v — 1) /k blocks
and hence the followlng is a necessary condition for the existence of a (v, k, )-
PMD: |
| Mwv-1)=0 (mod k). 1)

It was proved [1, il] that (1) is also sufficient for the existence of a (v,3,))-
PMD, except (v, A)' = (6,1). It is proved [6,16] that for k = 4, (1) is also
sufficient for the existence of a (v,4,))-PMD except v'= 4 and X odd, (v,}) =
(8, 1) and possibly except (v,A) = (12,1). For k = 5, an almost complete solu-
tion can be found in|[3,5]. But in their constructions, repeated blocks are permit-
ted. In many occasi?ns, naturally, we are more interested in perfect Mendelsohn
designs without repeated blocks, such designs will be called simple.

A balanced inconltplete block design (v, k,))-BIBD s a pair (X,B) where X
is a v-set and B is a collection of k-subsets (called blocks) of X such that each
unordered pair of distinct elements of X is contained in exactly X blocks.

If we ignore the cyclic order in the blocks of a (v, k, ) -PMD , then we obtain a
(v, k, \(k—1))-BIBD and this BIBD is called the underlying BIBD of the PMD.
A (v,k,))-PMD i called pure according to [2] or called tight according to [9]
if the underlying (v’, k, A\( k — 1))-BIBD contains no repeated blocks. Obviously,
apure (v, k,))-PMD must be simple. We also note that for A = 1,any (v, k,1)-
PMD must be simple but not necessarily pure.

The main purpos! of this paper is to study the existence of simple or pure perfect
Mendelsohn designs. Constructions of simple perfect Mendelsohn designs with
additional properﬁ?s are also discussed.

General Construétions
Letv be apositive integer and K be a setof positive integers. A pairwise balanced

design (v, K,1) -PiBD isapair(X,B) where X isa v-set and B is a set of subsets
(called blocks) of X such that |B| € K for each B € B and each pair of distinct
elements of X is contained in a unique block of B.

Let

E(K) = {v] there exists a (v, K, 1) — PBD}.

If B(K) = K, then K is called a PBD-closed set.
Now let

|
NPMT k,)\) = {v| there exists a simple (v, k,\) — PMD},

and |
PPM(k,)) = {v| there exists a pure (v, k, ) — PMD}.

We prove the following theorem which provides a recursive construction for
simple or pure perfect Mendelsohn designs.
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Theorem 2.1. Forgivenpositive integers k and A\, NPM (k,)\) and PPM(k, ))
are PBD-closed sels.

Proof: Let (X,B) be a (v, K,1)-PBD such that m € NPM(k,)) for each
m € K. Foreach B € B, |B| = m, we form a simple (m, k, \)-PMD on B and
denote the block set by Ag. Now let

A = UpepAg,

then (X, A) is a simple (v, k, A)-PMD. This proves that N M P(k, )\) is PBD-
closed. Similarly, we can prove that PP M(k, )) is a PBD-closed set. This com-
pletes the proof. [ |

Let (X,A) bea(v,k,))-PMD and (Y,B) be a (w,k,\)-PMD.IfY C X
and B is a subcollection of A, then (Y, B) is called a subdesign of (X,A) or
(Y,B) is said to be embedded in (X, A). More generally, let X be a v-set and
Y be a w-subset of X, and let A be a collection of cyclically ordered k-subsets
(called blocks) of X such that [BNY| < 1 for each B € A and each ordered
pair of distinct elements of X, not both in Y, appears t-apart in exactly \ blocks
of A,foreacht=1,2,... ,k—1,then (X,Y,A) is called a (v, w; k, \)-IPMD
incomplete perfect Mendelsohn design. The concept of incomplete block design
(v,w; k, ))-IPBD can be defined in a similar way (see for example [13]). The
following theorem for the construction of (v, w; k, \)-IPBD was proved in [14].

Theorem 2.2, Ifthereexists asimple (v, w; k, \1) -IPBD, asimple (v, w; k, X2) -
IPBD and

Mia(k =2 (v—w){kw(v—w—k+ 1) + (v= (k= Dw~-1)%}.

(v—w=-k)!'<k(k—D(v—w-1)! )
Then there exists a simple (v, w; k, \1 + X2) -IPBD.

We prove the following analogue for simple incomplete perfect Mendelsohn
designs.

Theorem 2.3. Ifthereexists asimple (v, w; k, \1) -IPMD, asimple (v, w; k, X2) -
IPMD and

M (v—w)(v—w—k) ! {kw(v—w—k+ 1)+ (v—1—(k-1) w)z} < k(v—w-1)!

Then there exists a simple (v, w; k, \ + A\2) -IPMD.,
Proof: Let(X,Y,A) bea (v, w; k,\)-IPMD and let

A;={B€A||BnY|=i},i=0,1.

131



Forany y € Y and :’c € X\Y, the ordered pair (z,y) is contained in exactly A
blocks. As for any blbck B,|BnY| < 1,50y is contained in precisely AM(v —w)
blocks and therefore jt is easy to check that |A;| = Aw(v — w). Since the number
of blocks contained in a (v, w; k, \)-IPMD is

M(v=1) = Idw(w-1)

? Al = p ,
then we have | '
ol = 141 2D DD o
- "(;”;"’){u- 1— (k- Dw)

Now let S be the fsymmem’c group on X and 7 € S be a permutation. For each
cyclically ordered set M = (z1,32,... ,Zm) Of X, let
w(M) = (7(X1),7(X2),... ,\T(Xm)),
w(A) = {n(B) | BEA}.
Let G be the subgr?up of S fixing Y, then
f |G| = w!(v — w)!

and for any = € G}(X,Y,n(A)) is asimple (v, w; k, X)-IPMD.

Now let(X,Y,A) and (X, Y, B) beasimple (v, w; k, \1)-IPMDand a (v, w;
k, X2)-IPMD, respectively. For two given blocks B, € A and B; € B, if|Bi1 N
Y| # |B2 NY]|, then there doesn’t exist # € G such that #(B1) = By. If
|BynY| = |B2 TY] = 0, then the number of permutations # € G such that
w(B1) = By iswlk(v—w—k)!. If|By NY]| = | B2 NY| = 1, then the number
of such permutati#ns is

| (w—1D! (v—w—k+ 1)
Let n be the nur:nber of permutations 7 € G such that

| In(A)NB|>1,
then we have ’
n<dgwt (v - w)?(w = D! (v—w—k+1)!
|
+ ﬁ%(u —w)i{v—1— (k- DwPw! k(v—w-k)!
=*':f(u-w)2w! (v—w—Kk)! {kw(v—w—k+1)

+(v—1-(k=Dw)?}
< w! (v—w)!.

|
|
\
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Thus there exists a permutation # € G such that 7(A),B have no blocks in
common and therefore (X,Y, #(A) UB) is a simple (v, w; k, A\; + \2)-IPMD.

i
As corollaries of the above theorem, we have the following constructions for

simple Mendelsohn designs.
Theorem 2.4. Ifthereexistasimple (v, w; k, \1)-IPMD, a simple (v, w; k, \2) -
IPMD and a simple (w, k, 1 + X2) -PMD such that
Ma(v—w)(v—w-k)!-
{kw(v—w—k+1)+(v—1— (k= Dw)®} < k(v—w—1)!

Then there exists a simple (v,k, 1 + \2)-PMD containing a simple (w, k,
A1 + A2)-PMD as a subdesign.
Proof: Let (X,Y,B,;) be asimple (v, w; k, \1)-IPMD, (X,Y, B,) be a simple
(v, w; k, X2)-IPMD and (Y, Bo) be a simple (w, k, \; + A2)-PMD. By Theo-
rem 2.3, there is a permutation # € G such that #(B;) N B, = ¢. Now let
A = By U{U%,n(B;)}, then (X,A) is asimple (v, k, )1 + X2)-PMD contain-
ing (Y, Bo) as a subdesign. |
Theorem 2.5. If there exists a simple (v, k, \1) -PMD containing a subdesign
(w, k, \)-PMD, a simple (v, k, A1) -PMD containing a subdesign (w,k,)3)-
PMD and

AMda(v—w)(v—w— k) {kw(v —w—k+ 1)(v—1—-(k—1Dw)?}

<k(v—w-1)!

Aivw(w=kNw-1) < k(w-2)!
Then there exists a simple (v, k, \ + X\2)-PMD containing a subdesign (w, k,
A1 + A2)-PMD.
Proof: Let(X,A) beasimple (v, k, \)-PMD which contains (Y, B) as a subde-
sign (w, k,2)-PMD, then (X,Y, A,B) is a simple (v, w; k, \)-IPMD. We also
note that a (w,0; k, \)-IPMD is in fact a (w, k, A\)-PMD. Now the conclusion
follows from Theorem 2.4. |

Existence of Simple Perfect Mendelsohn Designs
We know that any (v, k, A)-PMD contains Av(v—1) /k blocks and a v-set contains
(D)(k — 1)! cyclically ordered k-subsets. So we have the following necessary
conditions for the existence of a simple (v, k, \)-PMD:
M(v—1)=0 (mod k), @)
A< (v—2)(v=3)...(v—Fk+1).
The main purpose of this section is to prove that the necessary conditions (3) are

also sufficient for the existence of a simple (v, k, \)-PMD with (i) £ = 3 and )
evenand (ii) k = 4,) = 2, 3, or, 4. Partial results for k > 5 are also obtained.
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Lemma3.1[15}. Ifv =0 (mod 2), then there exists a pure (v,3,(v—2) /2)-
PMD.

Theorem. Forany positive integer ), there exists a simple (v, 3, \) -PMD if and
only if

%\v(v-l)EO (mod 3), A<v-2, @
(v,2) #(6,1), (6,3).

Proof: Let V bea v-setand A be the set of all the v(v — 1)(v — 2)/3 cyclicaly
ordered 3-subsets of|V, then (V,A) is a simple (v,3,v — 2)-PMD. Further, if
(V,B) is a simple (v, 3, \)-PMD, then (V,A\B) is obviously a simple (v,3,
v—2 —)\)-PMD, So the non-existence of a simple (6,3,3)-PMD follows from the
non-existence of a (6,3,1)-PMD. By (3), if there exists a simple (v,3,))-PMD,
then \v(v—1) =0 ((mod 3) and) < v—2. So(4)is necessary for the existence
of asimple (v, 3, \) -PMD. To prove the sufficiency, by Lemma 3.1, itis sufficient
to consider the probﬁem for A < (v—2)/2.

Ifv=0o0rl (mod 3), we may suppose v # 6 and write v = 3tor3¢+ 1.
It is proved in [10] that there exist 2 pairwise disjoint (v, 3, 1)-PMDs for each
v=3tor3t+1, vi# 6.Let(V,B;),1 < i < 2t, be these (v, 3,1)-PMDs. For
1 < X < 2t,1et B = UigicaBi, then (V, B) is a simple (v, 3, ))-PMD.

Ifv=5 (mod 6) anda(v,3,))-PMD exists, then X = 0 (mod 3). Itis well
known that there exists a simple (v,3,))-BIBDforv=5 (mod 6) and A =0
(mod 3), ) < v — 2 (see [7]). Let (V,B) be such a simple (v,3,))-BIBD.
We replace each (ul}ordered) triple {a, b, c} € B by two cyclically ordered triples
(a,b,c) and (a,c,b) and let

A = {(01 b,c),(a,c,b) I {O,b,C} € B})

then (V,A) is a simple (v,3,)-PMD.
Now the only case remained to be dealt with is v = 2 (mod 16). If v = 14,
we form a simple (14,3,3)-PMD as follows:

X =Z,3 U {o0}.

B :{(ooLO,4),(oo,0,10),(oo,0,12),(0,1,4),(0,2,8),
(0,3,12),(0,4,3),(0,5,7),(0,6,11),(0,7,2),
(0,8,6),(0,9,10),(0,10,1),(0,11,5)} (mod 13).

Ifv # 14, writevl = 6t + 2, then 3t # 6 and there exists a simple (3¢,3,))-
PMD foreachA =0 (mod 3), A < 3t — 3, as shown above. We form a simple
(6t+2,3,))-PMD foreachl =0 (mod 3),) < 3t — 3, as follows:

Let X = {001,002, ... ,003¢} and (X, A) be a simple (3t,3, })-PMD. Let
D(3t+2,)) be the multiset containing each i € Z3z2\{0} ) times. The ele-

ments of D(3t+7, )) are called differences. As A < 3t—3, we can always parti-
)

tion D(3t+ 2,)) into two parts C and D, where C contains A differences which

|
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can be divided into \/3 pairwise distinct groups C; = {¢;,,¢;;,6;,}, 1 <4 <
A/3,suchthatc; + ¢;, + ¢;; =0 (mod (3t+ 2)) for each ¢, and D contains the
remaining 3\t differences which can be divided into 3¢ groups D;, 1 < j < 3¢,
each D; contains X distinct differences: D; = {d;,,d;,,... ,d;, }. Now let

Y=XUZ3.2, B=AUA;,
where A, consists of the following cyclically ordered triples:
(0,ciy,¢;, +¢;,), (mod (3t+2)), 1<i<A/3;

(00;,0,d;,),(00;,0,d;,),...,(00,0,d;) (mod (3t+2))),1<j<3t

Then (Y, B) is asimple (6t + 2,3,))-PMD.
This completes the proof. [ ]
Let w = O in Theorem 2.3. We have the following construction for simple
perfect Mendelsohn designs.

Theorem 3.2. If there exist a simple (v, k, ) -PMD and a simple (v,k, )\2)-
PMD and
Aixv(v—1)(v—k)! < k(v -2)! ©)

then there exists a simple (v, k, \y + \2) -PMD.
Theorem 3.3. There exists a simple (v,4,2)-PMD if v> 4,

Proof: It is proved that foreachv = 0 or 1 (mod 6),v > 4,v # 8,12, there
exists a (v,4,1)-PMD.Forv =0or1 (mod 4),v > S, v # 8,12, let); =
A2 = 1 in Theorem 3.2, we obtain a simple (v,4,2)-PMD. Forv = 4,8 and 12,
the following designs were constructed in [6]:

(4,4,2) -PMD: X =23U/{oo}
B: {(00,0,1,2,),(00,0,2,1)} (mod 3)
(8,4,2) —-PMD: X =27U/{oo}
B : {(00,0,1,3),(00,0,-1,-3),(0,1,-2,2),
(0,-1,2,-2)} (mod 7)
(12,4,2) - PMD: X = 2Z; U {o0}
B : {(00,0,1,5),(00,0,-1,-5),(0,1,3,8),
(0,-1,-3,-8),(0,-4,-2,-5),(0,3,1,5)} (mod 11)

It can be readily checked that these designs are simple.

Forv € {6,7,10,11,14,15,18,19,23}, (v,4,2)-PMDs can also be found
in [6] and all of these designs are simple.
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+=1{4,5,...,12,14,15,18,19,23}

Let

It is proved [8] that ifor every integer v > 4, we have v € B(K4). Since there
exists a simple (v,4,2)-PMD for each v € K4, then as NPM(4,2) isaPBD-
closed set, we have‘ proved that there exists a simple (v,4,2)-PMD for every
v>4. |

Theorem 3.4. Thc}e exists a simple (v,4,3)-PMD if and only if
| y=0orl (mod4), v>5 m

Proof: To prove the theorem, we only need to prove the sufficiency. For each
v=0o0rl (mod4), v>8,v#12,letd; =1landl; =2 in Theorem 3.2.
We obtain a simpleﬁv, 4,3)-PMD from a (v,4,1)-PMD and a simple (v, 4,2)-
PMD. For v = 8 or 12, the (v,4,3)-PMD’s constructed in [6] are simple. To
complete the proof Tt’ the theorem, we construct a simple (5,4,3)-PMD as follows:

X=2s

B :{(0,1,2,3),(0,2,4,1),(0,3,1,4),(0,4,3,2),(1,3,4,2);
(1,2,3,4),(1,3,0,2),(1,4,2,0),(1,0,4,3),(2,4,0,3);
(2.3.4,'0),(2,4, 1,3),(2,0,3,1),(2,1,0,4),(3,0,1,9)}.

Now we consider the existence of simple (v,4,4) -PMDs.

Lemma 3.2. Ifp > 5 is a prime, then there exists a simple (p,4 ,4)-PMD and a
simple (p+ 1,4 ,4)-PMD. Ifp > 7 is aprime, then there exists a pure (p,4,4) -
PMD and a pure(p+ 1,4,4)-PMD.

Proof: Let X = ?p and B = (0,1,2,4). Foreacht € Z,\{0}, lettB =
t-(0,1,2,4) = (0,t,2¢,4t). Let B be obtained by developing the p — 1 base
blocks B, 2B, ... ’,(p— 1) B. Then (2, B) is a simple (p,4,4)-PMD if p > 5
anditispureifp‘>7.

Now in the aboye (p,4,4)-PMD, let the base blocks B and (p — 1) B be re-
placed by the folkTwing four base blocks:

(0,1,2,bO),(O,z,—2,00),(0,—1,—3,00),(0,—1,3,00).

Then we obtain a simple (p + 1,4,4)-PMD on Z, U {oo} if p > 5 and it is pure
ifp>17. |
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Lemma 3.3. If there exists a simple (or pure) (v,4,4)-PMDand p > 2v + 1
is a prime, then there exists a simple (or pure, respectively) (v + p,4,4) -PMD
containing the (v,4 ,4) -PMD as a subdesign.

Proof: Since there is asimple (v,4,4)-PMD, thenv > S andsop > 2v+1 > 11.
LetY = {oo1,002,...,00,} and (Y, Bo) be a simple (or pure) (v,4,4)-PMD.
Fort € Z,\{0}, let the p = 1 base blocks ¢ B be defined as in Lemma 3.2. Now
fort=1,2,...,v,lettB and (—t) B be replaced by the following base blocks:

t'(0,1,2,001),t'(0,2,—2,00¢),—t'(0,1,3,001),—t°(0,l,—3,00¢).

Let B, be the block set obtained by developing the above 4 v base blocks and the
p—2v—1baseblockst-B, t = £(v+1),... ,£(p—1)/2. Then (Z,UY,Bo U
B,) is a simple (or pure, repectively) (v + p,4,4)-PMD containing (Y, Bo) as a
subdesign. 1

Lemma 3.4. There exists a pure (v,4,4)-PMD forv=9, 100r 15.

Proof: Forv = 9,let X = GF(9) and z be a fixed primitive element. Let B be
obtained by developing the 8 base blocks z* - (0,1,z,22), 0 < i < 7. Then
(GF(9),B) is apure (9,4,4)-PMD. When v = 10, take X = GF(9) U {00}.
Letz . (0,1,z,2%) = (0,1, z,2%) and z* - (0, 1,z,2%) = (0,1, -z, —z?)
be replaced by the following 4 base blocks:

(oo,O,l,:c),(oo,O,a:z -z, -z))

(00,0,—(z — 1),—(2* — 1)),(00,0,-1,2% — 1).

Let A be obtained by developing the above 4 base blocks and the 6 base blocks
2'.(0,1,2,2%), 1 <i< 7, i #4. Then(X,A) is a pure (10,4,4)-PMD. For
v=15, X = Zj4 U {oo}. Base blocks of B (mod 14):

(0,5,3,8), (0,6,13,5), (0,3,12,8), (0,11,9,2),
(0,8,10,6), (0,13,3,7), (0,11,10,3), (0,1,2,7),
(0,12,1,5), (0,13,9,3), (0,1,2,6),

(00,0,2,4), (00,0,3,6), (00,0,2,1), (00,0,5,3).

Lemma 3.5. There exists a simple (v,4,4)-PMDif 5 < v < 21.

Proof: Ifv=5,6,7,8,11,12,13,14,17,18, 19,20, then there exists a simple
(v,4,4)-PMD by Lemma 3.2. For v = 9,10 or 15, the existence of a simple
(v,4,4)-PMD has been proved in Lemma 3.4. Letv = 5 and p = 11 in Lemma
3.3, then we have asimple (16,4, 4)-PMD. Since N P M (4 ,4) isaPBD-close set
by Theorem 2.1 and there exists a (21,5,1)-BIBD, then we have a simple (21,4,4)-
PMD. This completes the proof. 1
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Theorem 3.5. There exists a simple (v,4,4)-PMD ifand only if v > 5.

Proof: For5 < v < |21, there exists a simple (v, 4,4)-PMD by Lemma 3.5. Let
p>17beaprimeand5 < v < (p— 1)/2, then by Lemma 3.3, there exists
a simple (v + p,4,4)-PMD provided there exists a simple (v,4,4)-PMD. We
prove the theorem by induction. Letp = 17,19,23,29,37,47,61,83 and 113
subsequently, this establishes the existence of a simple (v, 4, 4)-PMD for every v
with22 < v < 169ll Now let nbe an integer such thatn=1 (mod 2), n# 0

(mod 3) and » > F9, then there exists a transversal design T'D(6,n). For
0 < s < n—35, delete s points from a fixed group of the TD(6 , ), this gives
a(v, K,1)-PBD witlh v=6n—sandk = {5,6,n— s,n}. Since s < n—5,

thenn—3 > 5,50 §ach block size of the (v, K, 1)-PBD is at least 5. It can be
easily checked that for each v > 169, there exist n and s satisfying the above
conditions. As NPM(4,4) is a PBD-closed set, this proves the existience of a
simple (v, 4,4)-PMD for every v > 169. [ |

|

Asymptotic Existence of Simple Perfect Mendelsohn Designs for k > 5

If k > 5, then for any fixed A\; and )2, there exists a vo = vo(k, A1, A2) such that
forany v > vo, we have

’ Mav(v=1D(v=4k)! < k(v-=-2)!
Thaus, if £ > 5 and there exists a simple (v, k,Ao)-PMD and A = 0 (mod \o)
, ¥ > vp, then by Theorem 3.2 there exists a simple (v, k, A) -PMD. This proves
the following theorem:

Theorem 4.1, If k> 5 and there exists asimple (v, k, o) -PMD and m)\% v(v—
D(v—Fk)! < k(v T 2)!, then there exists a simple (v, k, mXg) -PMD.

h

As it is proved in [3] that for (k,)) = (5, 1), there exists a (v, 5,1)-PMD if
and only if

v=0orl (mod 5)

and
V ¢ E={6,10,15,20,26,30,36,46,50,56,66,86,90,

110, 126,130, 140, 146, 186,206,246 ,286 }.

Thus we have the f?nowing theorem.

Theorem4.2, If X # 0 (mod 5) and A < 5(v—2)(v—-3)(v—4)/(v(v— 1)),
v ¢ E, then there exists a simple (v,5,\)-PMD ifand only if v = 0 or 1
(mod 5).
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