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Abstract. The induced path number of a graph G is the minimum number of subsets
into which the vertex set of G can be partitioned so that each subset induces a path. The
induced path numbser is investigated for bipartite graphs. Formulas are presented for
the induced path number of complete bipartite graphs and complete binary trees. The
induced path number of all trees is determined. The induced path numbers of meshes,
hypercubes, and butterflies are also considered.

1. Introduction

The arboricity of a nonempty graph G is the minimum number of subsets into
which E(G) can be partitioned so that each subset induces a forest. In what must
be considered one of the major results in graph theory, Nash-Williams [10] proved
that the arboricity of a nonempty graph G is given by max [|E( H)|/( I[V(H)| -
1)], where the maximum is taken over all nontrivial induced subgraphs H of
G. Harary [6] specialized this concept when he defined the linear arboricity of
anonempty graph G as the minimum number of subsets into which E(G) can be
partitioned so that each subset induces a linear forest (a forest in which every com-
ponent is a path). He specialized this concept even further in [6] when he defined
the path number of a nonempty graph G as the minimum number of subsets into
which E(G) can be partitioned so that each subset induces a path. A number of
results on path numbers of graphs were obtained by Stanton, Cowan, and James
[13].

In this paper we are interested in partitioning the vertex set of a graph (rather
than the edge set). It is this situation that gives rise to colorings. The chromatic
number of a graph G is the minimum number of colors that can be assigned to the
vertices of G so that adjacent vertices are assigned distinct colors. Equivalently,
the chromatic number of G is the minimum number of independent subsets into
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which V(G) can be

T
i

artitioned. A color class of G consists of those vertices of

G that are assigned lllle same color. Thus, each color class is independent and so
induces an empty subgraph.

The idea of gene!

izing colorings of graphs was described in detail by Harary

[4] and by Mynhardt and Broere [9]. Many generalizations and variations of the
chromatic number have been given; for example, see [2], [8], and [12], to name

just a few. In particy

graph K. Then the
of subsets in a parti

tﬁon

' lar, let P be a graphical property possessed by the trivial

P-chromatic number of a graph G is the minimum number
of V(G) so that each subset induces a subgraph having

property P. Thus, for the ordinary chromatic number, P is the property of being

independent. In this

article, we consider the property P of being connected but

in the simplest possible manner, namely that of being a path. More formally, the
induced path number p(G) of a graph G is the minimum number of subsets in a
partition of V(@) so that each subset induces a path. For the graph G of Figure 1,
p(@=2.A partiti?n of V(@) into two subsets, each of which induces a path,
is also shown in Figure 1.

The induced path

where P is the prop

is n-path colorable

vertex-arboricity a(
tition of V(G) so th
the linear vertex arb,
of subsets in a partiti
sequently, a(G) <

of components ina§
Chen, and McHugh
Thus is(Q) < (G

z Yy

Figure 1: a graph G with p(G) =2

number of a graph G is thus the P-chromatic number of G,
erty of being a path. For this reason, we say that a graph G
f p(@) < n In [3] Chartrand, Kronk, and Wall defined the
IG) of a graph G as the minimum number of subsets in a par-
at each subset induces a forest while in [7] Harary introduced
oricity lva(G) of a graph G, defined as the minimum number
on of V (G) such that each subset induces a linear forest. Con-
lva(G@) < p(Q) for every graph G. The minimum number
panning linear forest in a graph G was introduced by Boesch,
[1] and called the island number is(G) of G by Slater [11].

for every graph G.

The induced path number does not appear to be related to the chromatic number
of a graph. The induced path number can be substantially larger than the chromatic

number, as in the ca

se of the star Ky », n > 2, for which p( K1,,) = n— 1 while
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x(K1,s) = 2. On the other hand, it can be substantially smaller, as in the case of
the complete graph K,,, where p( K,,) = [n/2] and x(K,) = n

In this paper we investigate the induced path number of bipartite graphs. If the
cardinalities of the partite sets of a bipartite graph G are m and n, we refer to G as
an m x nbipartite graph. If G is nontrivial and connected, then its sets are uniquely
determined. In the next section we study the induced path number of complete
bipartite graphs, complete binary trees, meshes, hypercubes, and butterflics. The
induced path number of trees is determined in Section 3. We follow [4] for graph
theory terminology.

2. The Induced Path Number of Special Classes of Bipartite Graphs

In this section we investigate the induced path number of several special classes of
bipartite graphs, namely, complete bipartite graphs, complete binary trees, meshes,
hypercubes, and butterflies.

2.1. The Induced Path Number of Complete Bipartite Graphs

First we present a formula for the induced path number of the complete bipartite
graph K,,, where m < n, whose value depends only on whether n < 2m or
n>2m.

Theorem 1. Let m and n be positive integers. Then

[Z2] fm<n<2m
n—m ifn>2m

p( Km.n) = {

Proof: First we consider the case m < n < 2 m. The largest order of an induced
path in K, , is 3; therefore,

p(Kma) 2 me

Since p( Ky ,) is an integer, p( K ) > [252]. It remains, therefore, to show
that the vertex set of Ky, can be partitioned into [22] subsets, each of which
induces a path. Let the partite sets of K, be Vi and V3, where |V| = m and
|V2| = n. Let

= 2m—-n|_2m-—n-k
L3 - 3 '
where k is 0, 1, or 2. By selecting r vertices in V> and 2 vertices in V;, we obtain

r induced paths of order 3. This leaves m — 2r = (2n— m + 2 k) /3 vertices in
Viandn—r = (4n—2m+k) /3 = 2(m—27r) — k vertices in V3. Consequently,
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there are m — 2 r — k|additional induced paths of order 3 and k others of order 2.
In all, then, this produces

m+n+k - l-m+n-|

r+(m—2r—k)+k=m-—-r= 3 3

induced paths in K, q,. .

Suppose next that ¢ > 2m. There are m induced paths of order 3 in this case
along with n — 2m trivial paths, for a total of n — m paths. This is clearly the
minimum number. | 1

2.2, The Induced Path Number of Complete Binary Trees

Let By, denote the co;nplete binary tree of height . The vertices of By, are labeled
according to the levell to which they belong. In particular, the root (at level 0) is
labeled vg ;. The two vertices at level 1 are v ; and v; . In general, the vertices
atlevel 2(0 < £ < h)) are labeled v, vg2, ..., ve2e (See Figure 2). Every vertex
at level 1 is adjacent to a unique vertex at level 1 — 1, for ¢ > 1, referred to as its
parent vertex. In mculm. the parentof v; j is v;_ |; /2] (see Figure 2). The edges
between the vertices of leveliand level i+ 1 (0 < 1 < h — 1) are referred to as
level 1 edges and this set of 2! edges is denoted by E;. Thus U" ~! E;= B(By)
and B; N E; = 0 for§ # 5.

Denote by F the %et of spanning forests of B, with p( By) components, each
of which is a path. We define a canonical forest F* € F as that forest in F with
edge set B(B;) — UE;, wherei € {h —2,h —4,...,k} andwhere k= 0 if h
isevenand k = 1if I[z is odd. Figure 3 shows canonical forests for B, and Bs.

We now investigate the induced path number of a complete binary tree. A for-
mula for this is given in the following theorem.

Theorem 2. For thf complete binary tree By, of height h,

i (By) = { $(2M1+ 1) ifhiseven
Tl LM -1y ifhisodd

Proof: The proof of this theorem consists of two parts. First, we consider an
arbitrary forest F' € F and convert it to a canonical forest F**. Second, we count
the number of components (maximal paths) in F**,

Let FF € F. We modify F' to produce a canonical forest F* without changing
the number of components of F'. Then the induced path number of By, equals the
number of components in F**.

We consider two levels at a time, beginning with levels h and h — 1. Note that
every vertex at level A must be the end-vertex of a nontrivial path in F or a trivial
path by itself. Considering a vertex v at level h — 1, we have four cases.
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level 0

level 1

level 2

level {

Vi 41,2 Vi 41,25 +1

Figure 2: Portions of complete binary trees

Case 1 The vertex v is a path by itself. In this case, the children of v must be
trivial paths. A forest with fewer components, each of which is a path, can be
obtained by simply adding edges between v and its children, reducing the number

of components by 2. Therefore, F' ¢ F, producing a contradiction.

Case 2 The vertex v is an end-vertex of a path and both children of v are trivial
components. In such a case, the path ending at v can be extended to one of its
children, thereby reducing the number of components by 1. Therefore, F ¢ F,

again a contradiction.
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Figure 3: Canonical forests for B, and Bs

Case 3 The vertex viis the central vertex of a path of length 2 whose end-vertices
are its two children.|In this case, the component belongs to F**,

Case 4 The vertex v llies in a path, one of whose end-vertices is a child of v, while
the other child is a’trivial path. In this case, we replace the path containing v
by a path obtained by deleting the edge between v and its parent and introducing
the edge between v [and the child that was not present in F'. The resulting forest
contains the same number of components as F.

We repeat the above procedure for vertices at levels h—2 and h—3 and continue
this for pairs of leve}s until there isno edge e € UE; fori € (h—2,h—4,...,k}
in the resulting forest.

We have shown ?at p(By) is the number of components in F*. Now we count

the number of components in F*. Since there are 2* vertices at each level 1, and
two vertices at level { are joined to one vertex at level 1 — 1 to form a component,
the total number of|components formed by vertices of level 1 and ¢ — 1 are 25!
for i > 0. There ar¢ now two cases to consider.

Case 1 Assume h iseven. Since the vertices at even level i are combined with the
vertices at odd levei 1 — 1, the vertex at level O will form a component itself. Thus
the total number of ‘componems (where S={h—1,h—3,...,1})is

;1
p(Bp) =1+ Zz' = 5(2"+1 +1).
€S
Case 2 Assume h is odd. In this case the vertices at odd level ¢ are combined with

the vertices at even(level i — 1. Therefore, the total number of components (where
S={h—1,h-3|...,0}is

.1
p(By) =1+ § :2'= §(2"+l -1).
€S
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2.3. The Induced Path Number of Meshes
For positive integers d; and d3 , the 2 -dimensional mesh My, 4, is defined as the
product Py, x Py,. In what follows, we assume that the mesh My, 4, is drawn and
labeled as shown in Figure 4.
v
d,2
v 1,
4,1 0 O O O——QO—0Vd,.d,

J
>—C O O O
Ma.ay o—0— ——
Y210 224, 4 I O—O0—0"2.4,
VIJC é';‘z O O O O ovl.dz

Figure 4: The mesh My, 4,

Certainly, p( Mg, 4,) = 1 if and only if either d) = 1 ord, = 1. What may be
surprising, however, is that if neither d; = 1 nor d; = 1, then p(My, 4,) = 2.

Theorem 3. The induced path number of the 2-dimensional mesh My, 4, is
p(Mdl.dz) = 2for dl,dz 2 2.

Proof: The proof is constructive in nature. In particular, we describe a partition
of V(My, 4,) into two sets V; and V3, each of which induces a path. Assume,
without loss of generality, that d; < d;.

Case 1 Assume that d) = 2. In this case, thesets Vi = {v1; |1 < i < d2} and
Va = {vn24|1 <1< dp} give a desired partition of V(Mg 4,).

Case 2 Assume that d; = 3. The paths shown in Figure 5 give the desired result.

Case 3 Assume that dy > 3 and d, is odd. Let P, and P, be the paths indicated
in Figure 6, where the vertices v 1 and v3 2 are the end-vertices of Py, while vz )
and vq4  are the end-vertices of P,. Further, let Vi be the vertex set of P; and V5
the vertex set of ;.

Let G’ be the subgraph induced by V; U V. Then,

Mgz = My 4, — V(G

is a mesh, where d} = d) — 4 and &) = da — 4. We then apply the above
procedure ©0 My 4 to produce two paths Py and Pj, where one end-vertex of P{
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o—0—0—>0 o) o e
Val Va2dy-1 3
o0—~O0——0——0——0 ‘o) C

o—©O O O O
Y11 Vid,
Figure 5: p(M3 4,) = 2
v
dy .1 —O——0- - : . -O0—O0—0 Vdy.dy
—O0—©O—
i—‘v42
v
3,1 V32
Py
V210 O O -O-
v o—6—"0—"=20 - -+ 0—0—90 V1.dy

Figure 6: p(My, 4,) = 2 ford; oddand d; > 3

is v3 3. Therefore, the end-vertex v3 2 of Py is adjacent to v3 3, and a new path
P} is produced from P; and P;. Similarly, anew path P;’ can be formed from P,
and P;.

We repeat this if & > 5. If &} is either 1 or 3, then we can apply the base case
as described earlier.
Case 4 Assume tha‘f dy > 3 and d, is even. Consider the vertex set V' =
V(M4 4,) — {v15| 1 £ 5 < d2}. The graph induced by V' is the mesh Mg 4,
where &, = d; — 1 and dj is odd.

Using Case 3, we can partition V' into subsets Vy and Vj that induce paths P|
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and P; respectively (see Figure 7a). Also note that v, ; and v3; are end-vertices
of the paths P and P;, respectively (by the construction procedure described in
Case 3). We construct paths P; and P, by defining the sets V; and V5 as follows:

Vi=V{—{v;}
and
Va=VU{v}U{u;|1<i<d}.
As seen in Figure 7b, Vi and V2 induce paths. 1

v3,‘l
o—O0—0 O
Val -
O (o] () (o] o
Y11
@
-O0——0—0O O
o0—o0—o0 O
O —o0—o0
®)

Figure 7: p(My, 4,) = 2 ford; > 3 and d; even
We now extend our result to 3-dimensional meshes. Given a 3-dimensional
mesh My, 4, 4,, We form two 2-dimensional meshes as we now describe.
Fork=1,2,...,d3,let

Vi={ugkl1<i<d,1<j<dr).
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Qy: Qs

igure 8: The hypercubes @, and Qs

Each set Vi, 1 < k < d3, induces a 2-dimensional mesh. Therefore, using The-
orem 3, we see that each set Vi can be partitioned into subsets V¥ and V;f which
induce paths Pf anger", respectively. Observe that each vertex in Pf (respec-
tively P§) is adjacent to its corresponding vertex in P}*! (respectively PF*!) for
1 < k < d3. Therefore, the vertex sets V{ = G, VEand vy = (2, V# in-
duce two 2-dimensiopa1 meshes. Using Theorem 3, we can color each of the two
2-dimensional meshes using two colors. Therefore, we need at most four colors

to color a 3-dimensional mesh. Thus we have the following result.

Theorem 4. The induced path number of the 3-dimensional mesh Mg, 4, 4, is

p( My 4, .40) < 4.

Using the idea of decomposing a k-dimensional mesh into two (k — 1) dimen-
sional meshes (as we‘ did in Theorem 4), we have the following.

Theorem 5. The inthed path number of the k-dimensional mesh Mgy, 4, ... 4, is

| p(Mdhdz,...,dk) S Zk_l_

2.4. On the Induced Tath Number of Hypercubes and Butterflies

In this section, we investigate the problem of determining the induced path num-
ber of two types of b‘panite graphs that appear frequently in the study of parallel
architectures, namely, hypercubes and butterflies. Recall that the d-dimensional
hypercube Qg is defined recursively by Q1 = K2 and Qg = Qq-1 % K3 for
d > 2. This problem appears quite complex, but we describe what is known for
small values of d.

Theorem 6. For d = 2,3, 4,5, the induced path number of Qqis p(Q2) =
p(Q3) =2, p(Qa) _|<_3.and p(Qs) < 4.
Proof: Since every hypercube Qq where d > 2 contains cycles, p(Qq) > 2.

That p(Q2) = p(Q3) = 2 follows since (> and Q3 contain two induced vertex-
disjoint paths that span the hypercube (see Figure 8).
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That p(Qs) < 3 follows from the partition of the vertex set of Q4 shown in
Figure 9. (For clarity, we have not shown all edges of Q4.) That p(Qs) < 4
follows from the partition of the vertex set of Qs shown in Figure 10. (Again, not
all edges of Qs are displayed.) [ |

Q

——————— =
=

-
-
-

Figure 9: p(Q4) <3

By the definition of hypercubes, it follows that p(Q4+1) < 2p(Qq). Because
of this and the fact that p(Qs) < 4, we can conclude that p(Qq) < 293 forall
d > 5. However, we believe that the bound 29-3 is not even close to the actual
value of p(Q4). Indeed, we conjecture the following:

Conjecture. The induced path number of the d-dimensional hypercube Q is
p(Qad) < dford>2.

The other class of bipartite graphs that we consider in this section are the but-
terflies. Like the hypercubes, the butterflies are defined recursively. The first three
butterflies By, B>, and B; are shown in Figure 11.

By construction, the butterfly B, contains 27 induced paths of length r, so
p(By) < 27 for all r. Since B, is a cycle, p(B1) = 2. Also, for r = 2k,
the butterfly B, = By is ak-22* x (k+ 1)-22* bipartite graph. Forr = 2k~ 1,
the butterfly B, = Byy_; is a k- 2251 x k.22%-! bipartite graph.

Every induced path in a bipartite graph contains at most one more vertex in one
of its partite sets than the other. Since Bz has 2 k£ more vertices in one partite
set than the other, it follows that p(B2g) > 2k, Hence, based on our earlier
observation, we have the following:

Theorem 7. The induced path number of the butterfly B, is p(B;) = 2v for
even positive integers r.

Although we are unable to present a result for odd integers r, we do conjecture
the following:

201



, 54
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Figure 10: p(Qs) < 4

Conjecture. The induced path number of the butterfly B, is p( B,) = 2r for odd
positive integers r.

3. The Induced Path Number of Trees

In this section we investigate the induced path number of trees. We begin by
characterizing n-path|colorable trees.
Theorem 8. A tree T is n-path colorable if and only if there exists a set of fewer
than nedges whose emoval Jfrom T results in a linear forest.
Proof: Suppose T’ isIn n-pathcolorable tree. Then thereis apartition Vy, V3, ..., Vi
(k< n)of V(T) such that (Vi) isapath forall i (1 < ¢ < k). Since T is a tree,
there are exactly k£ — 1 edges joining a vertex of some V; and a vertex of some
Vi, Where j # m anld 1 £ j,m < k. The removal of these k — 1(< n) edges
results in a linear forq,st.
We now consider the converse. First, observe that the removal of any edge

from a forest F' results in a forest F* containing one more component than that
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Figure 11: Butterflies

of F'. Suppose then that we remove k(< m) edges from a tree T, resulting in
a linear forest F'. Then by the above observation, F' contains & + 1(< n) com-
ponents Fi, ..., Fi.1, each of which is a path. Consequently, the partition
V(R),V(F,),...,V(Fi+1) of V(T) shows that T is n-path colorable. |

We now have an immediate consequence of Theorem 8.

Corollary 9. Let T be a tree of order p with p(T) = n. Then there exists a set
E of n— 1 edges of T but no fewer such that T — E is a linear forest of size

p—p(T).
Let T be a tree. For a vertex v of T with degrv > 3, we define the excess
degree e(v) of v by
e(v) = degrv -2,

Theorem 10. Let T be a tree, and let H be the forest induced by the vertices of
T having degree 3 or more. Let H' be a spanning subforest of H of maximum
size such that deg v < e(v) for every vertex v of H. Define

£=|B(H) |+ Y [£(v) — deg mvl. 1)
- veV(H)
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Then T is (£+ 1)-path colorable but not £-path colorable.

Proof: First, we showl that T' is (£+ 1) -path colorable. Define H" to be a spanning
subforest of T" obtained by adding, for every vertex v of H, to H' atotal of e(v) —
deg v edges of T that are incident with v but do not belong to H’. Observe that

|ECH")| = |[ECH)|+ ) [&(v) —deggv] =
veV(H)

Let F be the forest obtamed by deleting E( H") from T'. Then for each vertex v of
H, we have deg pv -ideg rv — &(v) = 2. Since deg pv < 2 for all vertices v of
T that do not belong t{o H, it follows that A(F) < 2. Therefore, by Theorem 8,
T is (£ + 1)-path colorable.

Next, suppose to th:e contrary, that T" is £-path colorable. By Theorem 8 there
are sets E; of fewer than £edges of T such that A (T — Ey) < 2. Among all such
sets By, let Ep be one of minimum cardinality. Let Hy be the spanning forest of
T with edge set Ep, and let H be a subforest of Hy of maximum size such that
V( Hp) is the set of \}ertices of degree 3 or more in T" and deg ayv < e(v) for
every vertex v of Hy.

Then,

|ECHo)| = |ECH) |+ Y [e(v) — degpvl. @

veV(Hy)
By the definition of Hy, we have |E(Hy)| < |E(Hp)|. By (1), it follows that ’

> vy =2+2|E(H")],
veV(H)
and by (2),
> &(v) = |E(Ho)| + 2| E(H})|.

vEV(Hy)
Since V(H) = V( Hy)), it follows that
£+ 2|E(H")| = |E(Ho) |+ 2|E(Hp)| < £+ 2|E(H")]|,
producing a contradiction. 1

From this we have an immediate corollary.

Corollary 11. Let T be a tree, and let H be the forest induced by the vertices of
T having degree 3 orimore. Let H' be a spanning subforest of H of maximum
size that deg v < e(lv) for every vertex v of H. Then

p(T) = 1+ |[ECH |+ Y [£(v) —degv].
veV(H)
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With the aid of Corollary 11, it is possible to give an alternative proof of Theo-
rem 2, but it does not have the informative nature as the proof provided for Theo-
rem 2,

Next we determine upper and lower bounds for the induced path number of
a tree. Recall that a tree T is called an m X n tree if its two partite sets have
cardinalities m and n.

Theorem 12. Let T be an m x ntree of order p(= m+ m) with3 < m < n
Then p— p(T) > 4.

Proof: Because of Corollary 9, it suffices to show that T" contains a linear forest
of size 4. Let V; and V; be the partite sets of T'. By hypothesis, |V;| > 3 for
i=1,2. .

Let u be an end-vertex of T and suppose, without loss of generality, thatu € V.
Then u is adjacent to exactly one vertex v. Necessarily, v € V3 and degv > 2.
Let w( # u) be adjacent to v. So w € V. We now consider two cases.

Case 1 Assume degw = 1. Necessarily, then, degv > 3 and v is adjacent to a
vertex y where degy > 2. Suppose y is adjacent to z(# v). Since |V2| > 3,
there exists a vertex z € V5 distinct from v and z (see Figure 12). If z is adjacent
toy, then P : u,v,w and Q : z,y, z are desired paths; otherwise, z is adjacent
to a vertex t distinct from u, w, andy,and P : u,v,y,z and Q : ¢, z are desired
paths.

u v
w x
y O:

Figure 12: degw =1

Case 2 Assume degw > 2. Let z(# v) be adjacent to w. We consider two
subcases.

Subcase 2.1 Assume =z is an end-vertex. Then at least one of w and v has degree at
least 3, say the former. Suppose w is adjacent to y(# v, z). If y is an end-vertex,
then we are in the situation described in Case 1 (with w playing the role of v in
Case 1). Thus, we may assume that degy > 2. Since T is a tree, y is not adjacent
to u. So y is adjacent to a vertex z distinct from u and w (see Figure 13). However,
then P : u, v, w, y, z is a path of length 4.

Subcase 2.2 Assume z is not an end-vertex. Since T is a tree, z is not adjacent
to u. However, since degz > 2, there is a vertex y distinct from u and w that is
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w X
» ‘
Figure 13: degw > 2 and z is an end-vertex
u 14
w x
y

Figure 14: degw > 2 and degx > 2

adjacent to z (see Figure 14). However, then P : u, v, w, z, y is a path of length
4,

This completes the proof. |

Theorem 13. Let T be an m x ntree of order p with m < n. Then p— p(T) <
2m.

Proof: LetV; be a partite set of T" with |V; | = m. In any linear forest F' contained
inT, every vertex ofi belongs to at most two edges of F. Therefore, |[E(F)| <
2m. Then by Corollary 9,p — p(T) < 2m. 1

Combining Theorems 12 and 13, we have the following result.

Corollary 14, If T)isan m xntreewith 3 < m <m, then
n-m<p(T)<m+n—4.

In the special case that T isa 1 x n tree (the star K1 ,), o(T) = m+ n—2;
while in the case thattT' isa2 x ntree (n > 2), p(T) < m+n—-3. IfTis
an m x ntree for which m = n, then Corollary 14 gives 0 for a lower bound for
p(T) where, of course, p(T) > 1 for every tree T. Therefore, we could replace
the lower bound in Corollary 14 by max{1,n— m} < p(T).

We now discuss the sharpness of the bounds given in Corollary 14. In order to
do this, we recall so e special, but familiar, classes of trees. A caterpillar T is
a tree the removal of whose end-vertices produces a path. This resulting path is
referred to as the spine of T'. If the spine is the path v, v;,..., v, whose degrees
are dy,d, ..., d,respectively, then we denote T by C(dy,d2,...,ds). Ift =1,
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C (3)51(1’33 C (3,4):

Cc@2,3,4,5):

Figure 15: Three caterpillars (including a star and double star)

then T is a star, while if t = 2, T is a double star. We note that the order of
C(di,dy,...,de) is Y4, d; — t + 2. Examples are shown in Figure 15. The
spine of the caterpillar C(2,3,4,5) isvi, v2,v3, vs.

‘We show that for every pair m, n of integers with 3 < m < nand every value
intermediate to the bounds given in Corollary 14, there exists an m x ntree T

(actually a caterpillar) that attains this value.

Theorem 15. Let k,m and n be integers suchthat 3 < m < nand n—m <
k < n+ m— 4. Then there exists an m x ntree T such that p(T) = k.

Proof: Let T be the caterpillar C(n—t¢,m —t¢,2,...,2) where0 <t <m -2
and the spine of T" has order 2¢ + 2. Then T is an m x n tree (of order m + n).
By Corollary 11, when0 <t < m—3,

o(T)=n+m—2t—4. 3)

The caterpillar T = C(n—t —1,m —,2,...,2) where 0 <t < m — 3 and
with spine of order 2t + 1 has order m + nand is an m x ntree. By Corollary 11,

KT =n+m-2t-5. @
Fort=m-2,wehaveT = C(n—m+ 1,2,2,...,2) and by Corollary 11,

p(T) = n— m. Combining this result with the formulas given in (3) and (4), we
have the desired result. |
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4. Concluding Remarks

In this paper we have

studied the induced path number of several classes of bipar-

tite graphs. This, of course, suggests the investigation of the induced path number
of graphs that are not Pecessarily bipartite, perhaps in terms of other parameters.

In [5] the induced path number was generalized, namely, the induced tree num-
ber 7( Q) of a graph @ is the minimum number of subsets into which V{G) canbe
partitioned so that each subset induces a tree. The induced A -tree number 14 (G)
requires that each induced tree has maximum degree at most A . Consequently, the
induced 2-tree number is the induced path number.
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