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ABSTRACT. Let s and r be positive integers with s > r and let
G be a graph. A set I of vertices of G is an (r, s)-set if no two
vertices of I are within distance » from each other and every
vertex of G not in I is within distance s from some vertex of
I. The minimum cardinality of a (r, s)-set is called the (r,s)-
domination number and is denoted by i, ,(G). It is shown that
if G is a connected graph with at least 8 > r > 1 vertices, then
there is a minimum (r, s)-set I of G such that for each v € I,
there exists a vertex w € V(G) ~ I at distance at least s — r
from v, but within distance s from v, and at distance greater
than s from every vertex of I — {v}. Using this result, it is
shown that if G is a connected graph with p > s > 2 vertices,
then i,,(G) < p/s and this bound is best possible. Further,
it is shown that for s € {1,2,3},if Tisatreeonp > s+ 1
vertices, then 1, ,(T") < p/(s + 1) and this bound is sharp.

1. Introduction

For graph theory terminology not presented here we follow [7]. Specifically
P(G) and ¢(G) will denote, respectively, the number of vertices (also called
the order) and number of edges (also called the size) of a graph G with
vertex set V(G) and edge set E(G). If S is a set of vertices of G and v is
a vertex of G, then the distance from v to S, denoted by dg(v, S), is the
shortest distance from v to a vertex of S.

A set D of vertices of a graph G is a dominating set (total dominating
set) of G if every vertex of V(G) — D (V(G), respectively) is adjacent with
some vertex of D other than itself. Mo and Williams [18] extended the
definition of total dominating sets to (r, s)-dominating sets of graphs. In
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(18], a set U of vertices of a graph G is called an (r, s)-dominating set of
G if every vertex in V(G) — U is at distance at most r from some vertex
in U and every vertex in U is at distance at most s from some vertex in
U other than itself. Thus a (1,1)-dominating set is the same as a total
dominating set. In [18], various bounds on the cardinality of a smallest
(7, s)-dominating set of a graph are established.

In this paper, we extend the definition of independent dominating sets
in graphs. A set I of vertices of G is an independent dominating set of G if
I is both an independent and a dominating set of G. Equivalently, I is an
independent dominating set if no two vertices of I are within distance 1 from
each other and every vertex not in I is within distance 1 of some vertex of
I. This observation suggests a generalization of the concept of independent
domination in a graph. For r and s positive integers, we define a set I of
vertices of G to be an (r, s)-set if no two vertices of I are within distance
r from each other and every vertex not in I is within distance s of some
vertex of I. The (r,s)-domination number i,,(G) of G is the minimum
cardinality among all (r, s)-sets of G. Thus [ is a (1,1)-set of G if and
only if I is an independent dominating set of G. Hence 3;,(G) = #(G),
where i(G) is the independent domination number of G. The parameter
i(G) has received considerable attention in the literature (see, for instance,
(1, 2, 5, 8, 14, 15]). For the graph G shown in Figure 1, D = {u,v,z,y} is
a (1,2)-set of G with i) 9(G) = |D| and T = {u,w, z,y} is a (2,2)-set of G
with 'L'2'2(G) = |T|
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Figure 1.

This concept of distance domination in graphs finds application in many
situations and structures which give rise to graphs. Consider, for instance,
the following illustration related to town planning. Let G be the graph
associated with the road grid of a city where the vertices of G correspond
to the street intersections and where two vertices are adjacent if and only
if the corresponding street intersections are a block apart. Suppose we
are required to locate a minimum number of facilities (such as utilities,
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waste disposal dumps, hospitals, emergency medical centres, blood banks,
transmission towers) such that every intersection is within s city blocks of
a facility and such that no two facilities be within r blocks of each other
(to avoid interference, contamination or congestion), where r and s are
positive integers. Then we may site such facilities at points corresponding
to vertices in a minimum (r, s)-set in G. These concepts are related to
distance dominating cycles studied by Bondy and Fan [6], Fraisse [9] and
Veldman [17], and also to the concepts of distance domination studied by
Henning, Oellermann and Swart [12, 13] and Bacsé and Tuza [3,4].

2. Bounds on i ,(G) for a graph G

In this section, we investigate good upper bounds on ¢, 4(G) for a graph G.
The following theorem can be deduced from a result that was established
in [11].

Theorem A. If G is a connected graph of order p > 2, then i(G) <
P+ 2 - 2,/p, and this bound is sharp.

That the bound given in Theorem A is sharp, may be seen by considering
the graph G (indicated in Figure 2) obtained from a complete graph on k+1
vertices by attaching to each of its vertices k (disjoint) paths of length 1.
Then p = (k+1)? and i(G) =k*+ 1, 50 i(G) =p+ 2 — 2,/p.

Figure 2. The graph G

Since ,,1(G) = i(G) for any graph G, Theorem A gives a good upper
bound on #;; (G) for a connected graph G. In what follows, we investigate
good upper bounds on i; ,(G) for a connected graph G where s > 2. We
begin with the following proposition which generalizes a classical result of
Ore ([16], p. 206).

Proposition 1. For s > r > 1, let I be an (r, 5)-set of a connected graph
G. Then I is 2 minimal (r, s)-set of G if and only if each vertex v € I has
at least one of the following properties.
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P(1,s): there exists a vertex w € V(G) — I such that w is within distance
' s from v and at distance greater than s from I — {v};

P(2,s): v is at distance greater than s from I — {v}.

Proof: Suppose, firstly, that I is a minimal (r, s)-set of G. Then for each
vertex v of I, I — {v} is not an (r, s)-set of G. Hence there is a vertex
w € V(G) — (I U {v}) that is at distance at least s+ 1 from every vertex
of I — {v}. If w = v, then v has property P(2,s), while if w ¢ I, then,
since every vertex not in I is within distance s of some vertex of I, w is
within distance s from » and at distance greater than s from every vertex
of I — {v} and v has property P(l, s). Conversely, if each vertex v € I has
at least one of the properties P(1,s) or P(2, s), then for each such vertex
v, I — {v} is not an (r, s)-set of G.

Before proceeding further, we introduce some notation. Let S be a set of
s vertices of a connected graph G. We will call a nondecreasing sequence
&, b, ..., € of integers the distance sequence of S in G if the vertices
of S can be labelled vy,v9,...,v5 so that & = dg(v;, S — {v;}) for each
i. For example, for the graph G given in Figure 1, the set {u,v,z,y} has
distance sequence 2, 2, 2, 2 while the distance sequence of the set {,y,w, z}
is 3,3,4,4. Suppose s; : a3, a3, ..., @, and s3 : by, b, ..., b, are two
nondecreasing sequences of positive integers. Then we say that s; precedes
8o in dictionary order if either m < n and a; = b; for 1 <1 < m or if there
exists an ¢ (1 <1 < min{m,n}) such that a; < b; and a; = b; for j < s.

We now present the following result.

Theorem 1. Let 1 < r < s and let G be a connected graph of order at
least s, Then G has a minimum (r, s)-set I such that for each v € I, there
exists a vertex w ¢ I at distance at least r — s, but at most s, from v and
distance greater than s from I — {v}.

Proof: Let i, ,(G) = m. Among all the (r,s)-sets of G with cardinality
m, let I be one which has the smallest distance sequence in dictionary
order. Let the distance sequence of I be given by &, &3, ..., &,, where
I={v;,vs,...,9n} and 4 =d(v;, ] — {v;}) for 1 <i < m.

We show firstly that each vertex of I has property P(1, s). If this is not
the case, then let 7 be the smallest integer such that the vertex v; does not
have this property. By Proposition 1, v; then has property P(2, s), and so
¢; > s+ 1. Now let v} be adjacent with »;. Then d(v},] — {v;}) > s > r.
We consider the set I’ = (I — {v;}) U {v{}. Necessarily, I’ is an (r, s)-
set of G with |I’| = m. Furthermore, the vertex v} is within distance s
from some vertex of I — {v;}; consequently, £ = d(v{,I' — {v;}) = s < 4.
Now let 5 be the largest integer for which ¢; < ¢;, and consider the value
&, = d(vk, I' — {vi}) for each k with 1 < k < j. Since & < ¢;, a shortest
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path from the vertex vk to a vertex of I — {v;} does not contain v;. It
follows, therefore, that £, < ¢ for all k (1 < k < j). This, together with
the observation that £, < ¢, for all m > t, implies that the distance sequence
of I’ precedes that of I in dictionary order. This produces a contradiction.
Hence every vertex of I has property P(1, s).

For each vertex v; of I, let w; be a vertex of V(G) — I at maximum
distance from v; in G such that w; is within distance s from »; and at
distance greater than s from every other vertex of I (1 < i < m). We show
that the distance from w; to v; is at least s — r for all 4. If this is not the
case, then let i be the smallest integer for which d(v;,w;) < s —r. We
observe, therefore, that every vertex at distance greater than s —r —1 from
v; is within distance s from some vertex of I — {v;}. Thus v; is at distance
at least r + 2 from I — {v;}, for otherwise, if d(v;, I — {%;}) = r + 1, then
I — {v;} is a (r, 8)-set of G of cardinality less than m. We now consider a
shortest path from the vertex v; to a vertex of I — {v;} in G. Let v} denote
the vertex adjacent with v; on this path. Then v} is at distance at least 7+1
from I — {v;}. We now consider the set I* = (I — {v;}) U {v}}. Necessarily,
I* is an (r,s)-set of G with |[I*| = m. Now let j be the largest integer
for which ¢; < &;, and consider the value & = d(vi, I* — {vi}) for each k
with 1 < k < j. Necessarily, £; < ¢ for all k (1 < k < j). Furthermore,
dwf, I* = {v}}) =& -1 < ¢ for all t > j. It follows, therefore, that
the distance sequence of I* precedes that of I in dictionary order. This
produces a contradiction. Hence d{v;, w;) = s —r for all ¢, which completes
the proof of the theorem.

As a corollary of Theorem 1, we have the following result.

Corollary 1. For s > 2 an integer, if G is a connected graph of order
P > s, then i1 4(G) < p/s.

Proof: Let ¢ ,(G) = k. Among all the (1,s)-sets of G with cardinality
equal to k, let I be one which comes first in dictionary order. Using the
notation introduced in the proof of Theorem 1 (with r = 1), let Q; denote
a v; — w; path of length d(v;,w;) in G for each i with 1 < ¢ < k. Then
the collection {Q1,Q2,...,Qx} of paths is pairwise disjoint, for otherwise,
for some ¢ with 1 < i < k, the vertex w; is within distance s from at least
two vertices of I. Thus, UL ,V(Q;) C V(G). Hence, since each path Q;
contains at least s vertices, we have ks < p; or, equivalently k < p/s.

That the bound given in Corollary 1 is in a sense best possible may be
seen by considering the connected graph G constructed as follows: for k
and m very large integers, let G be obtained from a complete graph on m
vertices by attaching to each of its vertices & disjoint paths of length s.
(The graph G is shown in Figure 3.) Then i),(G) = (m — 1)k +1 and
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Figure 3. The graph G

3. Bounds on i) 4(T) for a tree T

In this section we investigate good upper bounds on % ,(T') for a tree. The
following result was established in [10].

Theorem B. If T is a tree of order p > 2, then (T) < p/2.

That the bound given in Theorem B is sharp, may be seen by considering
the tree T obtained from the union of two (disjoint) copies of K(1,k) by
joining their centers with an edge as shown in Figure 4. Then i(T) = k+1
and p = 2(k + 1), so i(T) = p/2.

Since 3;,,(G) = i(G) for any graph G, Theorem B gives a good upper
bound on %,,;(T’) for a tree T. Hence in what follows, we investigate good
upper bounds on iy 4,(T') for a tree T and s > 2. If u and v are two adjacent
vertices of T', then we will denote the two components of T'— uv by T,, and
T, where v is in Ty, and v is in T5,.

Theorem 2. IfT is a tree of order p > 3, then i, 5(T) < p/3.

Proof: We proceed by induction on the order p of a tree T'. If p = 3, then
T =t P3 and 1,2(T) = p/3. Let p > 3. Assume for every tree T" of order m,
where 3 < m < p, that i; 5(T’) < m/3, and consider a tree T of order p+1.
Among all the (1, 2)-sets of T of minimum cardinality, let I be one which
has the smallest distance sequence in dictionary order. For ¢ = 0,1, 2, let
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Figure 4. A tree T for which i(T") = p(T)/2

J;i be the set of all vertices of T at distance i from I (in particular, we have
Jo = I). We consider two possibilities.

Case 1.
For ¢ = 1 or 2, J; contains two adjacent vertices u and v. If T, (or T3,)
is of order 2, then the vertex of T,,, distinct from u, belongs to I and is
an end-vertex of T. However replacing this vertex of I with the vertex u
produces a minimum (1, 2)-set whose distance sequence precedes that of I
in dictionary order, contrary to assumption. Hence T, and T, are trees with
3<p(Ty) <pand 3<p(Ty) <p. Let I, =INV(T,) and I, = INV(T,).
We show that I, and I, are minimum (1,2)-sets of T, and T, re-
spectively. If this is not the case, then we may assume, without loss of
generality, that i; 5(T,,) < |I,|. Let I be a minimum (1,2)-set of Ty.
Then, since d(u, I,) > 2, it follows that I/ U I, is a (1,2)-set of T with
i, U 1,| < |I| + |Iy] = [I| = 1,2(T), which is impossible. We deduce,
therefore, that I,, and I, are minimum (1,2)-sets of T, and T, respec-
tively. Thus, by the inductive hypothesis, |I| = 41 2(T,) < p(Ty)/3 and
[To| = 41,2(Ty) < p(T,)/3. Hence

i1,2(T) = | L]+ || < p(Tu)/3+ p(To)/3 = p/3.

Case 2. :

Neither J; nor Js contains two adjacent vertices. That is to say, each set
J; is independent. Let R be the set of all vertices of J; that are adjacent
with some vertex of J>, and let S = J; — R. Further, let S; be the set of
all vertices of S that are at distance 2 from R, and let S = S — S;.

We show that every vertex of Ss is at distance 2 from S;. If this is not
the case, then there is a vertex v of S> at distance 4 from S;. Let v = vy,
v1, V2, U3, ¥4 be a shortest path from v to S;. Then v, vs € Jo, v2 € Sa
and v4 € S;. Now let J§ = (Jo — (N(v2) N Jp)) U {v2}. Then J§ is an
independent set. Moreover, every vertex is within distance 2 from Jj. To
see this, observe that if there were a vertex at distance 3 from Jj, then
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it must be a vertex from Jo. This means, however, that v would be at
distance 2 from R, which contradicts the fact that v, € S;. Hence Jj is
a (1,2)-set of T. But the cardinality of Jj is less than that of Jo, which
produces a contradiction. We deduce, therefore, that every vertex of Sp
is at distance 2 from S;. This means that there is no vertex of Jy that is
adjacent only to vertices of Sz, for if there were such a vertex, then it may
be removed from J to produce a (1, 2)-set of T of smaller cardinality than
Jo. Hence every vertex of Jp is adjacent with some vertex of R or S}.

It follows from the above observations that S; U J; is a (1,2)-set of T,
as is the set RU S2. Hence i1 2(T) = |Jo| < |S1| + |J2| and i3 2(T) =
|Jo| < |R| + |S2|. Thus 2|Jo| < || + |J2| = p — |Jol; or, equivalently,
11,2(T") = |Jo| < p/3. This completes the proof of the theorem.

That the bound given in Theorem 2 is sharp, may be seen by considering
a tree T,, of order p obtained from a path on k vertices by attaching a
path of length s to each vertex of the path, as shown in Figure 5. Then
$1,:(Ts) =k=p/(s+1).

K vertices

| &

- sveruces

[N}

.—ooo-——o—o-l
o —— o000 —0—0
J

1

Figure 5. A tree T, with i(T) =p(T)/(s + 1)

Theorem 3. If T is a tree of order p > 4, then i, 3(T) < p/4.

Proof: We proceed by induction on the order p of a tree T'. If p = 4, then
a central vertex of T is within distance 2 from every vertex of T and so
i1,3(T') = p/4. Let p > 4. Assume that for every tree T” of order m, where
4 < m < p, that 4, 3(T") < m/4, and consider a tree T of order p + 1.
Among all the (1, 3)-sets of T' of minimum cardinality, let I be one which
has the smallest distance sequence in dictionary order. For i =0, 1, 2, 3,
let J; be the set of all vertices of T at distance i from I (in particular, we
have Jo = I). We consider two possibilities.

Case 1.
Some J; contains two adjacent vertices u and ». If Ty, (or T,) is of order
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less than 4, then replacing the vertex of I that is in 7, with the vertex
u produces a minimum (1, 3)-set of T whose distance sequence precedes
that of I in dictionary order, contrary to assumption. Hence T, and T,
are trees with 4 < p(T,) < p and 4 < p(T,,) < p. Let I, = INV(T,) and
I, = INV(T,). Then, since d(u,I,) > 2 and d(v,1,) > 2, it is not too
difficult to see that I, and I, must be minimum (1, 3)-sets of T}, and T,
respectively. Thus, by the inductive hypothesis, |Iy| = i1 3(Tyu) < p(Tu)/4
and |ly]| = 41,3(Ty) < p(Tv)/4. Hence 413(T) = |L| + |I,| < p/4.

Case 2.

For every two adjacent vertices of T, one of them belongs to J; and the other
to J;4y for some i € {0,1,2}. That is to say, each set J; is independent.
We now consider two further cases.

Case 2.1.

Some vertex v of J; is adjacent with more than one vertex of J;_; for some
i € {2,3}. Let u be a vertex of J;—; that is adjacent with v. By the way in
which the set I is chosen, it follows that each of T,, and T,, is of order at least
4. Hence T, and T, are trees with 4 < p(T,) < p and 4 < p(T,,) < p. Let
I, = INV(T,) and I, = INV(T,). Now since v is adjacent with a vertex of
J;_1, distinct from u, and since T is a tree, it follows that neither I,, nor I,
is empty. Thus, since d(u, I,) > 3 and d(», I,,) > 2, it is not difficult to see
that I, and must be minimum (1, 3)-sets of T;, and T,,, respectively. Thus,
by the inductive hypothesis, i1 3(T') = |Iu|+|L| < p(Tu)/4+p(T)/4 = p/4.
Case 2.2.

For ¢ = 2 and 3, every vertex of J; is adjacent with exactly one vertex of
Ji=1. (Note that each vertex of J3 is thus an end-vertex.)

Let Ay = JiNN(Jy), that is the set of all vertices in J; that are adjacent
with some vertex of Jp, and let By = J; — A;. Then every vertex of B is
at distance at least 2 from A;. We will show that this distance is always
exactly 2. To this end, let S be the set of vertices of B; whose distance
from A; is greater than 2, and suppose S # 9. Then it is not difficult to see
that every vertex of S is a distance 2 from B; — S, and therefore at distance
3 from N(A;)NJo. This means that N(A;)NJp is a (1, 3)-set of cardinality
less than that of I, which is a contradiction. We deduce therefore that
every vertex of B is a distance 2 from A;. Hence, J; is a (1, 3)-set of T.

Now let By = Jo N N(S) and let Ap = Jp — Bp. Further, let A; =
J2 N N(Js) and By = Jo — Ap. Also, let A = A4; N N(A,) and AP =
(A1 — AADYN N(Bo). Now let C; = AV U AP, We show that every vertex
of A; —C) is at distance 2 or 4 from C;. Supposing this not to be the case,
we may assume that ug is a vertex of A; at distance 6 from C; and that
ug, U3, U2, U3, U, Us, Ug iS a shortest path from up to C;. Then u;, us,
ug € Ao, ug, u4 € A; —C) and ug € Cy. Let I* = (I — (N(uz) NI))U {uz}.
Then it is not difficult to check that I* is a (1, 3)-set of T of cardinality less
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than that of I, which is a contradiction. Therefore every vertex of A; — C;

is at distance 2 or 4 from C;. Let A(ls) and A(14) be the sets of those vertices
in A; — C) at distance 2 and 4, respectively, from C;. Note that every

vertex of A(14) is at distance 2 from A(ls), and that the four sets A(li) form a
partition of A;.

By choice of A;, every vertex in By is an end vertex. Next, for i =1, 2,
3,4,let Bg) =BsNN (Ag‘)). Figure 6 shows the decomposition of T into
these sets at the different levels.

It follows from the above observations that each of A(ll) U A?’ U A(14), Jo

and Ags) U B; U Js is a (1,3)-set of T. Hence, the cardinality of each of
these sets is at least |I|. Therefore, since I = Jp,

31Jo| < |AD|+ 14D + 14D + 140 + 1B1] + | Jo| + 15|
= ||+ || + |75
=p = |Jol-

Equivalently, i1,3(T") < p/4, which completes the proof of the theorem.

Jo:

J:

J,:

(&)
Figure 6. The structure of the tree T in Case 2.2

We close with the following:

Conjecture. For all integers s > 1, if T is a tree of order p > s, then
i1,6(T) <p/(s+1).
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