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Abstract. The Hall-condition number s(G) of a graph G is defined and some of its
fundamental properties are derived. This parameter, introduced in [6], bears a certain
relation to the chromatic number x(G) and the choice number o(G) (see [3] and [7]).

One result here, that x(G) — s(G) may be arbitrarily large, solves a problem posed
in [6].

1. Definitions and background

The parameter of the title, to be defined below, is related to a class of problems
variously designated by the terms choosability (see [3]), list-colorings (see [1],
[2], [S] and (6])), and coloring with prescribed colors (see [7]). In these problems
the vertices of a simple graph G are supplied with finite sets or lists of colors—one
list per vertex—and it is desired to choose for each vertex a color from its list in
such a way that adjacent vertices are colored differently. We will refer to such
colorings, chosen from lists, as vertex list colorings.

The two best-known parameters used in discussing these problems are the choice
number c¢(Q), introduced in [3] and [7], and the familiar (vertex) chromatic num-
ber x(G). The choice number of G is the smallest positive integer among those
m with the property that the desired coloring can always be found if the lists are
at least of length m. Since x(G) is defined similarly, but with the restriction that
the lists must all be the same, it is clear that x(G) < ¢(G). Itis shown in [3] and
in [7] that ¢(G) can be very much larger than x(G).

There is a conjecture of recent vintage (see [1] and [S]) that x(G) = ¢(G)
when G is aline graph (of a simple graph). This is known as the edge list-coloring
conjecture. The restriction to the case when G is L( K nz ), the line graph of K, ,,
is called Dinitz’s Conjecture (or Problem), originally posed by Jeff Dinitz in the
form of a problem about Latin-like squares. (Make the edges of Kon correspond
to the cells of an n x n array, each equipped with a list of length n. Can these cells
be filled, from their respective lists, so that no symbol occurs twice in the same
row or column?)

The inspiration for [5] and [6] was the realization, due to Vizing and Hilton,
independently, and probably others, that Hall’s Theorem [4], when interpreted
properly, gives a necessary and sufficient condition for the existence of a vertex
list-coloring of G in the special case when G = K. The condition is that for each
setU C V(K,) of vertices, the cardinality of the union of the lists associated with
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the vertices in U is at least |U|. To understand the definition of “Hall’s condition”,
below, it may help to observe that the condition given by Hall’s theorem in the
case G = K, is a condition on the assignment of lists to the vertices of G, more
than on G itself. Note also that the independence number ¢( H) of any non-empty
induced subgraph H of K «» is one. (The independence number of a graph will
be, as usual, the grea‘ t size of an independent, i.e., mutually non-adjacent, set
of vertices in the graph.) Finally, note that for U C V(KX,), the cardinality of
the union of the lists associated with members of U is obtained by tallying one
for each color appearing in that union, and each of those ones is the independence
number of the subgrap,lh of K, induced by those vertices in U that harbor that color
in their lists.

Perhaps the time has come to be more formal. Let G = (V, E) be a simple
graph, F a collectio!  of finite sets, and C : V — F a function, to be called
a (vertex color) list assignment. The restriction of C to any subset of V' will
continue to be denoteh by C. Let S be the union of all the sets in the collection
F. For a subgraph IgLof G and o € S, we define t( H,C, o) = i [the subgraph

induced, in H, by the vertices {v € V(H); o € C(v)}]. That is to say, in order
to compute t( H, C ou single out all the vertices of H that have the color o
on their list, consnderl the subgraph of H induced by those vertices, and find the
independence number of that subgraph. The letter ¢ is chosen to denote the result
of this ghastly procedure in order to suggest the word “transversal”, for reasons it
would be tedious to e'xplain.

As in [6], we will say that the pair (G, C) satisfies Hall's condition iff

*) Y U(H,C,0) 2 [V(H)

o€ES

for each subgraph H jof G.

Since deleting edges does not decrease independence numbers, (G, 0) will sat-
isfy Hall’s condition Ilf the inequality () holds for all induced subgraphs H of G.
From this observatxon it is not too terrible a task to verify thatin the case G = K,,,
(G, C) satisfies Hall) s condition iff the hypothesis of Hall’s theorem referred to
earlier is satisfied, and thus iff there is what we will call a C-coloring of G, a
choice of represematlives from the sets C(v), v € V, so that the representatives
of sets on adjacent v?l;'tices are distinct. [That is a C-coloring of G is a vertex list
coloring of G, when the lists are dictated by C.]

For arbitrary G, it/is quite easy to see that Hall’s condition is necessary for the
existence of a C-colaring of G, but, as shown in [6], it is rarely sufficient. (Indeed,
with G fixed, the sa sfaction of Hall’s condition is a sufficient condition on C for
the existence of C- cchormg of G iff every block of G is a clique. This is Theorem 3
of [6].)

As in [6], the H, |ll number of G, h(G), is the smallest positive integer m
such that the satisfaction of Hall’s condition and the additional requirement that



|C(v)| > m for each v € V are sufficient for the existence of a C-coloring of
G. It is obvious that A(G) < ¢(G). It is shown in [6] (Corollary 2) that if ei-
ther x(@) < h(Q) or x(G) < c(G) then h(G) = ¢(G). For these reasons,
the authors of [S] and [6] entertain the hope that if, as seems likely, the edge list-
coloring conjecture is false, we might be led to a counter-example by wrestling
with the parameter h(G) with G restricted to line graphs. In the case of Dinitz’s
problem, the question would be settled in the affirmative if A(L(K,,)) = n,and
in the negative if h(L(Kp5)) > n

At last we come to the parameter that this paper is about. The Hall-condition
number of G, denoted s(G) as in [6], is the smallest positive integer among those
m with the property that if C is a list assignment to the vertices of G, and |C(v) | >
m forall v € V, then (G, C) satisfies Hall’s condition. While we are at it, let
30(Q) be defined similarly, except that the list assignments C are confined to
constant maps (i.e., the same list is to be supplied to the various vertices of G).
Clearly s0(G) < s(G). Itis shown in [6] (Theorem 1) that s(G) < x(G). [This
will be proven below, as well.] Following one’s nose through the definitions, and
keeping in mind the fact that satisfaction of Hall’s condition is necessary for the
existence of a C-coloring of G, it is easy to see thatif s(G) > h(G), thens(G) =
¢(@) (and, therefore, c(G) = x(G)). The converse, that s(G) = c(G) implies
8(G) > h(@),isatrivial consequence of the previous remark that h(G) < ¢(G).

It is also elementary to see that a sort of dual statement holds: if A(G) > (@),
then A{G) = ¢(@G), and conversely.

It is these relations with the other parameters, x(Q), ¢(G), and h(G), that
make s(G) worth looking at, and one other thing: by Theorem 1, below, s(G)
is straightforwardly (although not efficiently) computable by looking at the graph
G alone, with no lists stacked on the vertices, and the same cannot, so far as we
know at present, be said of h(G) and ¢(G).

The result of Theorem 1 here is “sort of” proven, in haste, at the tail end of
[6], with a reference to a proof elsewhere in that paper. Also, graphs G for which
38(@G) = x(@) — 1 are described in that paper, and it is wondered how much less
than x(G) the value of s(G) can be. My aim here is to give an orderly proof of
Theorem 1, to deduce some other potentially useful properties of s(G), to show
that x(G) — s(G) can be as large as you want, and to posit a conjecture about
x(G) /s(Q) that now seems reasonable.

2. Results

Throughout, G will be a simple graph. The clique number of G will be denoted
w(@).
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Theorem 1.

s50(G) = s(G) = max {[

= max

V(|
i(H)

] : H is an induced subgraph of G} .

] ; H is a subgraph of G}

14€:0]
i(H)

{

Corollary 1. w(G) £ (@) < x(G).

Corollary 2. If H is

If Gy and G, are s
graph obtained by join

a subgraph of G, then s(H) < s(G).

imple graphs on disjoint sets of vertices, let G1G: be the
ling all G vertices to all G, vertices; i.e.,

V(G1G2) = V(G1) UV(G2) and

E(G1G2) = E(G1) UE(G2) U {uv; u € V(G1),v € V(G2)}.

It is easy to see that x(
w(Gs). '

G1G2) = x(G1) + x(G2) and thatw(G1G2) = w(G1) +

Theorem 2. If Gy and G, are graphs then s(G1G2) < s(G1) + 8(G2).

Corollary 3. If U is

[G - U denotes th
all edges incident to ti

an independent set of vertices in G, then

3(G) -1 < s(G-U) < s(G).

e graph obtained from G by deleting the vertices in U, and
hem.)

Theorem 3. Suppose that r and t are positive integers,4 < my1 < --- < my

are integers, and that

G = K;][j.1 Om a product of a complete graph and the

cycles Cy,,. Then

t+ 27 < s(Q) < max {t+ 27,27+ [%—T]}
Furthermore, if m, S =me=m, then
s(G)=2r+1 if miseven

' ands(J.’;‘) = max {2r+ t,2r+ [

if m is odd.
Corollary 4. {x(G)
Corollary S. If the

Corollary 4 solves
tion.

ol

— 8(QR); G is a simple graph} is unbounded.

m-1

m; are all even, then s(G) =t + 2r.
a problem posed in [6], but in a way that raises a new ques-
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Problem. How large can x(G) /s(G) be?
Conjecture. x(G)/s(G) < % forall G.

Taking r and m (odd) large in Theorem 3 shows that %— is the smallest, best hope
for this conjecture, compatible with what little is known about s(G) so far.

3. Proofs

Proof of Theorem 1: Let

14¢:0]!

0 ] ;H:sasubgraphofG’}.

M(G) = max{[

v

Then M(G) > max{[%$21]; H is an induced subgraph of G}. The inequality
the other way arises from the observation that deleting edges does not decrease
the independence number.

Suppose that C is a constant color list assignment to G, such that the constant
list C contains so (G) colors. Suppose that H is a subgraph of G. By the definition
of s9(G), (%) holds; clearly t(H,C,0) = i(H) ifoc € C,and t(H,C,0) = 0
otherwise. Thus, from (x),

[V(H)| < ) #(H,C,0) = i( H)30(G)

o€S

It follows that M (G) < s0(G).

It remains to be seen that s(G) < M(G). Let C be a color list assignment to
G with |C(v)| > M(G) forallv € V. Suppose that H is a subgraph of G. We
aim to show that () holds. Let U be a set of i( H) independent vertices in H.
Let U also denote the graph consisting of these vertices and no edges, an induced
subgraph of H. We have

> U(H,C,0) > ) U,C,0)

g€ES oES

=Y 10(w)]

uel
> M(G)U| = M(G)i(H)
2 vd)|

Proof of Corollary 1: The inequality w(G@) < s(G) follows from the theorem
and the observation that i( H) = 1 for any complete subgraph H of G.
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For any subgraph

[V(H)|

Corollary 2 is imm
from the definitions.

Proof of Theorem 2:

-

< x(H)i(H) < x(G)i(H); thus x(G) > s(G).

|
G,

iate from Theorem 1. It is also easy, but tedious, to extract
orollary 1 was also proven in [6].

Each induced subgraph of G G is of the form H; H, with

\
|
i
!
)

Hj an induced subgraph of G; j = 1,2. [Itis possible that V( H;) is empty, for
onej € {1,2}.] Clearly i(HiHy) = max{z(H,) i(Hz)}.s0

\V(H1H2)| |

V(A | V()| [V(HDL | [V(H?)

i(H H)

The desired conclusion now follows from Theorem 1.

Proof of Corollary 3:
Theorem 2,

3(@) < s(U-

The inequality s(G —

C W(H1Hz)  i(H Hy) = i(Hp) i(Hy) ~

1
G is a subgraph of U-(G — U), so, by Corollary 2 and
(G-U))<L<s(U)+s(G-U)=1+s(G-U).

U) < s(@) follows from Corollary 2. 1

Proof of Theorem 3: The inequality t+ 2 < s(G) follows from Corollary 1 and

the observation that

(G) = w(Ke) + Y w(Cnmy) =t +2r.
J=1

In what follows, it will be useful to keep in mind that if H is an induced subgraph

of a cycle C,, and if
Pp_y and [V(H)| <
(m-1)/2ifmiso
|[V(H)| € 2i(H) +

Suppose H is an induced subgraph of G. If i(H) =

whence

So, suppose that i(
H induced by V(H)
then H = JJ%.,

[V(H)| < m, then H is an induced subgraph of a path
2i(H). If H = Cp, then i( H) = m/2 if m is even, and
dd, so [V(H)| = 2i(H) or |[V(H)| = 2i(H) + 1. Thus

‘l in any case.

1 then H is complete,

V(H)|/i(H) = |V(H)| < w(G) =t + 2r.

|

) > 2. Let Ho = (V(H) N V(K;)), the subgraph of
NV(Ky),and H; = (V(H) NV(Cn)),j = 1,...,7

Hj ij!nd i(H) = maXogs,-i(H") = max,gs,i(H,-). [Hyp is
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complete, so i(Hp) < 1 < i( H).] We have

\VCE)|/i(HY = O IV(H) D /i H)

j=0

<t/2+i(H)T Y |V(H)]

j=1

St/2+i(H)7 Y (2i(Hp + 1)

i=1

r
<t/2+2r+ Y i(H)™
j=1
L2r+(t+7)/2
This completes the proof of the inequality

8(G) < max {t+2'r,2r+ P;rl},

in view of Theorem 1.

Now suppose that m; = -.. = m, = m. Suppose first that m is even. Then
x(G) = t+ 2rso theresult s(G) =t + 27 follows from Corollary 1 and the first
part of this theorem.

Now suppose that m is odd, and H is as above. If i( H) < (m — 1)/2, then
IV(H;)| < 2i(H),j=1,...,r, 50, again,

[VUH)|/i(H) <27+ t/i(H) <t+ 2.
So suppose that i( H) = (m — 1) /2; then

WCmich < 2o v 20

+ —r=2r +
with equality if H = G. The conclusnon follows ]

-1 -1
Proof of Corollary 4: Take the m; all odd in Theorem 3. Then x(G) = x(K;) +
2,_1 X(Cmy) =t+37.Ift > r,thens(G) =t+ 27,50

2
I(r+t),

x(G) — (@) =r.
B
Proof of Corollary 5:
t+2r < () < X(G) = (K + Ex(Cm,) =t+2r
J=1
]

Note that the result of Theorem 3 shows that the inequality of Theorem 2 may
be strict.
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