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ABSTRACT. A.M. Assaf, A. Hartman and N. Shalaby deter-
mined in [1] the packing numbers o(v, 6, 5) for all integers v > 6
leaving six open cases of v = 41, 47, 53, 59, 62, and 71. In this
paper, we deal with these open cases and thus complete the
packing problem.

1. Introduction

Let v, k and A be positive integers. A packing design with parameters v,
k and ), called a (v, k, A)-packing, is a pair (X, A) where X is a v-set (of
points) and A is a collection of k-subsets of X (called blocks) such that
every pair of distinct points of X occurs in at most A blocks of A. The
packing number o(v, k, \) is defined to be the maximum number of blocks
in a (v, k,\)-packing. The packing problem is to determine the value of
o(v, k, ). Definitions not given here can be found in [1,6,7].

Schoenheim [4] has shown that
o(v,k,A) < [v|Mv —1)/(k - 1)]/k| = ¢(v, k, 2) (1.1)

where |z] is the largest integer satisfying |z] < z.

Lower bounds on o(v, k, A) are generally given by construction of (v, k, A)-
packings. A.M. Assaf, A. Hartman and N. Shalaby [1] discussed the (v, 6, 5)-
packing problem. They showed the following.

Theorem 1.1. The equality o(v, 6,5) = ¢(v,6,5) holds for every integer
v > 6 with the exception of v = 8 and the possible exception of v €
{41,47,53, 59, 62, 71}. Moreover, o(8, 6,5) = ¢(8,6,5) — 1.

In this paper, we deal with the six open cases shown in Theorem 1.1 and
thus complete the packing problem.
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2. Constructions

Let X be a finite set (of points). A group divisible design (GDD) of index
A is a triple (X, G, .A), where

1. Gis a collection of subsets of X (called groups) which partition X,

2. A is a collection of subsets of X (called blocks) such that a group and
a block contain at most one common point, and

3. every pair of points from distinct groups occurs in exactly A blocks
of A.

The group-type (or type) of a GDD is a listing of the group sizes using
so-called “exponential” notation, that is, 1?273% ... denotes i groups of size
1, 7 groups of size 2, etc. We say that a GDD is a (k,\)-GDD if |A| =k
for every block A € A.

Three particular GDDs of which we will make use of need to be men-
tioned. A (k,)\)-GDD of type m* is called a transversal design (TD), de-
noted by TD(k, A; m). A (k, A)-GDD of type 17 is called a balanced incom-
plete block design (BIBD), and denoted by B(k, A;v) and also by (X, A).
A (k, \)-GDD of type 1%w! is referred to as an incomplete BIBD, denoted
simply by IB(k, A; u + w, w). The group of size w is thought of as a hole.

We are now in the position to give our constructions.

Lemma 2.1. The equality o(71, 6,5) = ¢(71,6,5) holds.

Proof: Asnoted in [1], a (v, 6, 5)-packing with ¢(v, 6, 5) blocks is essentially
an IB(6, 5;v,2) whenever v = 2 (mod 3). So we have 2 (6,5)-GDD of type
11221 by taking v = 14 in Theorem 1.1. Give weight 5 to every point of such
a GDD and employ Wilson’s Fundamental Construction (see [5]) with the
input design TD(6, 1; 5), which exists by [3]. This gives rise to a (6,5)-GDD
of type 51210!. We then adjoin one infinite point to the resulting GDD
and break up each group of size 5 together with the infinite point using a
B(6,5;6). Filling in the group of size 10 together with the infinite point by a
maximum (11,6,5)-packing from Theorem 1.1, we obtain a (71,6,5)-packing
with ¢(71, 6, 5) blocks. The conclusion then follows from (1.1).

Lemma 2.2. The equality ¢(62, 6,5) = ¢(62,6,5) holds.

Proof: It is known [2] that both a B(6,1;66) and a B(6,4;61) exist. Remov-
ing one block from a B(6,1;66) yields an IB(6,1;66,6). Thus we can apply
Construction 4.5 in [6] with K = {6}, A =1, u = 60, m = e = 5, and
g = 1 to obtain an IB(6,5;62,2). This guarantees that a (62,6,5)-packing
with ¢(62, 6, 5) blocks exists. The conclusion then follows from (1.1).

Lemma 2.3. The equality ¢(59, 6,5) = ¢(59, 6,5) holds.
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Proof: By (1.1), it is sufficient to construct a (59,6,5)-packing with ¢(59, 6, 5)
blocks. We proceed as follows.
First of all, we construct an IB(6,5;59,11) based on the set Zs; U {z, zs,
.., 11} and consisting of the following 552 blocks:

z 7 16+ 17+5 32+4j 383+5 5=0,1,2,...,15
z, § 145 1645 3247 33+ j=0,1,2, 15
z j 145 16+j 17+j 32435 3=0,1,2,.

5 24 27 29 mod 48 (orbit length 24)
5 13 23 z; modd48
12 19 25 z3 mod48
20 29 35 x4 mod48
5 19 41 =z mod48
7 13 18 =z mod48
21 34 44 =z mod48
11 12 20 zg mod48
10 20 22 z9 modd8
19 20 41 =x;0 mod 48
24 30 44 I mod 48

COO0COO0OO0OOO0O0O0O
N = 00Ot b bW W

—

Note that {z;,z3,...,211} is the hole.

Secondly, we fill the hole with a maximum (11,6,5)-packing with ¢(11, 6, 5)
blocks from Theorem 1.1.

Finally, it is readily checked that the above procedure provides the re-
quired packing and the result follows.

Lemma 2.4. If v € {41,47, 53}, then o(v, 6, 5) = ¢(v, 6,5).

Proof: In view of (1.1), we can establish the result by constructing a
(v, 6, 5)-packing with ¢(v,6,5) blocks for each value of v € {41,47,53}.
These constructions are exhibited below.

For v = 41, the point set is Zsg U {z,y} and the 273 blocks are

2 3 4 19 mod39
9 17 24 29 mod 39
5 8 12 16 mod 39
9 14 19 25 mod 39
12 18 25 32 mod 39
11 24 28 x mod39
12 21 29 y mod39

OO0 o0oCcoOoo0OC
OB O DD
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For v = 47, the point set is Z45 U {z,y} and the 360 blocks are

0 1 3 8 12 21 mod4b
0 1 3 16 24 27 mod45
01 6 9 19 23 modds
0 1 6 31 33 41 mod45
0 1 7 17 22 32 mod45
0 2 14 28 30 39 mod45
0 3 7 19 4 x mod45
0 6 17 26 33 y mod45

For v = 53, the point set is Z5; U {z,y} and the 459 blocks are

3 7 25 39 mod5l
5 8 35 41 mod5l
6 14 21 23 mod>5l
10 29 32 49 mod 51
11 15 43 46 mod5l1
6 18 27 44 mod51
17 22 30 41 mod51
12 23 39 x mod5l
16 23 31 y mod5l

OO0OO0OO0O0CO0COC O
RN B DD b et b e s

The foregoing can be summarized as follows.
Theorem 2.5. Ifv € {41,47,53,59, 62,71}, then o(v, 6, 5) = ¢(v, 6,5).

3. Conclusion

It has been shown in Theorems 1.1 and 2.5 that if v # 8 is an integer
greater than six, then there is a maximum (v, 6, 5)-packing which contains
|v|5(v — 1)/5]/6] blocks. Thus the packing problem with block size six
and index five has been solved completely. As a consequence of the present
result, we can claim that an IB(6, 5;%,2) exists if and only if v > 11 and
v = 2 (mod 3) (see Lemma 2.1 [1]); this result may be useful for other
combinatorial designs.
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