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Abstract. The main result of this study is that if g, p are primes such that ¢ = 3
(mod 4),g>7,p=1 (mod 4),hcf(g—1,p™ (p— 1)) =2 and if there exists a
Z-cyclic Wh(g+ 1) then a Z-cyclic Wh(gp"™ + 1) exists forall n > 0. As an ingredient
sufficient for this result we prove a version of Mann’s Lemma in the ring Zgpr.

1. Introduction
The whist tournament problem for v players was introduced into the mathematical
literature nearly 100 years ago by E.H. Moore [8]. Solutions to the whist tourna-
ment problem are known to exist [2], [6] forallv = 0,1 (mod 4). For some
history related to this problem see [2], [4]. In this paper we concentrateonv = 0
(mod 4).

A whist tournament Wh(4n) for 4n players is a schedule of games each involv-
ing two players playing against two others such that

(i) the games are arranged in 4 n — 1 rounds, each of n games;
(ii) each player plays in one game in each round;
(iii) each player partners every other player exactly once;
(iv) each player opposes every other player exactly twice.

Games are denoted by 4-tuples (a, b, c,d) with a,c partners and b, d partners.
Whenever the v-set is Zs,-1 U {oo} and each round can be obtained by adding
1 (mod 4n — 1) to each non-oo element of the previous round we say that the
Wh(v) is Z-cyclic.

Infinite classes of Z-cyclic Wh(v) are rare in the literature. G.L. Watson [9]
establishes Z-cyclic Wh (H}';, p.-), where each prime p; is of the formp; = 1
{mod 4) and the present authors [3] establish Z-cyclic Wh(3p®+ 1) for all prime
p=1 (mod 4) and n > 0, and also Z-cyclic Wh(gp" + 1) for some specific
primes¢,p,g =3 (mod 4),p=1 (mod 4),n > 0. Here we prove thatif p, ¢
are primes,g=3 (mod 4),¢ > 7,p=1 (mod 4),hcf(¢g—1,p"! (p-1)) =
2 and if there exists a Z-cyclic Wh( g+ 1) then there exists a Z-cyclic Wh(gp™+ 1)
for all » > 0. This is Theorem 2.1 of Section 2 which also contains several
pertinent lemmas including a version of Mann’s Lemma in the ring Zp». Several
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illustrations of Theor¢
that g, p are primes, ¢
For Z-cyclic Wh(v

>m 2.1 are presented in Section 3. Henceforth we assume
=3 (mod 4),¢>7,p=1 (mod 4).
) it is enough to indicate the tables (games) for an initial

round. Of course for :fuch designs the set of rounds is a cyclic set and any round
can be the initial round. We adhere to the convention that the initial round is
that for which co anq 0 are partners. With each table (a, b, c,d) there are four
(4) partner differences +(a — c), (b — d) and eight (8) opponent differences
+(b—-a),+(d—c),+£(d—a), =(c—b). Any differences involving oo are to be
ignored. A collection IPf n tables constitute an initial round of a Z-cyclic Wh(4 n)

if and only if the n tables form a parallel class for Z4,-1 U {00} and the partner
differences cover each non-zero element of Z4,-1 exactly once and the opponent

differences cover eac|
Example 1.1: (a) An

non-zero element of Z,,,_; exactly twice [2].

rInitia] round for a Z-cyclic Wh(8) is given by

(00,4,0,5), (1,2,3,6).

(b) An initial round for a Z-cyclic Wh( 12) is given by

(o0

2. Some Useful Le

o

8,0,2), (1,5,4,6), (7,10,9,3).

as and the Main Theorem

In the ring Zps, p a ‘rime, a primitive root of p® is defined to be any non-zero
element W € Zp» thatsatisfies the conditions (W, p) = 1 and ordps W = p(p") =

p" ! (p—1). Primiti

ve roots were found useful in [3] to establish infinite classes

of Z-cyclic Wh(v). While we do not have a primitive root in the ring Z;,», the

following lemma dem
Lemma 2.1, If W is

Oor dqpa W=
Proof:

onstrates a maximum possible order.
a primitive root of both ¢ and p™ then

(g —Dp™ ' (p— D /hef(g — 1,0 (p— 1)).

ords W = lem(ord, W, ord» W) = Iem(g — 1,p™ ' (p— 1))

=(

g—-1p(p—1)/hef(g—1,p" (p— 1))
1

It is well known [11 that if W is a primitive root of p? then W is a primitive

root of p® for all n >
hef(g — 1,p™ ' (p -
{If a, b are primitive
theorem, there exists ¥
W is a common primj
and4s=p"!(p-1)

1. Throughout the remainder of this paper we assume that
1)) = 2 and that W is a primitive root of both ¢ and p?,
roots of p®, g respectively, then by the Chinese remainder
V suchthatW = e (mod p") and W =b (mod g); this
itive root.) Define ¢ and s by 4t = £(¢ — 1)p™!(p—1)
respectively. Then 41 is the order of W (mod ¢p").
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Lemma22. Wi# —1 (mod gp®) forall 0 < i< 4t—1.
Proof: Suppose that W* = —1 (mod gp®) for some i,0 < i < 4t — 1; then

W' = -1 (mod g) and W' = —1 (mod p*). It follows that i = &+
(mod g—1) andi = $p*!(p—1) (mod p*(p— 1)). These give a con-
tradiction since the first requires ¢ to be odd, the second, ¢ even. [ ]

In Z,», P is to denote the set of all multiples of p (excluding 0), Q the set
of all multiples of ¢ (excluding 0), Q* = Q — (Q N P), and E is the set of
all non-zero elements that are coprime to both p and g. Clearly |P| = gp™! —
1,|Q*| = p*'(p - 1), and |E| = 8t. By Lemma 2.2 we can take E to be
the union of two disjoint cyclic sets, A = {1, W,W?2,...,W*-'} and B =
{-1,-w,-w?2,. .. w1},

Lemma 2.3. The set Q* is a cyclic set {q1,q2,...,948} where

() g1 =Wgq;forall1 <i<4s—1and Wy, = q,and
(i) gi+2s+ ¢ =0 (mod gp") forall1 <i<4s.

Proof: Since W is coprime to p, Wig € Q* forall0 < i< 4s—1.Setq; =¢
and giv1 = Wy, 1 < i< 48— 1. Since W is a primitive root of p® we have

@ W4 =1 (mod p*) and

) W2 =—-1 (mod p).
From (a) we obtain W*%q = ¢ (mod gp®) and from (b) we have W2%q = —¢
(mod ¢p™). 1

In Lemmas 2.4 and 2.5 liberal use is made of the fact that ord, W = p — 1 and

ord, W =¢q—-1.
Lemma 2.4. If « is odd then

(i) W< — 1 iscoprtme to both p and q, and

(i) W+ 1 is coprime to p and is a multiple of q if and only if « is an odd

multiple of %+,

Proof:

i Weh—-1=0 (mod p) & a = k(p— 1), a contradiction since « is
odd,p—liseven. W*—-1=0 (mod ¢q) ¢ a = k(g — 1), a similar

contradiction.
(i) W*+1=0 (mod p) ¢ a = k(Z5>), k odd = a even; contradiction.
We+1=0 (mod q) ¢ a=k(%), kodd. ]

Lemma 2.5. If « is even then

(i) W= —1 isamultiple of p if and only if « is a multipleof p— 1,

(ii)) W — 1 isamultiple of q ifand only if o is a multipleof q — 1,
(iii) W+ 1 is a multiple of p if and only if « is an odd multiple of ’fl and
(iv) W2+ 1 iscoprime to q.
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Proof: ‘

@) “onlyif” a=0 (mod p—1) = a = k(p—1) = We—1= (Wr-l)k_
1=1%—1 (mod p) =0 (mod p). “if> W*—1=0 (mod p) =
a=k(p-—1). |

(i) We—1=0 (mod q) © a=k(g—1).

(i) We+1=0 (mod p) ¢ o= k(Z), k odd.

(iv) We+1=0 (mod g) ¢ a=k(%}), k 0odd = « 0dd; contradiction. |

Consider the following subsets of Zg;.

Wy = {a: z is a multiple of P- } \{0},

Wz‘ {x z is a multiple of —— i } \{0}.

Note that [W; UW, U {0} = (¢ = D)p™" + (p— 1)p™! — 2p™. Set
! Z'=Z4g—(W|UW2U{0}),

then |Z*| = £p™! (p— 3)(g — 3) > 4. Further note that W; contains only even
integers, W> contains|one more odd integer than even integers and |W, — (Wi N
W2)| = p (g — 3)| > 4. We conclude that Z* contains at least four (4) more
odd mtegers than eVCI’l integers.

The following lemma appears in [7] and has come to be known as Mann’s

Lemma.

|

Lemma. Let 4u+ 1 be a power of a prime and let z be a primitive element of
GF(4u+ 1). Then there exist odd integers c, d such that

4+ 1
’ = 2%,

1
Combining the material commencing with Lemma 2.2 we can prove the follow-

ing version of Mann’TI Lemma for the set E.

Lemma2.6. There ax:sls at least one pair of odd integers (a, ) suchthat o, €
Z* and either ‘.
We+1=WA(W>—-1) (mod ¢p"), @2.1)

or
We—1=-WA(W*+1) (mod gp"). 2.2)

Proof: Leta € Z2* | en both W< + 1, W* — 1 belong to E. We consider two
cases. | .
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Case 1, W+ 1, W*— 1 both belong to A or both belong to B. In either situation
there exists a unique B # 0 such that W+ 1 = WA(W® — 1) (mod,). Hence
WE+1=W*(WF—1) (mod gp"). Now W¥ — 1 must belong to either P,
Q*, or E and likewise for W8+ 1. If WP — 1 € P then so is W (W# — 1) and
hence so is W7 + 1 which leads to the contradiction that two multiples of p differ
by 2. f W8 — 1 € Q* then by Lemma 2.3, W*(W# — 1) € Q* and we are led
to a similar contradiction. Thus both W8 — 1, W# + 1 belong to E (in fact both
belong to the same set A or B) and 8 € Z*.
Case 2, W + 1, W* — 1 belong to opposite sets,sayW*+1 € A, W*—1¢
B. Then there exists a unique 8 # O such that We — 1 = —WA(W* + 1)
(mod gp®). Hence W8 — 1 = —-W*(W# + 1) (mod gp") and we can argue
as in Case 1 to conclude that 8 € Z*.

Thus there is a unique pairing («, 8) of elements in Z* and since Z* contains
at least four (4) more odd integers than even integers, there must be at least two
(2) pairs (a, B) for which both are odd integers. [

Lemma 2.7. s € Z2*.

Proof: By definition s is an odd multiple of %‘ and therefore cannot belong to
Wi. If s € W, there must exist an integer k such that s = k(%5+). Thus p™* (p—
1) = 2k(g — 1) and we conclude that ¢ — 1 must divide p*! (p — 1) whichisa
contradiction since ¢ > 7 and hef(g — 1,p™ ' (p— 1)) = 2. 1

Lemma 2.8. ¢(W*—1) = W°g(W*+1) (mod gp").

Proof: From Lemma 2.7 we conclude that g(W* + 1), g(W?° - 1) € Q*. The
congruence follows by applying Lemma 2.3(ii). |

We are now in a position to prove the main result of this paper.

Theorem 2.1. If p=1 (mod 4) andq = 3 (mod 4) are primes such that
g >7 and hef(g—1,p™ ! (p—1)) = 2 and ifa Z-cyclic Wh(q+ 1) exists, then
a Z-cyclic Wh(gp™ + 1) exists forall n > 0.

Proof: The proof is by induction on n. The case n = 0 yields to the Z-cyclic
Wh(gq + 1). In the general case we provide separate constructions for the sets
PU{0,00},Q*,and E. Let W be a primitive root of both g and p?. For the set B
take o € Z* suchthat (o, §) form apair of odd integers guaranteed by Lemma 2.6.
As initial round for the elements of E form the 2¢ tables (1, W<, -1, -W%)
times 1, W2, W*, ... W42, The partnership differences are +2 , +2 W* times
1,W?2,w4,...,Ww*-2, Now 2, 2W* belong to the same set, say A, and —2,
—2 W belong to the other set, B. Since « is odd the parity of 2 W* as an element
in A is opposite to the parity of 2 as an element in A. Consequently the differences
2,2W2,2W*4,...,2W**~2 cover all elements of A of one parity and the differ-
ences2 We,2Wet2 2 a4 | 2We4t-2 cover all elements of A of opposite
parity. Similarly for —2, —2W® in the set B. Thus the partnership difference
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condition is satisfied for the set E. Opponent differences are (W< — 1) times
1,W?,W*,..., W2 (twice) and £(W® + 1) times 1, W2, W*,... , Wt-2
(twnce) From Lemma 2.6 one of (2.1), (2.2) must hold and either one mdxcaws
that as elements in A B the parity of W + 1 is opposite to that of W* — 1
since B is odd. Thus we can argue just as in the partnership case to conclude
that the opponent difference condition is satisfied for the set E. As initial round
for the set Q* take the s tables (g, gW®, gW?°,gW??) times 1, W?,..., W1
By Lemma 2.3 the baisxc table has the structure (g, qW ,—q,—qW?*). The part-
nership differences are +2g, £2qW* times 1,W?,...,W?"!. Thus the part-
nership difference condition is satisfied since if 2q = g¢; then 2qW° = gisq
~2q = Giv2e, and ~2qW° = gie3,. Opponent differences are q(W* — 1)
times 1, W, W?2,. W"‘ (twice) and £q(W?* + 1) times 1, W, W2, ..., W
(twice). Invokmg Lemma 2.8 we can verify the opponent dlfference condmon
just as in the parmershxp case. As initial round for the set P U {0, oo} we take
the initial round of a Z -cyclic Wh(gp™! + 1) and multiply each non-co element
by p. As initial round for the Z-cyclic Wh(gp® + 1) form the union of the initial
rounds for E, Q*, and P U {0, 00}. ]

3. Specific Wh(v)

If one wishes to construct a specific Wh(v) using Theorem 2.1 there are two
major drawbacks. Ode drawback is the paucity of known Z-cyclic Wh(g+ 1). At
present solutions are llcnown only for g = 7,11, 19,23, and 31. Secondly there are
two obvious computauonal complexities, namely the determination of a common
primitive root of g and p? and the determination of a pair (o, ) needed for the
construction. v must be very small in order for these tasks to be amenable to hand
calculation. On the other hand, for reasonable v both tasks are routine with the
use of a computer.

The Wh(v) produced by Constructions 1 and 2 in [S] can all be obtained from
Theorem 2.1. Indeed Construction 1 is associated with & = 1. For the cases
covered by Construction 2 and some additional cases consult the table below.

Example 3.1: The simplest case which serves to illustrate Theorem 2.1 is that of
g=17,p=5 withW|= 3. Inthecase n = 1 there are four solutions corresponding
to(a,B) = (1,7),(5,11),(7,1), (11,5). Note that although as a pairing in
Z2*' (a,B) =(8,a) |(a B) yields a different Wh(v) than does (8, «) whenever
a # PB. Listed beloy are solutions forn=1,2,3,4. Incasesn= 2, 3,4 we
provide only the lmqal tables (in condensed form) for the sets Q* and E. For the
set PU {0, oo} we take the Wh(v) for the previous value of n and multiply each
non-oo element by p
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n=1(a, B) = (1,7) {Congruence 2.2 holds}, (t,s) = (3.1).

E:(1,3,34,32), (9,27,26,8), (11,33,24,2),
(29,17,6,18), (16,13,19,22), (4,12,31,23).
Q*:(7,21,28,14).
PU{0,00}: (00,20,0,25), (5,10,15,30)
{see Example 1.1(a)}.

n=2 (a,B) = (1,7) {Congruence 2.2 holds}, (¢, s) = (15,5).

E: (1,3,174,172) times 1,W? ,w*,..., W™
Q:(7,126,168,49) times 1,W, W2 W w*.

n=3 (a,f) = (1,7) {Congruence 2.2 holds}, (¢, s) = (75,25).

E: (1,3,874,872) times 1,W2 w*, ... w28,
Q:(7,476,868,399) times 1,W,W?2,..., w2,

n=4 (a,B) = (1,7) {Congruence 2.2 holds}, (¢, s) = (375, 125).

E: (1,3,4374,4372) times 1,W2 w*, ... Wi
Q:(7,3101,4386,1274) times 1,W,W?,... W%,

Example 3.2: Forthecase g = 11,p = 5, hcf(g — 1,p" ! (p— 1)) = 2 if and
only if n= 1. Hence for this choice of (g, p) we cannot obtain an infinite class of
solutions via the construction of Theorem 2.1. Nevertheless this construction can
be employed with W = 2, to obtain a Z-cyclic Wh(56).

n=1(a,B) = (3,9) {Congruence 2.1 holds}, (t,s) = (5,1).

E:x(1,8,54,47) times 1, W2, w*,... w
Q*:(11,22,44,33)
PU{0,00}: (00,40,0,10), (5,25,20,30), (35,50,45,15)
{see Example 1.1(b)}.
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v q P n W o B Congruence
624 7 ;89 1 3 5 5 2.1
792 7 }13 1 3 7 97 22
804 11 73 1 5 7 261 22
852 23 37 1 2 5 7 22
960 7 137 1 3 7 331 22
980 11 89 1 3 7 339 21
1860 11 13 2 2 3 609 2.1

2024 7 17 2 3 5 131 2.1
3888 23 13 2 7 3 453 22
5492 19 17 2 3 3 1075 22
5888 7 29 2 3 1 781 22
6648 23 17 2 5 1 1713 22
8960 31 17 2 3 3 1781 2.1

Table 3.1
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