Intersection-representation by connected
subgraphs of some n-cyclomatic graph

Erich Prisner

Abstract. A hypergraph H is called connected over a graph G with
the same vertex set as H if every hyperedge of H induces a connected
subgraph in G. A graph F is representable in the graph G if there is
some hypergraph H which is connected over G and has F as its inter-
section graph. Generalizing the well-known problem of representability
in forests, the following problems are investigated: Which hypergraphs
are connected over some n-cyclomatic graph, and which graphs are rep-
resentable in some n-cyclomatic graph, for any fixed integer n? Several
notions developed in the theory of subtree hypergraphs and chordal
graphs (i.e. in the case n = 0) yield necessary or sufficient conditions,
and in certain special cases even characterizations.

1 Introduction

A hypergraph H = (V,Y) consists of a vertezr set V and a family Y =
(yi/i € I) of nonempty subsets of V — the so - called hyperedges of H —
such that every vertex b € V lies in some hyperedge. The hypergraph is
finite if both V and Y are finite.

A graph G = (V, E) consists, as usual, of a vertex set V and an edge set
E, which is a subset of the set of all two-element subsets of V. For V' C V,
the induced subgraphk G[V'] of G is the graph with vertex set V' and those
- edges of G whose both endpoints lie in V", .

The cyclomatic number §(G) of the graph G denotes the first modulo
2 Betti cardinal number of the simplicial complex formed by the vertices
and edges of G. If G is finite, it equals |E| — [V|+ ¢(G), where ¢(G) is the
number of connected components of G. A graph is called n-cyclomatic if
its cyclomatic number is at most the natural number n.

All graphs and hypergraphs are finite unless explicitely stated otherwise.

A hypergraph H = (V,(v:i/i € I)) i8 connected over the graph G .=
(V, E) if every hyperedge y; induces a connected subgraph G[y;] in G. The
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intersection graph or representative graph Q(H) of H has I as vertex set,
and two distinct elements i # j of I are adjacent in Q(H) if y; Ny; # 6. If
H is connected over G, then Q(H) is called representable in the graph G,
and H is a representation of Q(H) in G.

The following problems are investigated in this paper: Given any integer
n, which hypergraphs are connected over some n-cyclomatic graph, and
which graphs are representable in some n-cyclomatic graph? Of course,
the representability in an n-cyclomatic graph implies representability in
higher-cyclomatic graphs, thus it suffices to determine the smallest such
number.

The case n = 0, representability in forests, has been studied extensively.
In the early seventies, Buneman [6], Gavril [11], and Walter [24] indepen-
dently showed that a (finite!) graph is representable in some forest if and
only if it is chordalor triangulated, that is, if the only induced subcycles are
triangles. These chordal graphs had been previously characterized by Dirac
[7], Lekkerkerker and Boland [17], and Rose [21], and they obey many nice
properties. To mention only two, they are perfect (see [3,14]), and most of
the problems which are in general N P-complete can be solved in polyno-
mial time for chordal graphs. Furthermore, the famous interval graphs are
chordal.

The other stream of research in the representability in forests arose in
statistics and in the computer sciences (see [16,2] for details). Hypergraphs
which are connected over some forest are called subtree hypergraphs and
their duals are called acyclic hypergraphs. Many characterizations of acyclic
hypergraphs (and thus of subtree hypergraphs also) are known, and again,
these hypergraphs obey many desirable properties. But indeed, there is a
very strong connecteion between acyclic hypergraphs and chordal graphs,
see [9,10]. Almost every result about chordal graphs has its counterpart in
the theory of acyclic hypergraphs, and conversely.

In the case n = 1, a proper subclass of the class in question, the class
of circular-arc graphs (i.e. graphs representa.ble in some cycle) has been
investigated, see [22,12].

This paper is arranged as follows: In section 2 we give several sufficient
conditions for representability in n-cyclomatic graphs. Most of them are
corollaries of a generalization of a result in [1]. In section 3 three necessary
conditions for a hypergraph to be connected over some n-cyclomatic graph
are given. Such necessary hypergraph conditions do not automatically
imply necessary conditions for representability of graphs, but in these three
special cases, they do. In section 4 we show that one of these necessary
conditions is also sufficient for special classes of hypergraphs or graphs.
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. Let us close this section by giving some standard notations and defi-
nitions: The numbers of vertices and edges of a graph are denoted by ag
and a; respectively. The dual H* of a hypergraph H = (V,(yi/i € I))
is the hypergraph (I,(v*/v € V)), where v* is the set of those indices
i for which y; contains v in H. For V' C V, the subhypergraph H[V'] is
(V',(wnV'/i € J)), where J denotes the set of all indices i with y;NV’ # 0.
Every subfamily Y’ = (y; /i € I) of the hyperedge family generates a par-
tial hypergraph H(Y') of H, which is defined as H*[I']. A transversalof the
hypergraph H is a subset V' of V' that meets each hyperedge at least once.
The transversal number 7(H) is the cardinality of a smallest transversal.
Cliques in a graph are (vertex sets of ) maximal complete subgraphs. The
cligue hypergraph x(F) of the graph F = (V, E) has V as vertex set, and
all cliques of F' as hyperedges. Of course F' = Q((x(F))*).

2 Sufficient conditions

First we show that for every representation of a graph F in some minimal-
cyclomatic graph G, this G must be triangle-free. For, if G contains a
triangle {a,d,c}, then we can construct a lower-cyclomatic graph G’ in
which F' is representable also: We add a new vertex t and the edges ta, tb, tc,
and delete the edges abd, ac, bc. We make this more precise:

Proposition 2.1 Let the graph F be representable in the graph G, and let
G contain k pairwise edge-disjoint triangles. Then F is representable in
some (B1(G) — k)-cyclomatic graph.

Proof: Let H = (V,(y:/i € I)) be some representation of F in G =
(V,E), and let T1,T3,...,T: be these mentioned triangles. We choose
k new vertices ¢,t3,...,t; and define some modified hypergraph H' :=
(Vu{ty,ta,...,te},(yi/i € I)), where every y} is the union of y; and the
set of those vertices t, for which at least two vertices of T, lie in y;. Any
two new hyperedges y/ and y} (i # j) intersect if the old ones y;,y; had
nonempty intersection. But conversely, if y; Ny} # 0, then y; and y; have
nonempty intersection, or y} and y; contain some common member of the
form t,. In this second case, agam, ¥ and y; intersect in some vertex of
Tp. So we have shown that F is the representative graph of H' also.

Next we construct a new graph G’ from G by deleting all 3k edges of the
triangles T}, T3, ..., T:, adding the k new vertices ¢y,¢2,...,%;, and joining
every ¢, by an edge with each vertex of the corresponding triangle T},. The
graph G’ has as many edges as GG, and the same number of connected
components, but it has k more vertices. Thus G’ is (8 (G) — k)-cyclomatic.
It is easily seen that H’ is connected over G'. a.
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Acharya and Las Vergnas introduced in [1] the hypergraph cyclomatic
number. This has nothing to do with the first Betti numbers, but for finite
graphs it coincides with the graph cyclomatic number 8;. The weighted
underlying graph G, (H) of the hypergraph H = (V,(y1,¥2,-..,Ym)) has
vertex set V' and two distinct vertices b and ¢ are joined whenever they
lie in some common hyperedge of H. The weight w(bc) of this edge is the
number of such common hyperedges. Let T' be a maximal spanning tree
of G (H) — if this weighted graph is not connected, it can be made so by
adding some edges of weight 0. The cyclomatic number u(H*) of the dual
of H is defined by

W(H) = 3 il = 1) = w(T).

i=1

Acharya and Las Vergnas [1] and Lewin [19] showed that a hypergraph
is a subtree hypergraph if and only if u(H*) = 0. One direction can be
generalized:

Theorem 2.2 Every hypergraph H is connected over some p(H*)-cyclo-
matic graph.

Proof: Let H = (V,(y1,¥2,---,¥m)), and let T be some maximum
spanning tree of the weighted underlying graph G,,(H) of H. Let, for every
1 € i £ m, ¢; denote the number of connected components of the forest
T(y:). We construct a finite sequence T'=Go C Gy C ... C G of graphs,
all with V' as vertex set, and all with the property that G;[y;] is connected
for all 1 < i < j < m. This can be done by adding at most ¢; ~ 1 new edges
in step i to transform G;_, into G;. Thus Gm is ¥ =,(q — 1)-cyclomatic,
and H is connected over G,,. Of course

D (@i =D =) (sl - ea(Tlw]) - 1)

=1 =1
and m
w(T) = Y en(Tlwl)-
i=1

From these two equations there follows that Gy, is u(H*)-cyclomatic. O.

The result is sharp. For every positive integer n there is a hypergraph
H, — namely the dual of an arbitrary n-cyclomatic graph F,, — which is
not connected over any (n—1)-cyclomatic graph. But y(H;) = p1(Fn) = n,
see [1].

On the other hand, u(H*) is not useful for necessary conditions. Look
at the hypergraph Hp, whose vertex set contains the n vertices of the
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n-cycle C,, and whose hyperedges are formed by (the vertex sets of) all
- m-vertex subpaths of C,, where m < n. By construction, each Hp,,, is
connected over the 1-cyclomatic Cy. But p(Hy, o = #(Hm,n) = n(m—1)—
(m-1)(n=-1)=m-1.

In [20] two polynomial heuristic algorithms are presented, that construct
for any input hypergraph H some low-cyclomatic graph G over which H is
connected. For one of these algorithms the resulting graph is even u(H*)-
cyclomatic.

Theorem 2.2 can be improved by defining u/(H*) as

W(H?) =Y (lu| = 1) = maz{w(J) - By(7)}

i=1

where J runs over all connected subgraphé of Gy(J) without cycles of
length | < r(H) := maz{|y;|/1 < i < m}. As in the proof of Theorem 2.2
one can show:

Proposition 2.3 Every hyperymph H is connected over some u'(H"*)-
cyclomatic graph. a

Now we apply Theorem 2.2 to obtain sufficient conditions for a graph
to be representable in some n-cyclomatic graph.

Proposition 2.4 Let A be some set of triangles of the graph F = (Y, EF),
and let Eq denote the set of those edges of F that lie in no member of A.
Then F is representable in some (2|A|+|Eo|—|Y |+ q(F))-cyclomatic graph.

: Proof: Consider the dual H of the hypergraph H* = (Y, EqUA). F is

the representative graph of H = (Eo U A, {y°/y € Y}), where y° denotes
the set of those triangles of A or edges of Ey that contain the vertex y of F.
Each maximal spanning tree T' of G (H) has |A|+ | Ey| vertices and weight
at least |A| + |Eo| — ¢(F'), where ¢(F’) denotes the number of connected
components of F, or equivalently, of H. Then

s(H*) < Y (18° - 1) = (|1A] + | Eo| - g(F)).
y€Y
Since
D= Y Itl=3lA1+2|Ed,
yeY tEAVE, :

H is connected over some (2|A| + |Eo| — [Y'| + g(F)) -cyclomatic graph G;
it is a representation of F' in G. a.

This implies a result, that looks at the first sight rather similiar than
Proposition 2.1:
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Corollary 2.5 Every graph F with k pairwise edge-disjoint triangles is
representable in some (fy(F) — k)-cyclomatic graph.

Proof: Let A be the set of this pairwise edge-disjoint triangles. Then
|Eo| = a1 (F) — 3k. Now

2|A| + | Eol = |Y| + ¢(F) = 2k + a1(F) = 3k — [Y] + o(F) = o(F) - k,
and we apply Proposition 2.4. a.

3 Necessary conditions

In [20] various necessary conditions for hypergraphs connected over some
n-cyclomatic graph were given. In the present paper we mention only
those that can be used to obtain necessary conditions for representability
of graphs.

The first approach generalizes definitions and results of Rose [21] for
graphs, and Graham [13] and Beeri et al. [2] for hypergraphs. Assume
that the hypergraph H = (V,(y1,¥2,.-.,¥m)) i8 given. In the following
H; denotes the partial hypergraph of H generated by those hyperedges h;
with j > { and nonempty intersection with y;. The ordering y1,¥2,...,¥m
of the hyperedges is called an n-hypergraph elimination ordering (n-heo)
provided all H;,1 < i < m have transversals of cardinalities at most n.

The dual version of some results of Graham [13] and Beeri et al. [2]
is: A hypergraph is a subtree hypergraph if and only if it has some 1-heo.
One direction can be generalized: ‘

Theorem 3.1 Every hypergraph which is connected over some 2n-cycloma-
tic graph for an integer n, has some (n + 1)-heo.

Proof: The proof is by induction on n. The case n = 0 was mentioned
above. Let now for a fixed integer n > 0 the statement be true for all
smaller numbers, and let H = (V,Y) be connected over the 2n-cyclomatic
graph G. W.l.o.g. we may assume G connected.

Case 1: The cycles of G are pairwise vertex-disjoint. Let J be some
spanning tree of the block graph (that is the intersection graph of the set
of all blocks) of G, and let the blocks of G (the vertices of J) be numbered
as By, B, ..., B; such that J[{By, By, ...,B:}] is connected for every 0 <
i < t. For a hyperedge y of H , the integer 5(y) denotes the smallest index
i for which y contains vertices of B;, and A(y) is defined as the set of
these vertices — the nonempty intersection V(B,,(,,,)n y. It is possible to
order the hyperedges of H as yy,¥,...,Ym 80 that b(y;) is nonincreasing
for increasing {, and, furthermore, A(y;) is not a proper subset of A(y:)
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for k < j and b(yz) = b(y;). Since every block of G must be a cycle or
an edge, every A(y;) induces some (possibly trivial) path in G. We take
the end vertices of this path as the set T; of cardinality 1 or 2. It is easy
to see that y1,¥2,...,Ym, together with these sets T}, form a 2-heo of H.
Case £: We can find a vertex z such that G' := G — z is 2(n — 1)-
cyclomatic. Let Y’ be the family of those hyperedges of H that do not
contain z. Then H' := H(Y") is connected over G'. By the induction hy-
pothesis, H’ has some n-heo y,y2,...,¥: with transversals 7},T3,...,T;.
We order the hyperedges containing z arbitrarily as y¢41,...,¥m. Then iU
{z}, T2u{z},...,T:U{z},{z},..., {z} are transversals of Hy,Ha,..., Hm,
whence y1,¥3,...,Ym forms an (n + 1)-heo of H. a.

An n-graph elimination ordering (n-geo) of a graph F is an ordering
¥1,¥2,--., ¥ of its vertices which is an n-heo of the hypergraph (x(F))°.
In other words, the complements of all subgraphs F; induced by y; and its
higher indexed neighbors are at most n-chromatic. Rose has shown in [13]
that a graph is chordal if and only if it has an 1-geo. From Theorem 3.1
there follows:

Corollary 3.2 If a graph is representable in some 2n-cyclomatic graph,
then it has an (n + 1)-geo, for every positive integer n.

Proof: Let H = (V,Y) be a representation of the graph F = (Y, Ef)
in the 2n-cyclomatic graph G = (V,Eg). By 3.1, H has an (n + 1)-heo
Y1,¥2,.-.,Ym. The graphs F; mentioned in the definition of the n-geo are
the tepresenta.txve graphs of the hypergraphs H. Thus, for every transver-

sal T; = {z},22,...,25) of H; the set {zi ,23*,...,zF*} is a vertex cover
“of F; by complete subgraphs (where z!* denotes the set of those hyperedges
containing zf). a.

The following two examples show that 3.1 and 3.2 are sharp for n < 3.
Consider first the graph G = (V, E) which is obtained from the complete
graph K4 by substituting every edge by a 4-vertex path. Let Y dencte the
set of all connected induced subgraphs of G which contain exactly one ”old”
vertex, and where this vertex has also degree 3 in this subgraph. Then the
hypergraph H = (V,Y), which is connected over the 3-cyclomatic graph G
by construction, has no 2-heo. Moreover the graph Q(H) has no 2-geo.

For the second example, let G = (V, E) be the graph obtained from the
cube graph P; x P, x P, by replacing every edge by a 4-vertex path. Let
Y be the set of all connected, induced subgraphs of G which have exactly
2 ”old” vertices, and where both have also degree 3 in this subgraph. The
hypergraph H = (V,Y) is connected over the 5-cyclomatic graph G, but it
can be shown that it has no 3—heo The representative graph Q(H) has no
3-geo either.
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On the other hand, 3.1 and 3.2 can not be converted. The hypergraph
H, of Figure 1 has a 2-heo, but it is not connected over any (2n + 1)-
cyclomatic graph. see Theorem 3.6. Its representative graph Q(H) = P; x
Pan has a 2-geo, but it is not representable in any (2n + 1)-cyclomatic
graph, see Corollary 3.7.

Figure 1
A hypergraph H, with 7 4 5n vertices and 6 4 3n hyperedges

Our second approach is inspired by a Theorem of Dirac in [7]. A subset
Y’ of the hyperedge set of a hypergraph H forms a relative minimal cutset,
if there are hyperedges r and s which are separated by Y’ (that is, if they
lie in different connected components of the partial hypergraph H(Y \Y"}),
and if Y’ is minimal with this property.

Theorem 3.3 Let for a nonnegative integer n the (possibly infinite) hyper-
graph H = (V,Y) be connected over some (possibly infinite) n-cyclomatic
graph. Then 7(H(Y')) < n+1 for every relative minimal cutset Y’ of H.

Proof: Let H be connected over the graph G = (V, E). A hyperedge
y of H covers an edge of G if it contains both vertices of that edge. We
may assume that every edge of G is covered by some hyperedge of H —
otherwise edges could be deleted without loosing connection of H. Let Y’
be some relative minimal cutset of H, minimally separating the hyperedges
r and 5. Let E' denote the set of those edges of G that are not covered by
members of Y\ Y’. Of course H(Y \ Y’} is connected over G(E\ E’), and r
and s are subsets of distinct connected components of this graph. Let E° be
some minimal subset of E’ separating these vertex sets r and s. Surely all
these edges must lie in some common block B of G. As a finite-cyclomatic
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block, B must be finite. Deleting all edges of E°® in B results in a graph M
with the same vertices as B and exactly two connected components. Now

n 2 fi(B) =a1(B) —ao(B)+ 1=

= ay(M) +|E°| - ag(M) + 1 = |E°| - 1 + B (M),

thus |[E°| < n+ 1.

Each hyperedges of Y’ covers at lea.st one edge of E°, otherwise a
proper subfamily of Y’ would separate » from s. Thus every transver-
sal of G{E®) is also a transversal of H{Y"), but, by the computation above,
r(G(E°)) < n+1. o.

We have indeed shown a bit more: The statement of the theorem is also
true if H is connected over some graph whose blocks are all n-cyclomatic.

A subset V' of the vertex set V of a graph F is a relative minimal
cutset if there are two vertices u,v that are separated by V' but by no
proper subset of V’. Y’/ C Y is a relative minimal cutset of a hypergraph
H = (V,Y) if and only if the corresponding vertex set of Q(H) forms a
relative minimal cutset there.

Corollary 3.4 Let the (possibly infinite) graph F = (Y, Ep) be repre-
sentable in some (possibly infinite) n-cyclomatic graph, forn € N. Then
every relative minimal cutset of F' can be covered by at most n+ 1 complete
subgraphs of F.

O 00 O
O 00 O
Figure 2

A hypergraph HS with 2n + 2 vertices and n + 3 hyperedges

The results of 3.3 and 3.4 are sharp: The set of all two-element hyper-
edges of the hypergraph Hj in Figure 2 forms a relative minimal cutset
without m-element transversals for m < n. But Hj is connected over an
n-cyclomatic block, namely over the ‘ladder graph’ P; x P,_;.
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For n > 1, the converses of 3.3 and 3.4 are false: Look at the hypergraph
H, in Figure 1. Every relative minimal cutset of H, or of Q(Hy,) has at
most n + 2 elements, but H, is not connected over any (2n + 1)-cyclomatic
graph, and Q(H,) is not representable in any (2n + 1)-cyclomatic graph.
Only for n = 0, Dirac [7] showed that a graph is representable in some tree
if and only if every relative minimal cutset is complete. But the converse
of 3.3 fails even here: The hypergraphs Hn_1,n,n 2> 3, defined in Section
2, are no subtree hypergraphs, but they have no cutsets.

Thirdly we present some topological approach. To every (possibly in-
finite) hypergraph H we can associate a simplicial complex S(H): The
vertices of S(H) are those of H, and a nonempty finite set of vertices
forms a simplex in S(H) if and only if it is contained in some hyperedge
of H. Two simplicial complexes are called homologically equivalent if the
corresponding homology groups are isomorphic. The following proposition
follows from a Theorem of Dowker in [8]:

Proposition 3.5 For every possibly infinite hypergraph H, S(H) and S(H*)
are homologically equivalent.

Proof: Let H = (V,(%/i € I)). We define a relation R C V' x I by
(v,i) € Riff 2 € yi. According to (8], the two complexes, which are built
by all finite nonempty subsets of V' and I repectively with some common
relative in R, are homologically equivalent. But these two complexes are
indeed S(H) and S(H*). o.

Let now in the sequel §;(S) denote the first modulo 2 Betti cardinal
number of the simplicial complex S.

Theorem 3.6 Let P be a partial hypergraph of the (possibly infinite) hy-
pergraph H, and let n be some cardinal number smaller than $,(S(P)).
Then H is not connecled over any n-cyclomatic graph.

Proof: Let H = (V,(y:/i € I)) be connected over the (possibly infinite)
graph G, and let Vp denote the vertex set of .P. P is connected over the
induced subgraph G[Vp] of G; obviously 8, (G{Vp]) < 51(G). We are going
to show that every l-cycle ) (ar,b:) of S(P) is in S(P) homological to
some l-cycle z of G[Vp]; here and in the following all sums are meant
modulo 2. For every index k of the sum, we can find some hyperedge yi of
P that contains both a; and bi. Since G[Vp][y:] is connected, it contains

an ai — b path a; = dg,d}..,...,dgk) = b;. So

t(k)—-1 o
d:=>" > (&,d, &)
E j=1
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is a 2-chain of S(P), and

z:= Z Z (di,df’x)
k

is an l-chain of G[Vp], and also of S(P). Since the difference of z and
Y (ax,b:) is the boundary of d, z is such an 1-cycle we were looking for.
Therefore H;(S(P)) is a subgroup of Z;(G[Vp]) = H;(G[Vp)). Q.

In section 4 we shall see that this result is sharp. But the converse of
the statement fails in general. Look for example at the hypergraph H3 4,
defined in section 2, which is not a subtree hypergraph. But for every
partial hypergraph P of Hj3 4 we get 1(S(P)) =0.

r B

Figure 3
A graph F not representable in any 1-cyclomatic graph

Corollary 3.7 A possibly infinite graph F is representable in no n-cyclomatic
graph (where n denotes any cardinal number) if F has an induced subgraph
J for which n < p1(S(x(J))).

Proof: Assume F were representable in some n-cyclomatic graph G =
(V, Eg), with n as above. Then there is some representation H = (V,Y) of
J =(Y,E;) in G. Now S(x(J)Yand S(H*) have the same 1-cycle groups.
But since every 2-chain of S(H") is also a 2-chain of S(x(J)), Hi(S(x(J)))
is a subgroup of H;(S(H")). Then n < £1(S(x(J))) < Bi(S(H*)) =
B1(S(H)), a contradiction to Theorem 3.6. o.

This result is again sharp (see 4.4), but for n > 1, again the converse
fails. The graph F of Figure 3 obeys 81(S(x(J))) < 1 for every induced
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subgraph J of F. It is easy to show that for any two induced cycles of length
2 4 of a graph which is representable in an 1-cyclomatic graph, each vertex
of the one must be adjacent to some vertex of the second cycle. But this
does not hold for the graph in Figure 3, thus it is not representable in any
1-cyclomatic graph. Only for finite graphs and n = 0 the converse also
holds (see the characterization of Buneman, Gavril, and Walter [6,11,24]).

4 Characterizations

For a regionally subtree hypergraph H = (V, (y1,¥2,---,¥m)), every subhy-
pergraph H{y;],1 < i < m, is a subtree hypergraph. In this section we shall
determine the smallest integer n for which a regionally subtree hypergraph
is connected over some n-cyclomatic graph. First we need two results. As
an immediate consequence of a theorem of Leray [18, p. 138], we get the
following improvement of Theorem 3.6:

Lemma 4.1 Let the hypergraph H = (V,(v1,¥2,..-,Ym)) be connected
over the graph G. If there are subtrees T1,T3,...,Tn of G with verter
sets y1,ya,. .., Ym respectively, such that all intersections of these trees are
(possibly empty) trees, then S(H*) and|J;~, T; are homologically equivalent

Theorem 4.2 ([5]) A subtree hypergraph H is connected over ezactly all
mazimum spanning trees of the weighted underlying graph G, (H).

Theorem 4.3 Every regionally subtree hypergraph H is connected over
some By (S(H))-cyclomatic graph.

Proof: Assume H = (V,(y1,¥2,..-,¥m)). Let us call a graph G; =
(V, E;) i-admissible, if it obeys:

(i) Gi is the union of the graphs G;[y;],7 < i;

(ii) For every nonempty subset J of {1,2,...,7i—1} the (possibly empty)
set Vy := ;¢  yj induces a tree in G; over which H[V;] is connected.

The edgeless graph G, := (V,0) is 1-admissible. If we have eventually
found some graph G, 41 that is (m + 1)-admissible, then H is connected
over Gp4y and, by (ii) and 4.1, S(H*) and G4 (as a 1-dimensional
simplicial complex) are homologically equivalent. Then Proposmon 3.5
completes the proof.

All what remains to show is how to construct an (i41)-admissible graph
provided l-admissible, ..., i-admissible graphs G, ..., G; respectively are
given.

We call the hyperedg&s Y1,¥2,+ -+, Yi-1 the old hyperedges, and the oth-
ers the new ones. ‘
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Recall that for every vertex v € V the set of those hyperedges that
contain v is denoted by v°.

Claim 1: For every path vg,vy,...,v, of G;[y;] holds
vpNvy 2v5Nv3 2...2 vg Nuj.

In other words, every hyperedge containing two vertices of G;[y;] contains
all vertices of all G;[y;]-paths between them.

Assume that this is not the case, let W = wug,uy,...,u; with ¢t >
2 be a minimal path where the corresponding inclusion sequence fails.
Thus, by the minimality of W, there is some hyperedge y: that covers
up and uy, but no other vertex of W. Applying (i), we can find a covering
Ye(1): Ye(2)s - - - » Ye(s) Of the edges of W by old hyperedges (i.e. all £(5) < i),
and we choose one with s minimum.

Assume first s = 1. Then W is part of the tree Gi[y,1)] over which
H{yy(1] is connected by (ii). But the hyperedge yi N ye(1) of H([ye1)] con-
tains uo and u; but no further vertex of W, a contradiction (since ¢ > 2).

Hence s > 2. By the minimality of the path W chesen, V(W) N yy;)
is a consecutive part sy, ¥s(j)41,.--, Ug(j) Of W, for every 1 < j <'s.
Let the indices be ordered such that f(1) < f(2) < ... < f(s) < g9(s) = ¢.
By the minimality of s, we get g(j) < f(j +2) foreach 1 < j < s-2.
Thus yx Nyi, Ye1) V¥, Ye2) N Yis - - - » Ye(s) Vi, Y N3 i8 a cycle of the graph
F; := Q(H[]). But this graph must be chordal, since H[y;] is a subtree
hypergraph. We distinguish two cases: \

Case 1: yx Ny, Y1) N ¥, Ye(2) Ny form a triangle in F;. Every subtree
hypergraph is a Helly hypergraph (see (9] or [10]), thus there must be some
vertex zq in the intersection of the three hyperedges yx N i, ye(1) N 3, and
Ye2) Ny of Hly;). By (ii), the tree Gi[yy(1) N ye(2)] contains both vertices
2o and uy(z), so it contains also some path zg,21,...,2 = uy). Then
20,2150 41 2p = Up(2), Bg(2)m1s-+ ) U0 is a path in G.-[yt(l)]. Note that all
these vertices are distinct, since uy(3)-1,...,uo & ye(z). Now the vertices zo
and ug lie in yi, but uy(z) does not, that is, H{y,(1)] can not be connected
over the tree G;[yy(1)], a contradiction.

Case 2: There is some j € {1,2,...,5—2} such that y,j) N3, Ye(i+1) N
¥Yi, Yej+2) Nyi form a triangle in F;. This case can be led to a contradiction
quite similiar as the first case.

Claim 2: G;j[y] is a forest.

For otherwise, assume this graph contains some cycle ug, uy, ..., U, g.
By (i), there must be some p < ¢ with uo, u; € y,. Applying Claim 1, y,
would contain all vertices of the cycle, a contradiction to (ii) with J = {p}.

Claim 3: Gij[y] can be extended to some maximum spanning tree of

Gu(H[w]) = Gu (H)[u]-
Let T be such a maximal spanning tree of this weighted graph having
the maximum number of common edges with G;[y;]. Assume G;[y;] is not
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a subgraph of T, then there is some edge uv in Gi[y;] but not in T. Let
% = ug, Yy,...,U = v be the u— v path in T'. Since G;[y;] is a forest, some
edge u,u,4; i3 no edge of G;[y;]. By the properties of T' mentioned above,
there follows w(u,u,4+1) > w(uv). By (i), some old hyperedge h;: contains
u and v. H{y] is connected over the tree T', according to Theorem 4.2,
so yi contains the whole path u = ug,uy,...,4, = v. But G;[y] is not a
maximum spanning tree of Gy (H[y:]) = Gw(H)[ys], by applying Kruskal’s
argument [15] to w(u,u,+1) > w(uv). So Theorem 4.2 implies that H[y]
is not connected over G;[yx], a contradiction to (ii) in the i-admissiblity of
G; for J = {k}.

Claim 4: The graph G4, obtained from G; by adding the edges
necessary in Claim 3 is (i+1)-admissible.

(i) is quite obvious by our construction: all new edges have been drawn
inside y;.

Let now J’ be some nonempty subset of {1,2,...,i — 1}. Since G; is
i-admissible, H[V}.] is connected over the tree G;[V;], and this implies
that G;[y; N Vy] is connected. So no edge of Gi41 — G, joins two vertices
in Vy.. Thus G;[Vy] = Gi41[Vs] and Gifyi N V] = Giga[yi N V] and (i)
is true for i + 1 for all sets J of the form J' or J' U {i}. The case J = {z}
is obvious by (3). a.

A graph is called locally chordal, if the neighborhood of each vertex
induces a chordal graph; or equivalently, if it has no wheel W, for n > 4
as induced subgraph. A graph F is locally chordal if and only if (x(F))*
is a regionally subtree hypergraph. Consequently from Theorem 4.3 there
follows:

Corollary 4.4 Every locally chordal graph F is representable in some
B1(S(x(F)))-cyclomatic graph.

Theorem 4.3 is also useful for obtaining sufficient conditions for arbi-
trary graphs. Every graph F is the representative graph of several re-
gionally subtree hypergraphs. An example is the hypergraph dual F* of
. F. For every such hypergraph H, the graph F is representable in some

B1(S(H))-cyclomatic graph. We give the following example without proof:

Corollary 4.5 Let the K4-free graph F have n triangles such that every
(not necessarily induced) wheel Wp,,m > 4 contains at least one of these
triangles. Then F is representable in some B1(S(x(F))) + n-cyclomatic
graph.
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