Pencil of Lines on the 2-D Torus
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ABSTRACT. We consider the problem of finding the intersec-
tion points of a pencil of lines with rational slope on the 2-
dimensional torus. We show that the intersection points be-
longing to all the lines in the pencil form a finite cyclic group.
We also exhibit a generator for this group in terms of the coef-
ficients of the lines. The need for the results presented in this

. paper arose in dealing with a discrete limited angle model for
computerized tomography (Cf. [3], [5]).

1. Preliminary Notations and Definitions

Given (z1,1), (z2,%2) € R?, we denote by E the equivalence relation on
R? defined by (z1,11)E(z2,y2) if and only if z2 — z1, y2 — 91 € Z. The
equivalence class of (z,y) is denoted by [z,y]. The torus T is defined as
the set of all equivalence classes under E, i.e. T = R?/E or equivalently,
T = R?/Z2. Therefore, (T,+) is an abelian group, where “+” is defined
by [z1,31] + [z2,%2] := [z1 + %2, 11 + 32]. Notice that every equivalence
class has a unique representative in the square [0,1) x [0,1), which makes
it possible to represent equivalence classes by points in the unit square.

Given (z,y) € R?, we denote by ([z,]) the subgroup of (T, +) generated
by [z,}, ie., {[z,y]) = {n[z,y] | n € Z}, where n[z,y] := [nz,ny]. As
usual, the order of an element [z,y] € T is the least positive integer n such
that nfz,y] = [0,0]. Furthermore, if n,m € N, (r,m) = 1, and the order of
[z,] is n, then the order of m[z,y] is n, and (m[z,3]) = ([z,3]). In what
follows we shall make use of these results without further reference.

A line on the torus is the subset defined by L = {[z,y] € T | [z, 3] N
L # 0}, where L denotes a line on the plane. We define the slope of
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L as that of L. In what follows we shall consider only lines with ra-
tional slope (it is well known that a line with irrational slope is dense
on T). Let L, denote a line on the plane passing through the origin,
with rational slope q. From the given definitions it is easy to verify,
for ¢ € Q, that [z,y] € L, if and only if y + s = g(z + r), for some
7,8 € Z. Moreover, notice that if [z,y] € L,, N'L,,, where gq;,92 € Q and
g1 # qo, then (z,y) satisfies a system of two linear equations in two inde-
terminates, with rational coefficients. Being unique, the solution of such
system is obviously rational. Therefore, z,y € Q.

2. Main Results

In order to state formally our main interest, let S C Q, where |S| > 2. As
usual, @ denotes the set of rational numbers, and | X| denotes the cardinal-
ity of the set X.

Problem: Find the points in J =({L, | g € S}.

The information on J will be retrieved by means of some results on finite
abelian groups. The reader is referred to Coxeter [1, pp.103-105] and (2],
and Schoenberg [6], for applications of similar techniques to the study of
certain maps on the torus.

Lemma 1. Let G be a finite abelian group and let |G| = p}' ...pg* (p:
prime, p; # pj, e; > 1). Then for each p;, 1 < i < k, there is a subgroup
Gy, C G such that |Gp,| = p{*. Furthermore, if Gy, has a unique subgroup
of order p;, then Gy, is cyclic. If each Gy, is cyclic, 1 < i < k, then G is
cyclic.

This is a very well known result in group theory and the reader is referred
to Suzuki [7] for its proof.

In what follows we shall assume, without any loss in generality, that
(a,b) =1 forall§ € S. Lines of slopes 0 or oo will be considered separately.

The following theorem is one of the central results in this paper.

Theorem 1. (J,+) is a finite cyclic group.

Proof: (J is finite.) Clearly [0,0] € J, and if [z1,3], [z2,%2] € J, then
[x1,91]) + [z2,%2] € J. Therefore J is a subgroup of (T,+). On the other
hand, a line L, with rational slope ¢ = § must contain the point (d,n)
having integer coordinates. This fact implies that L, contains (0,0) and
(d, n) which are equivalent under E, and it is clear that if a line on the plane
contains two different points equivalent under E, then the representation
of the line on the torus will consist of finitely many parallel segments.
Therefore, the intersection of any two lines on the torus with different
rational slopes must be a finite set, and a-fortiori J must be finite.
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(J is cyclic.) 1f |J| = 1, then J = {[0,0]} and the proof is concluded.
Assume |J| > 1 and let p | |J|, p prime. By Cauchy’s theorem, there exists
[z,y] € J of order p. Let us denote (z,y) = (2, £a), where 1i,8; € Z and
(rs,8) =1, for i = 1,2. Then [0,0] = p[z,y] = [‘1'512, T22] implies 52 € Z for
i = 1,2, which in turn yields s;, s, € {1,p}, not both of them being equal
to 1. Therefore, every element in J of order p is of one of the following

types
EORE oS A

Notice that ([22,0]) = (r; [3,0]) = ([%, 0}), since (ry,p) = 1. Analogously,
(0, 22]) = ([0, 2]) and ([, 2]) = ({3, 5]) where (,p) = 1. On the other
hand, if [%,0] € J, then for each § € S, there are r,s € Z such that
r= %(’% + s) which in turn yields £ = br — as. Thus p | a. Analogously, if
[0, %] € J, then p | b for each § € S. Therefore, the subgroups ([%, 0]) and
([0, 3]) can not coexist in J. Next, assume that u = [}, %] and v = 3, 2]
belong to J with (u) # (v). Then rou — r1v and u — v are of the first and

second type of elements given in (1). The fact that both belong to J leads
to contradiction.

In general, if J contains any two of the three possible types of elements
described in (1), then by performing some elementary arithmetic operations
between them it is easy to see that J must contain the three of them, which
obviously leads to a contradiction. This shows that J contains a unique
subgroup of order p for each prime p | |J|. From Lemma 1 if follows that J
is cyclic, which proves the theorem.

In what follows we shall describe a generator for J in term of the elements
of S.

Let [%, 7] denote a generator for J, i.e.,

J=<[%,%]>, with (a, 8) =1 and (v,6) = 1. (2)

Then |J| = l.c.m.(B, §). Indeed, let u = [3,0] and u = [0, 7]. Clearly, u
and v have orders 3 and 6, respectively. Therefore, |J| = order (v +v) =

0%5 = Le.m. (B, §).

Lemma 2. Let 8,6 be as in (2) and let ' = % and § = %, where
u = g.c.d.{B, 6}. Then the following two assertions hold.

a) p'=gcd{c| €S}
b) ¢ =g.cd{d| § e S}.
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Proof: First, notice that [37,0] € J and [0, %] € J. Indeed, (8'7,6) =1
(Ct. (2).) implies the exxstence of r, s € Z such that rﬂ'—y + 88’ = 1, which
we rewrite as r%# + 8= . Hence, A5, 31 = [0,r5 BX]=[0,}] € J. The
proof for [7317,0] €Jis analogous ((#,8'a)=1) and w111 be omitted.

Our next step is to prove that [— 0) e Jifand only if n | B =

g.c.d.{c | § € S. For, notice that [— 0] € J if and only if [- 0] € Lea
forall § € S which, by lemma 1, is equlvalent to the existence of mtegers
7,8 such that s = ,' L | r). This equality is equivalent to ds — cr = ;
Finally, under the assumption that (c,d) = 1, this last equality holds if
and only if | ¢, which is true for all integers ¢ for which there ex-
ists an integer d such that § € S. By taking 7 = §’ we conclude that
B’ | B1. On the other hand, given any [z,0] € J there exists an integer
g such that (z,0] = ¢[§, ] = [%5, %]. Therefore { € Z, ie., we can
write ¢ = né = né'y, for some n € Z By replacing ¢ above we obtain
[z,0] = ["‘s 2,0] = né'alz,0), e, [z,0] € ([5,0)).

In particular, for z = g we obtain [5, 0] € ([4,0]), which implies that
B | B’ and therefore ) = .

The proof of part b) follows in a similar form.

Notice that the proof of Lemma 2 implies the following results.

() o
()il o

Moreover, the intercepts of —Ea,,, with the “z-axis” have coordinates [%, 0],
for 0 < i < |a| — 1. Analogously, the intercepts of L,/ with the “y-axis”
have coordinates [0, §], for 0 < i < [|b] — 1.

We have already characterized 8’ and &’ in terms of the elements of S.
Our next result furnishes a similar characterization for g, which will allow
us to give an explicit expression of a generator for J.

Theorem 2. Let § € S and denote a' = 7 b = gb-, where 8’ and §'
were introduced in Lemma 2. Let pu, = g.c.d{a'd —b'c’ | §, § € S}. Then
p=p and for any § € S, J = (3, #))-

Proof: Let  be an arbitrary but fixed element of S. Then for each § € S,
there is n € Z such that o'd’ —b'c’ = ny,. Since (¢,d) =1, thencs—rd=1
for somer, s € Z. Therefore, a’d'—b'¢ = n(cs—rd)p1 = (cs’—r'd)p1, where
8’ = ns and r’' = nr. By replacing d = d'§’ and ¢ = ¢#’ in the right hand
side we obtain, after reordering some terms, d’(a’ +r'6'p1) = (b’ +8'8' 1)
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which is equivalent to d(z— 5, - +r)= o 72— 5, + 5"). These equalities in turn

imply that g = [,e'm : 6,‘”] e J. It is easy to verify that (b’, 8'u1) =1 and
(a',68'u1) = 1. Therefore, o(g) = #'6'w1 and since o(g) | |J| = F'6'p (Cf
comments following (2)), we have that p | .

On the other hand, g = [, ] € J implies [§, 7] € Lq,p, forany $ € S,
which in turn yields } + 7 = (5 + s;) for some 1;,8; € Z. Now, let us
consider the system of two such equations obtained for, say, i = 1,2. By
taking the difference of the two equations and by clearing denomlnators we
obtain ﬂblbg(rl —1ry) = (a1by — biaz)a + ,B(a1b231 — agby83), which after
division by 3’6’ yields pb by (ry —ra) = (@}l —blah)a+ p(aibys, —agbss).
Therefore u | ajby — bjaj and hence u | p1, which completes the proof.

Figure 1. Figure 2.

Example 1: In order t,o Iocate the intersection points of the two lines on
the torus with slopes 1 3 and 3 2 passing through the origin (Cf. Figure 1).
We determine #' = g.c.d. {1,3} =1, § =g.cd. {3,4} =1 and = g.c.d.
mu)—um}—s TMWhm.]_ﬂy5D~{m0)@%)(y5 £,2),
5' 5)

Remark: The intersections of all the lines in a pencil passing through an
arbitrary point [z,y] in the torus are given by the expression [z,y] + J =
[+ + ([3’-’,’3, %]) (Cf. Theorem 2.)

A particular case of interest in tomography is when the slopes are mul-
tiples of a given ratio. An explicit expression is given in the following
corollary which extends the main result in [4], and whose proof follows
from theorem 2.

Corollary. Let ,h€ Z,0< g< h begiven,andlet S={%, %, ..., %

be the slopes of a pencil of lines on the torus passing through [r, s], satisfying
c;=gq (mod h), fori=1,...,k. ThenJ = {[r+h,s+qdh+-?-]|0<z<h
0<j<d}
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Notice that the vertical distance between two consecutive segments
(branches) of a line on the torus with slope §, (c d)=1,is % Hence,
given an intersection point of two lines with slopes <, 4, (¢;,d) = 1, there
will be other d — 1 equidistant intersection points having the same abscissa
as the given point. This fact explains the term -3 in the ordinate of the
points of J.

Example 2: The intersections of the pencil of lines given in figure 2
are more difficult to tackle since it includes also the intersections corre-
sponding to sub-pencils. Nevertheless, it is not difficult to prove from that
the intersection points of a pen of lines through (r, 8) with integer slopes
m,0 < m < p, are given by the expression [r + £, s + g#], with 0 < 4,
g<h<pand (i,h)=1.

Moreover, each of these points belongs to the lines whose slopes m sat-

isfy m = ¢ (mod k), the number of solutions of these congruences being
==+ 1.
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