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Abstract. The sum of a set of graphs G, Gy, .., G, denoted Y% _ Gy, is defined
1o be the graph with vertex set V(G1 ) UV(G2) U+ - -UV(G}) and edge set E(G)) U
E(G2) U---U E(Gy) U {uw: u € V(G:),w € V(Gy) fors # j}. In this paper, the
bandwidth B(E,';l Gy) for [V(G)| = m 2 a1 = |9(Giaa], (1 < § < k) with
B(G1) < [m /2] is established. Also, tight bounds are given for B(Y X, G) in
other cases. As consequences, the bandwidths for the sum of a set of cycles, a set of
paths, and a set of trees ae obtained.

1. Introduction

Bandwidth on graphs, and the analogous problem of bandwidth on matrices, has
been studied since the early 1950s (see [1].) Following the notation of [1] and [9],
we may define bandwidth as follows. Let G = (V, E) be a graph on n vertices. A
1 — 1 mapping f : V — {1,2,...,n} will be called a proper numbering of G.
The bandwidth of a proper numbering f of G, denoted By¢(G), is the number

max{|f(u) — f(v)| : edgeuv € B(G)},
and the bandwidth of G, denoted B(G), is the number
min{B;(G) : f is a numbering of G}.

The decision problem corresponding to finding the bandwidth of an arbitrary
graph was shown to be NP-complete in [11]. In (7] it was shown that the problem
is NP-complete even for trees of maximum degree 3. However, the bandwidth
problem has been solved for many special types of graphs. It is easy to find the
bandwidth for graphs such as K, P,, C, and K; ,» and others. [8] has established
the bandwidth for hypercubes (or n-cubes). [3] found the bandwidth for Py xCp
and for a number of other special graphs. [2] and [1] contain a number of survey
results pertaining to solved problems. [1] also surveys a number of bounds on
bandwidth. [6] provides results relating to the relationship between bandwidth and
bandsize, and [10] provides some insight on the relationship between bandwidth
and VLSI layout width.

[9] gives the bandwidth B(Gy + G;) for [V(Gi)[=m > m = [V(G>)| with
B(G1) < [m/2],and also provides bounds for B(G) + G ) in other cases.
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2. Bandwidth on finite graph sums

Theorem 1. Let G= G+ Gy + -+ -+ Gy with ;= [V(Gi)|, and m > m 2>

ce> ng. If B(Gy) < [m/2], then B(G) = Ty m — [(m + 1)/2].

Proof: Form < 2 it'is trivial to check the result. We assume n; > 3. First let
yj=jfor1 <j<|m/2]),95= Yiam+jfor|m/2)+1<j<m. Leth:

V(G1) — {1,2,...,m} be a proper numbering such that By, (G1) = B(G1)
and f; : V(Gi) — {1,2,...,m} be a proper numbering such that B;(Gy) =
B(G)) for1 < i < ki Now, we construct a proper numbering f : vt Gy -
{1,2,...,°%  w} as follows: f(v;) = y; if and only if fi(v) = j; f(w) =

lm/2] + 34 mp +1j if and only if f(w;) = j. Then,

k k
max__|f(w) < Fu)| < BG) + Y m < [m/2]+) m—1

v €EE(G1) oy oy

k k
=Y mem = [(m+1)/2] =) m—[(m+1)/2],

=2 i=l
k k
max | |f(w) — flup| <Y m—1<) m+[m/2] -1
w€B(Y ., G i=2 i=2

k
=3 m—[(m+1)/2],

i=1

and for

v € V(G1) and;w; € V(G with 1 # 1,

1 k k
max |f(v) — f(ay)| = max {Zm—qm/zj +1),) m+ [m/2] - 1}

i=1 i=2

k k
=Y w4 [m/2] -1 =) m—[(m+D/2].

=2 i=1

Therefore,

k
|f(z) = F(z) =Y m— [(m + 1)/2]

=1

which implies that B(G) < Sk = [(m +1)/2].
To see that B(G) > Tk m — [(m + 1)/2], suppose that | : V(G) —
{1,2,...,3°% , n} is a minimal proper numbering. Let i(v) = 1 and i(w) = m;,
|

|
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then either v and w are in V(G ) or they are in V(G5), s # 1, since B(G) <
Siim—[(m+1)/2].Ifv andw are n V(Gy) thenalllabels 1,2,..., [(m +
1)/21-1 aremV(Gl),asarealllabels S - [(m +1)/2]1+2, 3% m—
[(m +1)/2]+3,..., 5%, m,since B(G) < %, m — [(m + 1)/2]. This
implies B(G) > E,,,I n; — [(m + 1) /2] since at least one of the vertices with
labels [(m +1)/2] and Y5 | ni— [(m + 1) /2] +1 lsnoth(Gl) Ifvand w
arein V(G;), 1 # 1,then, similarly, 1,2,...,[(m +1)/2]-1, Epl m—[(m+
D/2]1+2, 35 m—[(m+ D]+ 3,...,2{.‘,, n; must be labels of the vertices
of G;. But then we either get a contradiction or obtain B(G) > 2:;, w—[(n +
1) /2] since n; < m . Therefore B(G) > E,,, n; — [(m + 1) /2]. Combining
the inequalities, we have B(G) = Eml w— [(m +1)/2]. ]
Alternatively, the second part of the proof in Theorem 1 follows from Theo-
rem 4.1.2 in [1] which appeared initially in [S].
Corollary 1. If T\,T»,..., T} are each trees such that |V(T})| = m 2> mis1 =
|V(T',+1)| 1< i<k, and T, is not a star of even order, then B(Z:,,,,T) =

z:i=l LL e f("l + l)/2]

Proof: By a result in [4], we know B(T') < n/2 if T is a tree of order nand T
is not a star of even order. So we must have B(T}) < [n1/2]. The result, then,
follows immediately from Theorem 1. 1

Corollary 2. If P, ,Py,..., Py are each paths with n; > m1,1 < 1 < k,
and m > 3,then B(Y 5, Pu) = Y5 m — [(m + 1)/2].
Since a path is a special tree, this corollary follows immediately from Corol-
lary 1.
Corollary 3. If C,,,Cy, ,...,Cn, , are each cycles with n; > niy1,1 <1 < k,
and m > 5, then B(YF ., Co) = % m— [(m + 1)/2].
Proof: Since B(Cy,) =2, B(Cy,) < [m/2] ifmy > 5. Thus it follows from
Theorem 1 that B(Y %, Co) = 3ok m — [(m + 1) /2] formy > 5. 1
Theorem 2. Let G1,Ga,...,Gy beaset of graphs such that my = |V(G1)| = ¢
with B(G1) = ¢/2,m = [V(G:)| = cand B(G:) > ¢/2 for2 < i < t,and
= |V(G)| < cfort+1 < i< kwherecisevenand 1 <t < k. Then
B(T G) = Thym—[(m+1)/2]+ 1.
Proof: For ¢ = 2 the result is trivial. So we assume ¢ > 4. For convenience, let
G= 2 Giandn= Em n;. Similarly to the first half of the proof of Theo-

rem 1, we obtam BT G) < T m—[(m+1)/2]+1.Letf: V(G) —
{1,2,...,n} be a minimal proper numbering such that B;(G) = B(G) and let
f(u) =1, f(v) = n Since B(G) < n—[(m +1)/2] + 1 andm > 4, there
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exists j such thatu,vj € V(G}j). Suppose B(G) # n— [(m + 1)/2] + 1, then
B(G) < n—[(m+1)/2], whichimplies thatalllabels 1,2,...,¢/2,n—c/2+ 1,
n—c/2+2,...,narein Gj,and so j < t. Since B(® < n-[(c+1/2],
maxgyeg(a) |£(2) = F(¥)] € n— [(c+ 1)/2]. Itfollows that B;,(G)) < c/2
for the induced proper numbering f; of G; from f such that fi(w) = f(w) ifand
only if f(w) < ¢/2 and fi(w) = f(w) - (n— n;) if and only if f(w) > c/2
which contradicts B(Gj) > ¢/2. Therefore B(Y k., Gi) = Sk m — [(m +
1)/2] + 1. | ]

Corollary 4. If T\ T3, ..., T} are each trees such that T is a star of even order
m=cforl < i<t andT;is of order m < cfort+1 < 1<k, then
B(Ef-‘,,l T;) = Ef,ll m — [(m + 1)/2] + 1, where c is an even number and
1<t<k. ’

This corollary follows immediately from Theorem 2 since B(T1) = m /2.

Theorem 3. Let ‘ 1,Ga,...,Gy be a set of graphs with n; = |V(G))| 2
[V(Gis1)| = mier,|m is odd, and B(G1) = [m/2] = (m + 1)/2, then
T om—[(m+1)/2] <B(TE G) < Thim—[(m+D/2]+1.

The proof of the upper bound is similar to the first half of the proof of Theorem 1,
while the proof of tl;le lower bound is similar to the second half of Theorem 1.

To see that the two values 31 m—[(m+1)/2] and 3% | m—[(m+1)/2]+
1, as given in Theorem 3, may each be achieved we consider the following two
examples.
Example 1: Let Gi = Hy U Ha, where Hy = Hy ¥ K.z and [V(H1) N
V(H2)|=3,G2 = D\UD; withD, ¥ Dy & Ky and |[V(D1)NV(D2)| = 2,
Gy = BEfUE, with By, & B, ¥ K; and |[V(E) NV(E)| = 1. Then,
m=2%+1m=2km=2k—1,and B(G1) = k+1=(m+1)/2. So
G, G, and G satisfy the conditions of Theorem 3. Thus, B(G1+G2+G3) <
S i1 7 — [(m + 1) /2] + 1. On the other hand, since 8(Gy + Gz + Gs) > 5k,
B(G1 + G2+ G3) 2 5k = E?gl n — [(m + 1)/2] + 1. Therefore B(G1 +
G +G3) =Y m— [(m+1)/2] + 1.
Example 2: Let G| be as in Example 1. Let G2 be the graph of order 2 k with no
edges and G3 = K,. Then G, G and G satisfy the conditions of Theorem 3.
Thus B(G1+G2+Gs) > T3 m—[(m+1)/2], wherem = 2k+1,m = 2k
and n3 = 2. On the other hand, the proper numbering, f, shown in Figure 1 has
By(G1 + Gz + G3) = ¥ iy m— [(m +1)/2]. Therefore B(G1 + G2+ G3) =
Yot m = [(m + /2],

Corollary 5. LetG1,Ga,...,Ge beasetof graphs with G\ = G2 & - - ¥ Gk
and n= |V(Gy)| forall 1 < i < k, nisodd and B(G1) = [n/2] = (n+ 1)/2
then ((2k — Dn- 1) /2 < B(X k. G) < ((2k— Dn+ 1)/2.

|
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Figure 1: Proper numbering of G + G» + G3, as in Example 2

Corollary § is s1mply a special case of Theorem 3.

To this point, all results require that G, G>, ..., G satisfy condmons n =
V(G| > [V(Gi+1)| = ms1,a0d B(G1) < [m /2'| Next we consider the case
where B(G1) > [n/2]. We provide the following lower and upper bounds in
that case.

Theorem 4. Let G1,G>,...,G beasetofgmphs with n; = |V(G,~)|, » >
n1,1 <1< k,and B(Gy) > [m/2]. Emz"-"'"l/z -1< B(Em G) <
min{B( L G + m, max{B(Gy) + T4’ m, [m/2]+ 05" m — 1}}.

Proof: The proof of the lower bound is similar to the second half of the proof of
Theorem 1. To see that B(Z,_ Gi) < min{B(Y 5! Gi) + m, max{B(Gy) +
S /21 + 5 m= 1} letk=2. m /24 m —1 < B(G1+Ga) <
min{B(G1) + m, max{B(G2) + m,[m /2] + m — 1}} has been proved in
[9). Proceeding mduct.wely we assume that k = k' is true (that is Em n. +
m/2-1< B(X¥X, G) < min{B(XX7' Gi) + np, max {B(Gw) +
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[m,/2'|+2.=1 n.—l;}) For k = k'+1,since |V(2,=l G)| > [V(Gy+1)|and
B(X:,,=l Gi) > 2,,,2 +mf2-1> [me n;/2 applying Theorem 5 in [9]
we obtain B(E,,, G, + Gp+1) = B(Zf:,l Gy < mm{B(z‘d G;) + nel,
max{B(Gp+1 + E,,,l n, [nv+1/2’| + 3 - 1}} Then by mathematical
induction, we obtain B(E,_ G) < mm{B(E,,l Gi) + n, max{B(Gy) +
Yuo m, /2] + Df:;l m—1}}. N

To see that the upper bound and lower bound as given in Theorem 4 may be

achieved, we cons:del" the following examples.
Example 3: LetGy = Ps+ P5,G2 ¥ G3--+ & Gi-1 = P4,Gk = Ps. Then

n1—10,n.—4f0lr2<1<k—land'n* 3. Since B(G1) =
[10 /2] G1,Ga, ..., G satisfy the conditions in Theorem 4. By Corollary 1,
Bk 6o = B(P}+P5+P4+ + P+ P)=5+5+4k—2)+3 3=
10+4(k—2) and B 7! Gi) = 5+ 5+4(k—2) -3 =T+4(k— 2). It follows
that min { B(355 CJ+nk,max{B(Gk)+E,_l n, [ /2] + 300 m—1}} =
mm{7+4(k—2)+3 max{l+10+4(k—2) 24+10+4(k-2)—1}} = 10+4(k-2).
Example 4: Let G ‘Kmforl<z<k—lw1thn1>nz> > M1 2> 4
and Gy = Cy. Since B(Gy) = ™ = 1> [m/2] GI,GZ» ., G satisfy the
conditions in Theorem 4. Since 2,_, G, Ky + K+ -+ Ko, +Cs =
Ci+ K1+ K1+ -0+ Ky (wnh z,_l n; copies of K1), it follows from The-
orem 2 that B({)M} G)=YHlIm+d—[(4+1))21+1=T m+2.
Note that B(z;,,, Gi) = 2:,,‘ n — 1 and B(Cs) = 2. From Theorem 4 we
have B(Sh, Go) = min (k' m + 3, max{S n + 2, Bii i+ 1) =
Eml n+ 2.
Example 5: Let Gy = Cs + C4,G2 £ G3 = - .Y Gi_1 = Cs,and let G be
the graph of order 4 with no edges. Since B(G1) =6 > |'8/2'| G1,G2,...,Gk
satisfy the conditions in Theorem 4. By Theorem 1, B(E,,,, Gi) = B(G‘3 +
B(Ca+--+C3)s4(k+1)-3=4k+1 B(Z,ﬂl Gi) =B(Cs+---+Cs) =
4k-3+1=4k-2 andbyTheorem2 B(E,=1 Gi) = B(Cs+---+Cs) = 4k—
3+1=4k-2. Itfti)llows thatmm{B(E,=1 G.)+m,,max{B(G,¢)+E‘,=1 7,
[11,,/2'|+E‘=1 m—+1}} =min{4k—2+4,max{4k,2+4k—1}}=4k+1.
Example 6: Let G1, Gz, ..., Gk be a set of graphs with n; = |V(G%)| such that
=mom > e, B(G)) > [m/2]and B(Gy) < [m/2] = [m/2].
Then Gy, G . .. Gy satisfy the conditions in Theorem 4. However, by reversing

the posmons of G,|and G2 Theorem 1 gives B(Y L, Gi) = S m—[(m+
1)/2] = Ty o+ [m/2] - 1.

3. Conclusions
Giving the sum of|graphs G = G + Gz + -+ -+ G the bandwidth problem has
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been solved or bounded for all cases and all bounds have been shown to be tight.
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