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1. Introduction

A Steiner triple system (STS) is a pair (V, B) where V is a v-set of elements, and
B is a collection of 3-subsets of V called mples or lines such that every 2-subset
of V is contained in exactly one triple. The number v = |V| is called the order
of the STS. It is well known that an STS of order v (STS(v)) exists if and only if
v=1o0r3 (mod 6); such values of v are called admissible. If in the definition
of an STS “exactly” is replaced with “at most”, we have a partial Steiner triple
system (PTS). As in [GRR], [HR], we will use the term configuration to describe
a PTS with a fixed small number of lines.

Given a configuration C, with k lines, let A(C) = {v: k divides v(v —1)/6}.

We can then ask the following questions:

a) Does there exist an STS(v) whose set of triples can be partitioned into copies
of C?

b) What is the spectrum of C, S(C) = {v: there exists an STS(v) whose set
of triples can be partitioned into copies of C}?

¢) Is C vo-universal? lLe., can the set of triples of every STS(v), v admissible,
v > vo, be partitioned into copies of C?

d) Is C cyclic vo-universal? I.e, can the set of triples of every cyclic STS(v),
v admissible, v > vg, be partitioned into copies of C?

The papers [HR] and [GRR] deal with these questions for all configurations
with at most four lines.
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In this paper we one further step in that we consider simultaneous decompo-
sitions of STSs. More precisely, given a set of configurations C, we are interested
in those values of v for which there exists an STS(v), say (V,B), such that B can
be decomposed into copies of C forall C € C.

In Sections 2 and 3 we consider simultaneous decompositions of STSs into
three-line, and four-line configurations, respectively. In Section 4 we present a
collection of configurations C3, the strongly 3-colourable configurations [RC]
and prove that if C is any finite subset of C*, there exists a vp such that S(C) N
{viv > v} = A(C)N{v: v > vo}. C? contains all three-line configurations, all
but one of the four-line configurations, all path-like, bipartite-like, tree-like, and
cycle-like ccmﬁguraltions.

For undefined design-theoretic terms, see [BJL).

2, Simultaneous dﬁcompositions

Let C be any set of configurations. The admissible set of C, A(C), is the set
A(C) = {v:v=1jor3 (mod 6) and |C| divides v(v — 1) /6 forall C € C}.
The spectrum of C |is the set S(C) = {v: there exists an STS(v), (V,B), such
that B is decomposable into copies of C forall C € C}.

In this paper, we will be primarily concerned with the case when all configura-
tions in C contain t}he.same number of lines. In what follows, let C; be the set of
all configurations \-Tith 1 lines.

We can easily dispose of the case of two lines. In this case, C, consists just of
two configurations, namely a pair of disjoint lines, and a pair of intersecting lines,
respectively. It is straightforward to see that S(C;) = {v:v=10r9 (mod 12),
v > 13}. In fact, both these configurations are universal as every STS(v) with
v=1or9 (mod 12) and v > 13 can be decomposed into copies of either of
these two confi, ' ions [HR].

Next we deal with the case of three lines. Recall that C3 consists of 5 configu-
rations shown in Figure 1.

AT

3-windmill ’ hut 3-snake 3-PPC triangle
’ Figure 1
Clearly, we hav!e A(C3) = {v:v=10r9 (mod 18)}. Itis shown in [HR]

that the 3-windmip is 9-universal, the 3-PPC is 27-universal, and the hut is 55-
universal, and that the 3-snake is cyclic-universal. It is not known whether the
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triangle is universal or even cyclic universal. Thus in order to determine S(Cs),
it would suffice (at least for v > 55) to exhibit a cyclic STS(v) decomposable
into triangles. In fact, whenv = 1 or 19 (mod 72), such an STS(v) is already
exhibited in [HR]. However, we pursue a different route here.

First we present some examples.

Lemma 2.1. 19 € S(C3).

Proof: Consider the following cyclic STS(19): its element-set is Z;9 and the base
triplesare0 14,02 9,0 5 11 (here and in what follows we omit set brackets for
brevity). To see that this STS is decomposable into copies of any of the three-line
configurations, it suffices to exhibit one such configuration with one line from each
of the three orbits of triples. The remaining configurations are then obtained by
the action of the cyclic group of order 19 givenby § — i+ 1 (mod 19). These
“base configurations” are as follows:

3-PPC: 014,2713,3512
hut: 014,029,3814
triangle: 014,029,4915.

In addition, any STS(19) can be decomposed into copies of the 3-windmill, and
any cyclic STS(19) can be decomposed into copies of the 3-snake (see [HR]). I

Lemma 2.2. 27 € S(C;).

Proof: Consider the following STS(27): V = Zg x {1,2, 3}, and the base triples
are 013,03, 011152, 012,32, 014162, 021242, 022343, 03 132;, 033332, 0343 51,
03234;, 0,02 13, 018523, 0;7233 (instead of (a,i), we have written here for
brevity a;). Of the 13 orbits determined by these base triples, the first decomposes
into 3 triangles. From the remaining 12 orbits we can choose 4 sets of “base”
triangles as follows: 01 1;52,012,35,1,613;; 0, 1,45, 027223, 2; 3342; 0333 32,
034351, 511333, 010213, 021133, 0; 72 33. Thus our STS(27) can be decomposed
into triangles. Similarly, the orbit determined by the base triple 0;2;3, decom-
poses into three 3-snakes, while from the remaining 12 orbits we can choose 4 sets
of three base 3-snakes e.g. as follows: 0,3;03,0,1;52, 115172; 021245, 0,2, 43,
2,0313; 033332, 03435;, 43638,; 0,013, 0,823, 1,8,45. To show that our
STS(27) can be decomposed into huts can be done in a similar manner but is even
easier, and is thus omitted. Finally, note that any STS(27) can be decomposed into
3-windmills, or into 3-PPCs. 1

Lemma 2.3. 37 € S(Cs).

Proof: The proof is similar to that of Lemma 2.1 except that now the element-set
is Z37, and the base triplesare0 18,02 13,03 19,04 14,0517,0 6 15. The
base configurations are:

hu: . 018,0213,3622; 0414,0517,1716
triangle: 018,0213,81325; 0319,0931,5919.
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By [HR], our cyclic'STS(37) is decomposable into copies of the 3-windmill (or
the 3-PPC, or the 3-s‘nake, respectively). 1

Lemma 2.4. 45 € S(C3).

Proof: The proof is similar to that of Lemma 2.2. We construct an STS(45) with
theelement-setV = Z;5 x{1,2,3}. Iisbase triples are 0; 5,03, 02,82, 01 12243,
0,14233, 010223, 031352, 033363, 021203, 023,63, 024253, 0252133, 032361,
054314;, 035371, 036391, 03738;, 011,52, 0121132, 0,3, 102, 014,62, 0,6192,
0,7, 8;. The orbit stermined by the first of these 22 base triples decomposes into
5 triangles. From the remaining 21 orbits we can choose 7 sets of “base” triangles
as follows: 022,83,0,1,03,11;8,03;

031352, 1033362, 1333713 023263, 024253, 313253,
032272,10343141, 1416,72; 035371, 036391, 7191523
037381,413273, 41811025 011152, 1011352, 1, 10442

Similarly, the orbit determined by the base block 0,1 5; is easily seen to decom-
pose into five 3-snakes (into five huts, respectively). From the remaining 21 orbits
we can choose 7 sek of “base” 3-snakes as follows: 0;5103, 0131102, 3112:63;

0,2:82,/021503, 512,935 031352, 033362, 3353915
032:72,/0343141, T114103; 023263, 125263, 010223
035371,(036391, 91111025 037381, 4181102, 11,10, 143.

From these, we can get 7 sets of “base” huts by simply adding 1 modulo 15 to the
third line of each of the first four configurations given above, and adding 2 modulo
15 to the third line of each of the last three. To complete the proof we observe that
any STS(45) is decomposable into 3-windmills and into 3-PPCs (sce [HR]). 1

A grouwp divisibfe design (GDD) is a triple (V, G, B) where V is a set of ele-
ments, G isa colchtion of subsets of V called groups that partition V, and B is
acollection of subLsels of V called blocks with the property that any two elements
that belong to distinct groups are contained in exactly one block, and any two el-
ements belonging |to the same group are contained in no block (cf. [BJL], [BSH],
[CHRY)). If all blocks have the same size k, we refer to the GDD as a k-GDD. As

is customary, we jse exponential notation to indicate the fype of the GDD, i.c. the

number of groups|of a given size. For example, g®hPi7 ... indicates that there are

» B groups of size h, «y groups of size 1, etc.
Lemma 2.5. re exists a 3-GDD with 9s elements of type (3s)3 such that

its block set B is decomposable into 3-snakes, and B is also decomposable into
triangles. |

Proof: Any 3-GDD of type (3s)® corresponds to a latin square of order 3s. In
particular, a 3-GDD of type 33 corresponds to a latin square of order 3. It is an
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easy exercise to see that the latter can be decomposed into 3-snakes, and also into
triangles. To complete the proof it suffices to consider the latin square of order 3s
which is the direct product of a latin square of order 3 and a latin square of order
s. |

The following lemma which is a variant of Wilson’s fundamental construction
(cf. [BJL]) will be useful in this and in the next section.

Lemma 2.6. If there exists a group divisible design GD(V, G ,B) such that
w|G| + 8 € S(C) forall G € G where w is a positive integerand § € {0,1},
and if foreach B € B there exists a GD(V',G',B’) with |G'| = |B|, |G'| = w
forall G' € G',|B'| = 3 forall B' € B' and such that B' is decomposable into
copies of C forall C € C then w|V|+ & € §(C).

Proof: Give every element of GD(V, G,B) weight w. Let oo be a new point.
For every G € G, put on the set wG if § = 0 [on the set wG U {oo} if 6 = 1] a
copy of an STS(w|G|+ 5) decomposable into copies of C forall C € C. For each
B € B, replace B with a copy of aGD(V', G', B') decomposable into copies of
C forall C € C. The result is an STS(w|V| + §) decomposable into copies of C
forallC e C. B

We refer to the GD(V, G, B) in Lemma 2.6 as the “master GDD”, and to the
GD(V',G',B’) as the “ingredient GDDs".

We are now ready to state the result for simultaneous decompositions into three-
line configurations.

Theorem 2.7. S(C3) = {v:v=10r9 (mod 18),v > 19}.

Proof: Consider first the case whenv = 9 (mod 18). Write v = 181+ 9 =
9(2t + 1). By Lemmas 2.2 and 2.4, we may assume v > 63. Whent = 0
or 1 (mod 3), consider an STS(2¢ + 1) as a 3-GDD of type 12**!. Since the
unique STS(9) is decomposable into 3-snakes and also into triangles, we may
apply Lemma 2.6 with weight w = 9, § = 0 and with the GD from Lemma 2.5
as the ingredient GDD. Whent = 2 (mod 3),2¢t+ 1 = 5 (mod 6). In this
case consider a 3-GDD of type 5! 12¢—* which is well known to exist (see [BJL]).
Since 45 € S(C3) by Lemma 2.4, we may again apply Lemma 2.6 withw = 9,
§ = 0 and with the GDD from Lemma 2.5 as the ingredient GDD.
Inthecasewhenyv = 1 (mod 18),v = 18¢+1, we may assume by Lemmas 2.1
and 2.3 thatv > 55. Whent = 0 or1 (mod 3), consider amaximum packing of
triples on 2¢ elements as a 3-GDD of type 2*, and apply Lemma 2.6 with w = 9,
& = 1 taking as the ingredient GDD a 3-GDD of type 93 decomposable into 3-
snakes and also into triangles; the existence of the latter GDD is immediate from
Lemma 2.5. Whent = 2 (mod 3), we take instead a 3-GDD of type 4122t~
as the master GDD, taking into account that 37 € S(C3) by Lemma 2.3. This
completes the proof. |
Let us remark that the above result (Theorem 2.7) should be perhaps viewed
as an interim result. It has been conjectured (see [HR]) that every STS(v), v €
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A(Cs), can be deconlhposed into 3-snakes, and also into triangles. An eventual
proof of these two conjectures would clearly render Theorem 2.7 obsolete (at least
for v > 55). T

3. Simultaneous decompositions into 4-line configurations

There are 16 nonis(Jmorphic four-line configurations with three points per line
denoted as in Fig. 2| Clearly, we have A(Cs) = {v:v = 1 0r9 (mod 24)},
where, of course, C4 = {C;:i = 1,2,...,16}. In [GRR], the spectrum S(C;)
was completely de [ ined for 10 configurations, and just one value (v = 81) has
been left in doubt for the remaining 6 configurations.

In what follows we pursue the determination of S(C4). Unlike the situation
for three-line oonﬁgl\irations discussed in Section 2, the results in this section are
certainly no interim results since both Cy4 and Ci¢ = P are known not to be vo-
universal for any voj: there are infinite classes of STSs which even completely
avoid one of the configurations (see [GRR]).

As in the previous section, we start with several examples that are needed later.

Lemma 3.1. 25 € S(Cq4).
Proof: Consider thekollowing cyclic STS(25) (see [GRR],Lemma3.2): V = Zys

and base triplesare 0 16,0 9 11,0 3 10,0 4 12. Decomposition of this STS(25)
into each of the configurations of C, are easy, and are also given in [GRR]. |}

Lemma 3.2. 33 € !S’( Cs).

Proof: ‘Consider thei following STS(33) (cf. [GRR],Lemma 3.3 (d)): V = Z;; x

{1,2,3}, and base|triples 0,020, 0,62 103, 0;8,73, 0;3,83, 01131, 0,719;,
015133, 0110263, 021242, 025223, 022,61, 0233101, 055373, 011323, 033353,
0,4, 5;. Decompositions of this STS(33) into each of the configurations of C, are
given in the Appendix. i

Lemma 3.3. 49 € S(Cs).

Proof: Consider the following cyclic STS(49) (cf. [GRR], Lemma 3.4 (c)): V =
Z49,and base triplesare0 112,02 10,0320,04 18,06 21,0922,0 16 23,
0 19 24. Decompositions of this STS(49) into each of the configurations of C,
are given in the Appendix. [}
Lemma 3.4. 57 € S(Cs).
Proof: Consider thtf following STS(57) (cf. [GRR], Lemma 3.5 (d)): V = Z19 X
{1,2, 3},andbase,lriplesare01 1,72,0121162,0,315,,0:41155,0;5:82,0:6,18,,
0171172,018192,0191133,0, 143,022, 133,032 23,0,42123,0, 5, 143,0, 8, 53,
0292153,0,12;105,02135 13,03 1391,0325 12,0333 141,03433;,03537;,03634,,

03731;,0:835;, 03!93 151, 002 03. Decompositions of this STS(57) into each of
the configurations ?f C, are given in the Appendix. ]
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Lemma 3.5. 73 € S(Ca).

Proof: Consider the
are014,0532,0
01937,02335,0
the configurations of

Lemma 3.6. There
is decomposable into

Proof: All 32 blocks
decompositions into

following cyclic STS(73): V = Zj;, and the base triples
622,0728,0933,01030,01342,01425,01517,
26 34. Again, decompositions of this STS(73) into each of
C4 are given in the Appendix. |

exists 4 3-GDD with 16 elements of type 4* whose block-set
copies of C; forall C; € C4.

‘of the design No.23 in the listing of [FMR] together with its
each of the configurations of C4 are given in the Appendix.

Lemma3.7. {v:v=1 (mod 24),v > 25,v # 97} Cc S(Ca).

Proof: We have {25
may assume v > 121

,49,73} € S(C4) by Lemmas 3.1, 3.3 and 3.5. Thus we
. There exists a 4-GDD of type 6* forallt > 5 (see [BSH]).

Apply now Lemma 2.6 with weight w = 4 and § = 1 using this 4-GDD as the
master GDD, and the 3-GDD of type 44 of Lemma 3.6 as the ingredient GDD,
taking into account 25 € 8(C4) by Lemma 3.1. |

Lemma 338. {v:v =33 (mod 96)} C S(C4).

Proof: By Lemma 3,2, 33 € S(Cs). There exists a 4-GDD of type 83! for all
t 2> 1 (see [BSH]). Apply Lemma 2.6 with w = 4 and § = 1 using this 4-GDD as
the master GDD, angl the GDD of Lemma 3.6 as the ingredient GDD. | |

Ore of the difficulties encountered when trying to determine S( C, ) is due to the
lack of 4-GDDs that could serve as master GDDs when applying Lemma 2.6. The
need to use 4-GDDs rather than 3-GDDs is, in turn, due.to the fact that neither of
the two 3-GDDs of type 43 (i.e. latin squares of order 4) decomposes into copies
of C, or into copies/of Cs. As every STS(v) with v > 169 can be decomposed
into copies of Cy (se? [GRRY]), the only real problem is caused by the configuration

Cis. Itis therefore n‘mch easier to determine the spectrum for C; = C4\{Cis}.

Lemma 3.9. There exists a 3-GDD of type 43 decomposable into copies of C

forall C € C4\{C1
Proof: The 3-GDD

:C4ncl5}~

in question corresponds to the latin square which is the Cayley

table of the cyclic group of order 4. To verify the assertion of the lemma is an easy

exercise,

Lemma 3.10. {v: |

i
=9 (mod 24),v > 33,v # 81} C S(Cs\{C4,C15}).

Proof: There exists a 3-GDD of type 68! forallt > 3 (see [CHR]). Use Lemma

2.6 with weight w =
the 3-GDD of Lemm
S(C4) by Lemmas

4 and § = 1 taking the above 3-GDD as the master GDD,
a 3.9 as the ingredient GDD and using the fact that 25,33 €
3.1 and 3.2, respectively, as well as taking into account the
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fact that every STS(v) with v > 25 can be decomposed into copies of C;. This
proves our assertion for v > 105. Finally, 57 € S(C4) by Lemma 3.3. [ |

In spite of the difficulties caused by the fact that the 3-GDD of Lemma 3.9 (the
“ingredient” GDD) does not decompose into copies of C; or into copies of Cj,
we can now state an *“almost complete” result on the spectrum for C;.

Theorem 3.11. A(C,)\{81,97,105,153} C S(C}).

Proof: Every STS(v) with v € A(Cy), v > 169, can be decomposed into copies
of Cs; [GRR]. The rest follows from Lemma 3.7, 3.8 and 3.10. [ ]

Concermning the spectrum for the set of all four-line configurations C4, we can
state a complete result for the residue class v = 1 (mod 24), with the single
exception of v = 97, but at present only a partial result for the class v = 9
(mod 24). The result is summarized in the following theorem.

Theorem 3.12. {v:v=1 (mod 24) orv=33 (mod 96) orv=57 (mod 168),
v#97} C S(Cs).

Proof: Apply Lemma 2.6 with w = 4 and § = 1 using a 4-GDD of type 14 3t*!
(see [BSH]) as the master GDD and the 3-GDD of Lemma 3.6 as the ingredient
GDD, taking into account that 57 € S(Cs) by Lemma 3.4. This shows {v:v =
57 (mod 168)} C S(Cs). The rest follows from Lemma 3.7 and 3.8. [ |

4. The general problem

Assume now that C and C’ are two configurations of lines, not necessarily of the
same size, with three points per line.
Lemma 4.1. The following statements are equivalent:

@ S({c,Cc'h #0.

(ii) There exists v such that there is a partial Steiner triple system of order
v whose block-set is simultaneously decomposable into copies of C and
copies of C'.

(iii) There exists an integer vy = vo(C,C') such that {viv € A({C,C'}),
v>w}CSH{C,C).

Proof: Implications (i) — (ii) and (iii) — (i) are trivial (since A({C,C'}) # 0).
Wilson’s theorem on the asymptotic existence of graph decompositions [W] yields
(ii) — (iii). |

Thus to show that the spectrum for {C, C'} contains all sufficiently large or-
ders in A({C, C'}), it suffices to produce a single partial STS simultaneously
decomposable into copies of C and C'. The next lemma shows that this is always
possible for a large class of configurations. Before we can formulate this lemma,
we need a definition.

A strong colouring of a partial STS(V, B) is a colouring of its elements such that
forany B € B, the three elements of B are coloured with three distinct colours. If
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no more than k cololm's are used in a strong colouring, the partial STS is strongly
k-colourable (cf. [RC)). In other words, C = (V,B) is strongly k-colourable
if there exists a 3-GDD (V,G,B’) with |G| = k and B’ D B. We denote the

collection of all s

gly k-colourable configurations by C*.

If (V,B), (V',B/) are two partial STSs, their (weak) product (VV',BB’) is

givenby VV' = Vx
B'}.

Lemma 4.2. If C,
a partial STS which

Proof: Obviously, it

V',BB' = {{(a,2),(b,1),(c,2)}: {a,b,c} € B,{z,y,2} €

C' are strongly 3-colourable configurations then there exists
is simultaneously decomposable into copies of C andC'.

suffices to prove that if (V, B) is a strongly 3-colourable par-

tial STS and (T, T)|contains a single triple, say, T" = {1,2,3},T = {{1,2,3}}
then (VT,BT) can/be decomposed into copies of (V,B). Let the set of colours
be {1,2,3}. If ¢ if a strong 3-colouring of (V,B) and R = {(z,¢(z)):z €
VHS = {(z,6(2)), (5,8(1)), (2,6(2))}: {z,9,2} € B} (where ¢(u) is
the colour of u € ‘V). then clearly (R,S) is isomorphic to (V,B). Further
if # € 8s, the symmetric group acting on the set of colours {1,2,3}, let
w(R) = {z,m(¢(2)):z € V}, and n(8) = {{(z,n(4(2))),(y, m($(y))),
(z,7(¢$(2)))}: {z,y,2} € B}. Also forall = € Sj it is clear that both (w(R),
w(S) is isomorphic|to (V,B) and w(R) C VT, w(S) C BT. Moreover VT =
Uyes, m(R) and BT | = Uyeg, 7(S).

Finally if m, p € S3, 7 # pand B € w(S), B' € p(S) then [BNB'| < 1. 1t
follows that {(w(R),n(S)): = € S3} is a decomposition of (VT', BT) into six
copies of (V,B). |

The statement of l;helemma now follows by observing that if (V,B), (V',B’)
are both strongly 3-colourable then (VV',BB’) decomposes into |C | copies of
(VT,BT), and also into |B’| copies of (V'T,B'T). |

Lemma 4.3. If C |= (V,B) is strongly 3-colourable and C' = (V,B') is any
configuration then CC' = (VV',BB") is strongly 3-colourable.

Proof: If ¢ is a strong 3-colouring of C, colour VV' by ¢’ where ¢' is given by
¢'(a,d') = ¢(a). Consider a triple {a”,}",c"} € BB', where a" = (a,4d'),}" =

gb,b'),d’ = (¢,c). Then |[{¢'(a"),¢'(¥"),¢'(¢V}H = [{#(a),4(b),$(c)}| =
. 1

to a very wide class of configurations. For example, all
ns with the exception of Cs, all path-like, cycle-like, tree-
e configurations are strongly 3-colourable. For all pairs of
Lemma 4.2 in conjunction with Lemma 4.1 says, in effect,
such a pair P is “asymptotically” the admissible set A(P).

four-line configurati
like and bipartite-li

such configurations,
that the spectrum of]

Lemma 4.2 appl‘:}s

Lemma 4.3 allows us to go from a pair to any finite set of strongly 3-colourable
configurations. We can state this formally as follows.
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Theorem 4.4, If C is any finite subset of C3, there exists avo such thatS(C)N
{viv2>uw}=A(CYNn{v:v > v}.

Nevertheless, it seems still of interest to determine exactly the spectrum for,
say, pairs of cycle-like configurations.

The following remains an open problem.

Given two arbitrary configurations C, C' with three points per line, does there
exist a partial Steiner triple system that is simultaneously decomposable into copies
of both C and C'? We conjecture that the answer is in the affirmative.
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