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Abstract

An orthogonal double cover of the complete graph K, is a collec-
tion of n spanning subgraphs G,, Gy, ..., G, of K, such that
- every edge of K, belongs to exactly 2 of the G;’s and
- every pair of Gs intersect in exactly one edge.
It is proved that an orthogonal double cover exists for all n > 4, where
the G;’s consist of short cycles; this result also proves a conjecture of
Chung and West.
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1 Introduction

Let n > 2 be an integer and let X, be the complete graph on the n-element
vertex set V. We consider collections G = {G), Ga, ..., Go} ! of spanning
subgraphs of K,, i.e. graphs on V. We call G an orthogonal double cover of
K, i
(i) every edge of K, belongs to exactly 2 of the G;’s and

(ii) every pair of G;’s intersect in exactly one edge.

Of course, we also/may restrict the set of graphs from which we choose the
G;'s, e.g., graphs which consist of disjoint cliques only, graphs with maximum
degree 2, or graphs which consist of cycles of small length, etc.

Note that every graph must have exactly n — 1 edges.

The general problem is to determine all values of n for which such a
orthogonal double cover exists.

For illustration we start with the solutions for 2 < n < 7 given in Figures

1,2,34, and &.
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Figure 1: Solutions forn=2and n=3
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Figure 2: Solution for n = 4

In [4] and [3] DEMETROVICS, FUREDI, AND KATONA studied extremal
problems in relational data bases and arrived at our problem (in a different
terminology) in the}tj ase of graphs which consist of distinct cliques. They
conjectured that an |!'t.hogonal double cover of K, exists in this case [or all

!Note that the numbe:r of graphs coincides with the size of V.
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Figure 3: Solution for n =5
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Figure 4: Solution for n = 6
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n > 7. Actually the;y" studied the case n = 1 mod 3, where each G; consists
of one isolated pomt d ""‘ disjoint 3-cliques, i.e., K3s, and eventually they
asked the same question in the directed case. Their conjecture that such an
orthogonal double cover in the directed case existsfor alln > 4, n =1 mod 3
was proved by them|for all n = 1 or 4 mod 12. RAUSCHE [11] proved that
there is no solution for the latter problem for n = 10 in the undirected case
and this implies trwla.lly that there is also no solution for n = 10 in the
directed case. GANTER AND GRONAU (5] proved the latter conjecture in the
directed case for all 111 = 1 mod 3, n # 10, and the general conjecture for all
sufficiently large n. They also proved that the general conjecture fails in the
casen =8. A compléte confirmation of the first conjecture (with n # 8) was
given in BENNETT AND WU [1] and GRONAU AND MULLIN [8].

In late 1991 a pa{er of CHUNG AND WEST [2] came to our attention in

Figure 5: Solution forn =7

which the same question was asked for graphs G; having maximum degree 2,
i.e., consisting of cycles or cycles and just one path.

They proved the existence of such orthogonal double covers for 6 residue
classes mod 12, nam%ly, forn=1,2,5,7,10,11 mod 12. Their constructions
give solutions with cycles of certain length (depending on number-theoretic
properties of n) if n/= 1,5 mod 6 and containing a path in the remaining
cases.

The aim of this paper is to study a strengthening of the problem, namely,

the existence of orthogonal double covers of K, where the graphs consist of
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disjoint cycles and one isolated point. Moreover, we answer this question
where the cycles are all short, i.e., the cycles have length at most 5.

We call a set {G1,G3,...,Gn} of graphs idempotent if i is an isolated
point in G; for i = 1,2,...,n. Idempotent solutions play a crucial role in our
constructions.

One also may strengthen the problem in the following way.

Let K,. be the complete digraph on the vertex set V. We consider col-
lections § = { G,, Ga, ..y Gu } of spanning subgraphs of K., i.e., digraphs
on V. Wecall § an orthogonal double cover of K, in the directed case if
the associated collection G = { G, G, ..., G» } which is obtained from §
by replacing the directed edges by undirected edges is an orthogonal double
cover of K, and has the additional property that the two common edges of
the G; and G; have different orientations in G; and G for any pair {i,j}
c {1,2,..,n}.

This problem was studied in GANTER AND GRONAU [5] in case of directed
3-cycles and more generally in GRONAU AND MULLIN [9)].

2 The main results
The aim of this paper is to prove the following results.

Theorem 1 There erists an idempotent orthogonal double cover {G,, G,
«sGn} of K, in which each of the graphs G; (i = 1,2,...,n) consists of an
tsolated point i and the union of edge-disjoint cycles of length 3, 4, or 5 only,
foralln > 4,n+#8. Forn=2,3,8 there is no solution.

The proof of this theorem will be given in section 4.
An immediate consequence of the above theorem is the following result:

Theorem 2 There ezists an idempotent orthogonal double cover {G,,Ga,
.sGn} of K, in which each of the graphs G; (i = 1,2, ...,n) consists of an
isolaled point i end the union of edge-disjoint cycles (without size restricti-
ons), for all n 2 4.

In order to prove the last theorem we need only to refer to Theorem 1
and to add a solution for n = 8.
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solution

Table 1: Solution for n = 8

Remark 1 A complete computer search showed that there is no solution in
case n = 8, where the graphs have all cycle structure 4,9. Thus, the only
idempotent solution for n = 8 needs 7-cycles.

The cases n = 2 mod 4 are the most difficult ones. There are no cyclic
solutions at all, as Lemma 1 shows.

Belore presenting Lemma 1 we will mention necessary and sufficient con-
ditions, Claims 1 a.nd 2, for a graph being a starter in a cyclic solution.

For every edge {a, b} € {0,1,2,...,n — 1}, the Lee-distance is defined as

!I(a, b) = min{|a ~ b|,n — |b - a|}.

For every k € {l] - |3]} let the rotation-distance denote the unique
number r(k) € {1, 2‘ ["j} such that G; a.nd Gir(x) (index mod n) coin-
cide in an edge of Lce-d:stance k.

Remark 2 In Figuvje 5 we have the following rotation-distances in that ez-
ample for the casen= 1T

Lee-distance k
rotalion-distance r(k)

~il

cof| ~
dof| <o

YThis notation means that G, has exactly the edges (2,8), (8,7), (7.,6), (6,5), (5.1),
(4,3), and (3,2)
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n=}%

Claim 1 For every k € {1,2,...,[%5*]} the graph G must contain ezactly 2
edges of Lee-distance k and ezactly one edge of Lee-distance 3 if n is even.
Claim 2 The rotation-distances r(k) form a permutation of {1,2,...,|3]}.

| Claims 1 and 2 are neccessary and sufficient for G being a starter for a
solution.

Lemma 1 If a spanning subgraph G in K, is a starter for a cyclic solution,
then n # 2 mod 4.

Proof. Assume the contrary. Let n = 2 mod 4 and let G be a solution for
Kn. For each edge (r — 1 of them in total), we assign the Lee-distance to it,
and sum them up. We get 2(1 +2+ ...+ § — 1) + } which is odd; see Claim
1. Ifa,b € {0,1,2,...,n — 1} the Lee-distance of the edge (a, b) is

{(a,b) = £(a — b) mod n.

For a cycle C = z,, 13, ...,z of length k in G, the sum of the Lee-distances
of edges in C is

i:l:(z; - zi1)

i=1
which is even, since that is true for all the cycles in G. So the sum of the
Lee-distances of all the edges in G is even, which contradicts the fact that

this sum must be odd.
Theorem 2 together with Figure 1 answers the question of CHUNG AND

WEST [2] completely.

Theorem 3 An orthogonal double cover {Gy,Gy,...,Gn} of Kn, where the
graph G; (i = 1,2,...,n) of the collection has mazimum degree 2 ezists if
n22.

3 PBD-closure

The main idea for our construction is to show first that the set of orders for
which idempotent solutions exist is PBD-closed. Then the set of orders for
which appropriate pairwise balanced designs (PBD) exist gives the desired
solutions.
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Lemma 2 The set o f integers n for which an idempotent orthogonal double
cover of K, ezists is| PBD-closed.

Proof. Let B be the set of blocks of a PBD on V, and suppose that for

every b € B we have lan idempotent solution

gb = {G:‘,G:,,...,G:M},b = {z,,zg,...,zm}.

Then, for every z € V, define

G-:= |J G.

zebeB

We show that {G: : £ € V} is again an idempotent double cover for K.

4

It is obvious that {G: : = € V} is idempotent, i.e., it contains the single-
ton {z}.
To see that {G; : z € V} is a double cover, we need to prove two things:

1. |G:NGy|=1 for z,y€V and z # y.

Consider G- foi‘ an arbitrary z € V. The only component of G contai-
ning z is {z}. {6 — {z} : = € b € B} is a partition of V — {z}; s0, if 2
member of G ¢ontains any element y different from z, then it must by
contained in the block b through z and y and thus it comes from G®.
Since this is pazrtition, no two such classes can intersect.

. For any u,v €|V and u # v, there is a unique pair G and G, which

both contain the edge (u,v).
Now let u,v € V,v # u, and let b be the block containing u and v.
Then there is }recisely one block b which contains both v and v, and

_ this block contains a unique pair of elements z and y such that G® and

G?, intersect in|(u,v). As a consequence, there is a unique pair G; and
Gy which intersect in (u,v).

Proof of Theorem 1

Let K be a set of positive integers. For brevity let B(K) denote the set of
orders for which a pairwise balanced design with block sizes from K exists.
We will use the following two theorems.
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Theorem 4 ([10],[7]) :
B({4,5,6,7}) = {4,5,6,7,13,16,17,20,21,22} U {n : n > 24}.

LEN?Z [10] proved the above result with one undecided case: n = 23. This
was resolved by GRONAU, METSCH, AND MULLIN [7].
In order to prove Theorem 1, we first give solutions for n = 4, 5,6,7:

| | solution fig.
[4 ]G, = {(1),(2,3,4)} 2
Gz ={(2),(1,3,4)}
Gi= {(3)’ (1v2’4)}
Gy = {(4): (lv213)}
51Gi={(t),(1+¢,24+4¢,4+1¢,3+1)} modS5, 3
t1=1,23,4,5
6 | G1 = {(1),(2,3,4,5,6)} 4
G’ = {(2)) (1,3, 614';5)}
Gs = {(3),(1,2,5,6,4)}
Ga= {(4)!(173!5’2i 6)}
Gs = {(5),(1,2,4,3,6)}
Ge = {(6)1(1a412’3,5)} _
71Gi={(t),(1+1,2+4,4+¢),3+¢5+¢6+1)} mod7,|5
1=1,2,...,7

‘Table 2: Solutions for n = 4,5,6,7

Applying Theorem 4 and Lemma 1 we only have to present solutions for
n =9,10,11,12,14,15,18,19,23 in order to complete the proof of Theorem
1, which will be given in Table 3.

Remark 3 A complete computer search showed that there is no cyclic solu-
tion in case n = 9 and no solution at all in case n = 11 with cycle structure

4,3,3.

The most surprising case was n = 10. RAUSCHE [11] showed by a direct
but laborious case analysis that there is no solution if each of these graphs is
idempotent and consists of three disjoint 3-cycles. Obviously, the triangles
in a solution would give rise to a simple 2-(10,3,2) design. A solution in
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G = {(1),(2,

solution

1,6
Gz = {(2),(1,7,6
Gs = {(3),(1,8,7
Ga = {(4),(1,3,6
Gs = {(5),(1,2,9,
3,2
4,3
5,4
6,5

- e

Gr = {(7) (1,
G = {(8)’(1’
Gp = {(9)’(1: ) !8)!(

10

G = {(1)1 (2! 3, 4)1 (5’ Gri(81 9, 10)}
G: = {(2),(1,3,4,5,8),(6,9,7,10)}
Gs = {(3),(1,2,5,9),(4,6,8,10,7)}
G = {(4),(1,2,8,7),(3,5,10,9,6)}
Gs = {(5),(1,3,8,6,7),(2,9,4,10)}
Gs = {(6),(1,4,2, 10),(3,7,8, 5,9)}
Gy = {(7),(1,6,3,10),(2,5,4,8,9)}
Gs = {(8)7(1$ 5,10,4,6), (2s 3,9, 7)}
Gs = {(9)1 (ls 4,7,5), (2v 6,10,3, 8)}
G = {(10),,(1,8,4,9),(2, 6,5,3, 7)}

11

Gi={(),(I#4,5+4,3+4,4+4,9+1),
(2+4,7+4,8+i,6+i,1044)} modll, i=1,2,..,11

12

Gi={(), (15, 7+4,10+53+1),(4+1,8+4,9+4,11+1),
(2+14,5+4,6+1)} mod12, i=1,2,..,12

14

Gi = {((,0)),((1 +1,0), (3 +,0),(2 +1¢,0),(3,1)),((4 +1,0),
(1414,1),(5 4 3,1)), (5 +5,0), (4 +3,1), (6 +1,1), ((6 +4,0),
(2+14,1),(3+4,1))}

Gi-l-? = {((i’ }))’ ((i,O),(l +1, 0))(6 +1, 1)1 (4 +1, 0))’((2 +1, 0):
(6+14,0),(2+1,1)),((3+4,0),(5 +4,0),(5 +4,1)), (1 +4,1),
(3+i,1),(4 +i, 1))}

mod(7,-), t=1,2,...,7

15

Gi={0), A+, 7+5,4+1,6+1),3+i,11+4,12+1¢,13+1),
(2+4i,5+4,9+1),(8+i,10+¢,14 +i)} mod 15, i=1,2,...,15

Ta.blel 3: Solutions for n = 9,10,11,12, 14,15
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Figure 6: Solution for n = 10
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ﬁlution

Gi = {((1,0)), ((1 +1,0),(2+14,0),(3 +14,0),(5 +1,1),(3,1)),
((4 +14,0),(7+4,0),(1 +4,1)),((6 +4,0),(2 +1,1),(4 +1,1)),
((8+14,0),(3+1,1),(7+4,1)),((5 +1¢,1),(6 +14,1),(8 +1,1))}
Giss = {((3,1)),((3,0),(3 +,0),(7 +¢,0), (5 + £,1), (5 +4,0)),
((1414,0),(2+1,1),(6 +1£,1)),((2+14,0),(3 +4,1),(4 +4,1)),
((4+1,0),(1+1,1),(7 +4,1)),((6 +4,0),(8 +4,0), (8 + ¢,1))}
mod(9,-), i=1,2,...,9

19 | Gi= {(), (L + 5,7 +1,11 +14), (2 + 1,14 +14,3 + 1),
(4+4,944,6414),(5+4,16 +4,17+1),
(8+1,18 4 £,12 + 1), (10 + i,13 + 4,15 + i)}

modl9, i =1,2,..,19

2 G;i = {(), (1 +1,19+2,8 +1),(2+13,17+1,11 +1),
(3+4i,4414,641),(5+,15+4,13+¢,20+1),
(744,18 + 4,21 + i), (9 + 1,14 +¢,10 + 1),

(12 +4,16 + 4,22 + i)} mod 23, i =1,2,...,23

Table 4: Solutions for n = 18,19, 23

=

the corresponding problem for digraphs (see the introduction) would give
rise to Mendelsohn triple systems. All Mendelsohn triple systems are known
[6). BENNETT AND WU {1] checked all these designs for partitions with ten
classes consisting each of 3 disjoint 3-cycles which could form a solution for
the directed problem, and, of course, their approach also gave another proof
of its nonexistence.

Then we looked for solutions where every idempotent graph consists of
one 4-cycle and one disjoint 5-cycle. A complete computer search using a
backtracking algorithm showed that there is also no solution. Finally, we
started looking for a solution where the graphs are mixed, i.e., some consist
of three 3-cycles and others consist of one 4-cycle and one 5-cycle. This
search was successful; see Figure 6. This was the first solution where the
graphs are not all of the same cycle structure.
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