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Abstract. We obtain bounds for the separation number of a graph in temms of simpler
parameters. With the aid of these bounds, we determine the separation number for
various special graphs, in particular multiples of small graphs. This leads to concepis
like robustness and asymptotic separation number.

1. Introduction and summary.

Let G = (V(G), E(G)) be a graph on = points and let f be a bijection from
V(G) 10 {1,2,...,n}. Define

nif E(Q) = 0,

MG, f) = { min{|f(z) — f(v)| |zy € E(G)} otherwise.

Also define
wQ) = max M(G, f)

where the maximum is taken over all labelings of G, that is, over all bijections
from V(G) to {1,2,...,n}. We call u(G) the separation number of G. Our
purpose is to study u.

In Section 2, we present bounds for the separation number. In Section 3, we
consider special graphs. This leads to the concept of multiplicativity, to be in-
vestigated in Section 4. Section 5 is on the asymptotic separation number. We
conclude, in Section 6, with two tables.

The problem of determining x(G) for a given graph can be reformulated as
follows. Consider the graph H,; with point set {1,2,..., n} in which p and ¢
are adjacent if and only if [p—g| > 4. In H,,;, we choose the labeling f(p) = p for
allp. Itiseasily seen that u( H,,;) = 1. Infact, a graph G on npoints has u(G) > i
if and only if G is isomorphic to a subgraph of H.,;. Or, since H,; & Pi-1;

(%) #(G) 2 i « G is isomorphic to a subgraph of Pi-1.
However, this is not very useful as a way to determine y.

In [1], it is shown that determining u is NP-complete as is the question whether
p=1
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The separation number has received much less attention than the bandwidth 3.
One may compare (*) with the analogue for §:

B(G) < i < G is isomorphic to a subgraph of P;.

Notation: In the sequel we denote by n(G) or n the number of points of G, by
§(G) or & the smallest degree, by A (G) or A the largest degree, and by a(G) or
« the independence number. The join of G and H is denoted by G + H.

When the union of graphs is formed, the point sets are assumed to be pairwise
disjoint.

Finally, N is the set of positive integers.
2. Bounds for the separation number.
We start with upper bounds for (G).

Proposition 2.1. If§ > 0, then p < [=8L]. IF 6 = 0, then p < [252],
where w, is the number of trivial components.

Proof: Let§ > 0. If nis odd, letn=2m—1. If nis even, letn = 2m. Consider
the point P with label m in an arbitrary labeling. Since the number of neighbours
of P is at least §, the upper bound follows from a counting-argument.

Let § = 0. Take an arbitrary labeling. Let z be the label assigned to a point
with positive degree for which |z — 3| is minimum. Then atleast 2 |z — 3| points
have degree 0, that is 2|z — 3| < w;. There are two cases: z < Z andz > 3.
Letz < . Thenn— 2z < w; or equivalently n — z < B4 and, hence,
p<n—z < B (orelsep < 3~ 1< %2). Thecase z > § is similar. I

Proposition 2.2. y<n—A.

Proof: Take an arbitrary labeling. Let v be a point with degree A and let L be its
label. Let Ly, ..., La be the labels of the neighbours of v. If both L; < L and
L; > L occur, then p < [2=5*1] < n—A. Ifall L; < L orall L; > L, then also
p<n—-A. |

Proposition 2.3. If G contains K, (q > 2) as a subgraph, then p < [qt_}-] .

Proof: Let the labels of the points of a Kg be Ly,... , Ly with Iy < ... < Lg. If
avalue z for p is to be achieved, then Ly > 1,L; > 1+2,L3 > 1+23,...,L,

2l+(¢—DmBqugmhme+(m—Dmgnmxg[ﬁH. '
Proposition 2.4. Ifeach point of G belongs to some K, (g fixed), then p < [7}] .

Proof: Suppose the label L; = [%] + 1 is assigned to v; and let v2,...,v, be
in the same K as v;. If some v; ( = 2,...,¢) has a label lower than L,, we
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are through. Let v; have label L; (G = 2,...,q) with [y < L2 < ... < Lg. If
4 were at least [%] +1,thenk; > ([%] + l) forj =1,...,q. In particular

Ly>q [3] + g. But L, < n, and we have a contradiction. Hence y < [3] . 1

Proposition 2.5, u < a.

Proof: If B(G) = @,thenu = n. If E(G) # @, then @ < n— 1, so the num-
bers 1,...,a+ 1 are labels. Any assignment of these labels is certain to choose
adjacent points. Hence, i < a. | |

The following “meta-result” implies that, in a certain sense, none of the Propo-
sitions 2.1 to 2.5 is superfluous.

Proposition 2.6. Foreach i € {1,2,3,4,5} there are infinitely many graphs
for which Proposition 2.i yields a smaller upper bound than the other four.

Proof: Let Gy = Cam, G2 = Kam1,.G3s = Ky UKy (g > 2),Gs = P4, 5,
Gs = K,U(g—1) Kge1 (g > 3). The table below gives the values of the upper
bound 2.; for the graph G;.

2.1 2.2 2.3 24 2.5
Gh m-—1 2m -2 2m -1 m m
G> m 1 2m m 2m
Gs 1+ [2] 2 1 g+1 2
G4 3m-2 6m—6 Im—-2 2m—-1 2m
Gs 9!2-ﬂ -1 g+1 g+1 q

Next we mention a lower bound.

Proposition 2.7. u(pGQ) > pu(G).

Proof: Let V(G) = {v1,...,v,} and suppose the labeling f achieves the value
£(G). Let the points of pG be called (4, v;) withi=1,... ,pandj = 1,... ,gin
the obvious manner. Now assign the label 1 + p( f; — 1) to (4, v;). This achieves
the value pu(G) in pG. [ ]

In the sequel, lower bounds for y will usually be obtained by (ad hoc) construc-
tions.

Proposition 2.8. u(G) > 2 ifand only if G has a Hamilton path.

Proof: Let 4(G) > 2. Fori=1,...,n~- 1, the points with labels { and i + 1
are non-adjacent in an optimal labeling of G, hence, they are adjacent in G, so
(1,2,...,n) is a Hamilton path G.

Conversely, take a Hamilton path in G, assign labels 1,2,...,n along the
path, and a labeling with absolute differences > 2 between neighbours in G is
obtained. [ |
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Corollary 29. u(G+ H) =1.

Proof: The result follows at once from Proposition 2.8, since a join has a discon-
nected complement. Second proof: suppose without loss of generality that label
1 is assigned to a point of G. Let z be the smallest label assigned to a point of H.
Then z — 1 is a label of a point in G, etc. |

3. Special graphs.

In this section we determine the separation number for some special graphs, viz.
for certain unions of well-known graphs.

Proposition 3.1. Let G be the union of complete graphs G; (i = 1,2,... ,m)
where G; = K, with g1 > @2 > ... > gm» 21 ¢ = n Let h be the maximum
index with q1 = ...= qu. If E(G) # 9, then

n—h
@) = [91 —1]'

Proof: Let ¢ = ¢1. Suppose u(G) > u = [q—"‘:%] + 1. There exists an 1 €
{1,2,...,h} such that the smallest label in G is at least h. The other labels in
this G; are at least A + u, h+ 24,... , h + (¢ — 1) u. The last-mentioned number
canbe writtenas h + ¢ — 1+ (g — 1) [:%’1‘] and since [4] > 4 — 25" forall

natural numbers A and B, wehaveh+ ¢— 1+ (g—1) [g—‘_f] > n+ 1, which s
a contradiction. Hence, u(G) < [%‘_—_%] .

To see that the value v = ’q”:—',‘] can be achieved, consider the following pseudo-
algol statements.
Q1) L:=1;
(2) for j:= 1 until mdo
(3) for i:=1 uniil g; do
(4) begin assign label L to an unlabelled point of G};

() L:=L+v;
©) if L > nthen L: = the smallest unassigned label
(7) end.

It is trivial that each point of G has a label after the execution of these statements.
It is easily verified that the result is a bijection from V(G) to {1,2,... ,n}. We
now show that this labeling achieves the value v, except in the case ¢ = 3.

When no “overflow” occurs in line 5, the difference between the last label and
the new one is simply v. When an overflow occurs, the last label will be at least
n— v+ 1, and the new label will be at most v. The difference n—2v+ 1is > v
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if and only if v < %%, and since v = ::—',‘] , this inequality is certainly satisfied
ifg>4. '

The case ¢ = 2 causes no problems: after the K ’s have been labelled, only
K ’s remain, if anything,

Now let g = 3; hence, v = [252]. If n— h is even, then the unassigned labels
after the labeling of the K3’s form 2 sequences of consecutive integers, and there
is no problem. But if » — A is odd, the number n will be an unassigned label
after the K3’s have been labelled, which will cause a problem. (See the example
below). The solution is simple: the label n should be assigned to some K. Itis
easy to see that now the value v is achieved. [ |
Example: Take the following sequence of ¢'s: 3,3,2,2,2,1. Thenn = 13,
g¢=3,h=2,v =235, The labels are applied as follows (according to the original
algorithm): 1,6, 11 to some K3;2,7,12 to the other K5; 3 and 8 to a K3; 13
and 4 to another K3; 9 and 5 (with difference 4 only) to the third K; and 10 to
the K.

Corollary 3.2. u(pK,) =p(g>2).

Proposition 3.3.

@ p(P)=[3] (n>2).

(b) Let G be the union of paths P; withi = ¢; > 0 (j = 1,...,m) and
7 ¢ = n Then p(G) = [3].

Proof:

(a) Let the points of P, be vy,... ,v, in the obvious order. Assign label i to
vz and label i + [£] t0 va,_y, for all possible i. All absolute differences are
> [#]. hence, p > [2]. The converse inequality follows from Proposition
2.1.

() p > [2], since G is a spanning subgraph of P,. The other half follows
from Proposition 2.1.

|
Proposition 3.4,
@ u(Ca) = [354].
(b) If q iseven, then p(kC,) = & — 1.
(©) If q is odd, then u(kCy) = k.

Proof:
(a) Analogous to the proof of Proposition 3.3(a).
(b) Proposition 2.1 gives p < [5"2'—‘] =% _ 1. Let¢ = 2m. In the first copy
of C, we assign labels altematingly from {1,2,...,m} and from {km +
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1,km + 2,...,km + m}, in the natural order. In the other copies of Cy,
these values are increased by an appropriate multiple of m. This gives u >
km—1=%_1.
©) Letq = 2m + 1. Let the labels in the ith G, be L{” < L{® < ... <
L®™_ Among any (m + 1) -tuple of labels in the ith G, there will be at
least 2 labels assigned to adjacent points. We apply this fact to the (m + 1)-
wple L{™ Y ... ™Y We infer that p < L™ — L{™" fori =
1,..., k. Now number the C,’s such that the median labels are inincreasing
order: L{™Y < L{™Y < ... < L{™"Y. The number of labels less
than L%"‘“) is at least km + k — 1. Hence, L™ > km + k. Also
L™V < kg = 2km + k. Hence p < km = k251, The other half of part
(c) follows from part (a) and Proposition 2.7.
|

The results of this section suggest the following definition.

Definition: The graph G is multiplicative if u(kG) = kp(G) forallk € N.

We have seen that K, Ps, and Can+1 are multiplicative. It will be seen later
that all graphs H,,; are multiplicative, too. All these graphs have a unique optimal
labeling, so the question arises whether that is what makes these graphs multi-
plicative. Let us first give a precise definition.

Definition: An optimal labeling f of a graph G is unique if for each optimal la-
beling g of G, g~ f is an automorphism of G. A graph is uolic if ithas a unique
optimal labeling.

The following example shows that there exist uolic graphs that are not multi-
plicative.

Example: Take G = K; UC;. Itis easily seen that u(G) = 2 and that G is uolic;
its optimal labeling is given in Figure A below. The graph 2G has a labeling with
M = 5; see Figure B below.

4, 02 7 2, 2 4
. Eo [60 j
)\ L5 1 8L 43 10
A B
Hence, u(2G) > 5 > 2u(G) and G is not multiplicative.

Still, uniqueness of the optimal labeling seems to be an interesting property that
deserves further investigation. We remark that in the example 4(2G) = 5 and
that 2@ is uolic!

In the next section we present two sufficient conditions for multiplicativity.
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4. Multiplicativity and robustness.

The proof of Proposition 3.4c can be generalized in two seemingly different di-
rections. We start with the simplest possibility.

Proposition 4.1. If o(G) = u(Q), then G is multiplicative,

Proof: LetGy,... G} becopies of G, letn= |V(G)|and let LV < ... < L{™
bethe labelsin G; (i = 1,...,k). Foreach (o + 1)-tuple of labels in G; there
existtwo “adjacent labels”. Ta\ke the (a+ 1) -tuple L“’ . L§°‘”). We conclude
that

() wkG) < LY LV fori=1,... k.

Choose the numbering of the components such that L(“'”) < L("‘”) <...<
L{**V. In (*) we now choose i = 1:

p(kG) < L{i™P — LD < L™V — 1.

Since there are (k— 1) ( n—a) + (n—a— 1) labels known to be larger than L{**?,
we conclude that L{**? < ka+1,and, hence, p(kG) < ka(G) = ku(G). From
Proposition 2.6 we know that u(kG) > ku(G), so G is multiplicative. 1

Alternatively, the proof of Proposition 3.4c suggests the following definitions.
Definition: A pseudo-labeling of a graph G is an injection from V(G) toN =
{1,2,...}. Let

oo if B(G) = 0,

MG, = { min{|f(z) — f(y)| |lzy € E(G)} otherwise,

where f is a pseudo-labeling. A pseudo-labeling f* is optimal if M(G, f*) >
M(G, f) for each pseudo-labeling f the values of which form a permutation of
the values of f*.

Definition: A graph is robust if for each optimal labeling f and for each increasing
function ¢: N — N, the composition ¢ f is an optimal pseudo-labeling.
We shall see presently that robustness is sufficient for multiplicativity. How-

ever, the technique we used to prove Proposition 3.4c is not quite strong enough
to obtain that result. The proof can be given indirectly.

Proposition 4.2, If G is robust, then a(G) = p(G), and conversely.

Before we can give the proof, we require a definition.

Definition: Let G be a graph with E(G) # 8, let f be a pseudo-labeling of G, and
let M be the minimum of | f(z) — f(y)| overall zy € E(G). Then a bottleneck-
pair (with respect to f) is a pair {u, v} of labels of adjacent points with |u — v| =
M. .
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Note that if the above mentioned pseudo-labeling is an increasing transforma-
tion of an optimal labeling, there may be bottleneck-pairs {¢1, $;} with [i—j| > p.
An example is given by G = P2 U P, shown below with an optimal labeling;
u=2.

2 5 3 1 4

Now take ¢(i) = i fori = 1,2,3,4 and ¢(5) = 7. The pair {1,4 } becomes a
bottleneck-pair, but the ¢-originals of 1 and 4 (viz. 1 and 4) have absolute differ-
ence 3.
Proof of Proposition 4.2: We prove the contraposition.

Suppose & # p. Then @ > p, hence, there exists an independent set of
p + 1 points in G. Take an arbitrary optimal labeling f of G, and let {1, j} be a
bottleneck-pair w.r.t. f. Now choose an increasing function ¢: N — N such that
{44, $7} becomes the unique bottleneck-pair w.r.t. ¢ f and such that |¢p— dgl >
|¢# — ¢7] for all labels p and g unless both pand g are in {i,i+ 1,... ,7}- (Such
a function ¢ is easy to give. Assume without loss of generality that i < j, so that
j = i+ u. Now take, for example,

(p+ Dkfork=1,...,i-1,
o(k) = { (p+Di+tk—ifork=1,...,7,
(p+ DW(k—p)+pfork=j+1,...,n.

Our claim is easily verified now). Since there exists an independent set of y + 1
points, the pair { 41, ¢7} and all pairs {¢p, $q} withi < p < g < j can be avoided
as labels of adjacent points in a suitable permutation of the labels. Hence G is not
robust.

Conversely, suppose G is not robust. Then there exists an optimal labeling f
and an increasing ¢ such that ¢ f is a non-optimal pseudo-labeling. In fact, ¢ can
even be chosen such that ¢ f is non-optimal and such that some {¢1, ¢;}, where
without loss of generality i < j, becomes the unique bottleneck-pair w.r.t. ¢f.
(Use a perturbation technique.) Since the pseudo-labeling is non-optimal, the pair
{#i,47} can be eliminated by a suitable permutation of the labels. This means
that {4, ¢7} and all pairs {p, ¢} with ¢i < p < ¢ < ¢; can be avoided as labels
of adjacent points. Hence, the points that have, after the permutation, the labels
$i, ¢(i + 1),...,¢j form an independent set. From j — ¢ > u we then have
a>j—i+1>pu+l,s0a#p. ]

We now present two useful applications of Proposition 4.2.

Corollary 4.3. If G is robust and u(G + e) = u(G), where e is a line, then
G + e is robust.

Proof: u(G +€) < a(G + €). On the other hand, u(G + €) = p(G) = a(G) >
a(G + €), hence u(G + €) = o G + €) and G + e is robust. 1
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Corollary 4.4. If G is not robust and m € N, then G U K, is not robust.

Proof: Take an optimal labeling f of GU K. I (G U Kp) > 2+ p(G), then
delete the points of K, from GU K ,,, and apply a non-increasing transformation to
the remainder, thus, obtaining a labeling g of G. If {p, ¢} is a bottleneck-pair w.r.t.
f, then the set {p,p+ 1,... ,q} contains at most one point of K,. This implies
that g achieves a value > 1+ u(G) for the minimum of the absolute differences
of adjacent labels. Hence u(GU Ky) < 1+ u(G) < 1+ aQG) = ao(GU Kp),
hence G U K,, is not robust. [ |

Multiples of multiplicative graphs are trivially multiplicative. We now prove
the analogous result for robustness.

Proposition 4.3. If G is robust, then mG is robust forall m € N.

Proof: Let G be robust. Then G is multiplicative, hence, uy(mG) = mu(G)
= ma(G) = a(m@G), hence, mG is robust. 1
Robustness is not a necessary condition for multiplicativity, as is shown by the

following examples. If G is a union of complete graphs, then u(G) = m_"l ,

where we use the result and the notation of Proposition 3.1. Since mG is also a

union of complete graphs, we have u(mG) = [!-"g"—‘_’;‘—"] . Now suppose q; — 1
divides n— h. Then p(mG) = mu(G) for all m and G is multiplicative. An
explicit example with a # p is K3 U2 K.

A second type of example can be constructed as follows. Let G be a non-robust
multiplicative graph on n points with u(G) = i. Then G is a proper spanning
subgraph of H,;. It is easily seen that all graphs J with G C J C Hy; are
multiplicative. Hence, when a(J) > a( Hy;), J is non-robust but multiplicative.
The graphs J; and J; in the figure below are explicit examples.

A=

G =Ky U 2K

The third type is related to the second. Again, let G be a non-robust multiplica-
tive graph on «n points with 4(G) = 1. Trivially, all graphs mG are multiplicative,
and, hence, so are all graphs J with mG C J C mH,;. To obtain a non-robust
example, take G = K3 U2 K1, m = 3,and J = GU J, U J; where J) and J; are
the same as in the previous example.

5. The asymptotic separation number.
For all m € N and for all graphs G we have mu(G) < p(mG) < ma(G) from
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Proposition 2.7 and Proposition 2.5, respectively. Hence,

p(@) < liminf —— p(mG) < limsup ——=

m=oo M m—oo

B(mG) < (@),
m

So the following definition seems natural.
Definition: The asymptotic separation number of a graph G, denoted by 3(G) is
1im oo 429 if it exists.
The existence of j easily follows from the following result.
Proposition 5.1. u(mQ) is non-decreasing in m forall G.

Proof: Let |[V(G)| = n. Choose an optimal labeling of mG. Fix a copy G°
of G in mG. Denote by G* the (m + 1)-st (new) copy of G and let f be an
1somorphlsm from G° 1o G*. Now if point { of G has the label L;, we assign the
number § + 5- to the point f(i) of G* (i = 1,2,...,n). Finally, we replace the
numbers 1,2, ..,mn,L1+—2-, L,.+2bythenumbersl 2,...,mn+n,
preserving the relative order. We conclude thatp ((m+ 1)G) > y( mQG). |

Proposition 5.2. ji(G) exists for all G and is equal to sup,, X220,

Proof: It is clear that i(G) if it exists, cannot be smaller than s = sup,, &mC),
Also s € a(G) < oo.

Let € be positive. Choose mo so large that s — £ < ¢ Thens— 429 < ¢
for all multiples m of mo. If m is not a multiple of mo, Say m = gmo + r with
0 < r < mp then applying Proposition 5.1:

p{mQG) > plgmoG) _ p(gmoG) gmo > p(moG) m—r

m - m gmo m mo m
Now
moG - - 1
M>s—e,andm r>m m°>l——.
mo m m q

By choosing g sufficiently large we find that E(’,',‘.—Gl > s—2¢ forall m sufficiently
large. |

Proposition 5.3. G is multiplicative if and only if i = .

Proof: If G is not multiplicative then p(moG) > mou(QG) for some mo, hence,
ii(G) = sup,, UmD > wmed) 5 (). The other half is trivial. ]
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Proposition 5.4. If G is bipartite, then ji(G) = M{ﬁ, where w, is the number
of trivial components of G.

Proof: Choose a bipartition S, T of the non-isolated points of G. Take m copies
of G: Gi, ... ,Gm With corresponding point-classes S;, T; inG; (i = 1,... ,m).
(Hence, |S1] = ... = |Sml, IT1] = ... = |Twl, and the only lines in G; are lines
between S; and T;).

Starting with label 1, the labels are assigned in increasing order to the points
of Sy, then T, then S, ..., ending with S, or Ty,, depending on the parity of
m. Let A be the largest label assigned so far. The next mw; labels, A + 1,4 +
2,... ,A+ muw,are assigned to the trivial components of mG. Finally, the labels
A+ mw +1,A+ mw; + 2,... are assigned to the points of Ty, Sz, T3, S4, ...
until all points have a label.

The minimum absolute value between labels of adjacent points is now A +
mw; + 1 — |8y Since A = |Si|+ |2l + ...+ |Su|or A = |Si]| + |T2| +
<o # | T, a lower bound for A is (|V| — w1) (3 — 1). It follows that ji(G) =
lim,, 00 l‘i',:—"'-’- > m.}"‘—’ The reverse inequality follows at once from Proposition
2.1. 1

The case w; = 0 can be generalized to k-partite graphs, as follows.

Proposition 5.5. Let x(G) = ¢, |V(G)| = n. If each point of G belongs to
some K., then p(G) = 2.

Proof: Colour the points of G with ¢ colours; let ny,ny,... , 7 be the number

of points in the respective colour classes. Now take m copies of G: G, ... ,Gm,
and colour each G; in the same way as G. As in the proof of Proposition 5.4, we
assign the labels in increasing order, to the points of: the first colour class of G,
the second colour class of G, ... . , the c-th colour class of G.., the first colour class
of G.+1, the second colour class of G2, etc., until the points of 1 colour class of
G have been coloured. Then we continue with the second colour class of G,
etc. But for “border effects” we find u(mG) > 22, and, hence, 4(G) > %. The

reverse inequality follows from Proposition 2.4. |
Corollary 5.6. Let x(G) = ¢, |V(G)| = n. Then i(G) > 2.
Proof: This has in fact been proved above. 1

Example: For the graph G we have u = 2,

2= %, hence, the “old” lower bound
p is better. But 4(Gz) = 1, whereas 2 = £ > 1.
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Proposition 5.7. Let G be a union of complete graphs, with the same notation

as in Proposition 3.1. Then ji(G) = 2.

Proof: The result is trivial since a multiple of such a graph is again a union of
complete graphs. i

So far the ji-values for some special graphs. We now apply Proposition 5.5 to
prove a useful result.

Proposition 5.8. If G % K, and u(G) = 1, then G is not multiplicative.

Proof: FirstletG = K, — e. According to Proposition 5.5, i(G) = ;% Hence,
p(mG) > m for m sufficiently large. Now letG ¥ K, be an arbitrary graphonn
points with z(G) = 1. Then G is a subgraph of K, — e and, hence, u(mG) > m
for the above m. So G is not multiplicative. ]

6. Tables.

In Table 1 we present drawings of some graphs Hy;. Fori= 1, Hy; & K, and
for2i > n> 1, Hyg & Hyp14-1 U K. The remaining cases withn < 7 are
shown below.

Table 1
3 |
O— \ 04
3
1 5
4 2
H

In Table 2 we have collected some information on the 4- and 5-point-graphs.
The meaning of the column headings is as follows: n is the number of points, m
is the number of lines, # is the number that Harary assigns to the graph (see table
on p. 215 ff. of [2]), « is the independence number, 4 is the separation number, R
=robust, U = uolic, M = multiplicative (and we have indicated by a digit whether
the graph in question has the property (1) or not (0)). In the last column, without
heading, H means: the graph is of the form H,;, and J means: the graph is a join.

Remark: The graph G (with n points and separation number y) is uolic if and
only if there exists a unique subgraph of H,, isomorphic to G. This provides a
quick way to see whether G is uolic (if n < 5).
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