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Abstract

Recently, there has been substantial interest in the problem of spectrum
of possible support sizes of different families of BIB designs. In this paper,
we first prove some theorems concerning the spectrum of any t-design with
v = 2k and k = ¢+1, and then we study the spectrum of the case 4-(10,5,6m)
in more detail.

1. INTRODUCTION

A t —(v,k,)) design (or a ¢-design) is a collection of k-subsets (blocks) of
a v-set V such that every t-subset of V appears in exactly A blocks. (It is not
required that the blocks to be distinct.)

Necessary conditions for existence of a ¢ — (v, k,A) design are known to be
that
,\.-=,\( 0= )/( k- ) is an integer, 0<i<t
Following the usual notation in the literature, we put b = Ay and r = };.

The set of all distinct blocks of a ¢-design is called the support of the design
and its cardinality is denoted by b°.
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A (v,k,t) trade of volume s consists of two disjoint collections of blocks Ty
and T; each consisting of s blocks, such that for every t-subset of V', the number
of blocks containing this subset is the same in T) as in T;. A (v,k,¢) trade is
denoted by (Ti,T3).

In a (v, k,t) trade both collections of blocks must cover the same set of ele-
ments which is called the foundation of the trade. Hwang [6] has shown that the
minimum foundation sise of a (v, k,#) tradeis k+¢+ 1 and forv> k+¢+1,
the minimum volume of a (v, k,¢) trade is 2*. The trades with foundation sise
k+t+1 and volume 2* are called ménsmal trades.

The frequency of a k-subset B of V in a design D is denoted by #p(B); and
if there is no ambiguity, we simply write #(B). If B is not a block of D then
#(B) = 0. Similarly, we denote the frequency of B in a trade (T},T>) by #(B),
but if B € T; then #(B) has a minus sign.

A t —(v,k, ) design ((v,k,t) trade) with v = 2k will be called self-comple-
mentary if for every k-subset B, #(B) = #(V — B). A t-design with v=2k is
called quasi-complementary if for every block B, #(B) + #(V — B) is constant;
and a (v, k, t) trade with v = 2k is called quasi-complementaryif #(B) = —#(V -
B).

A t-design is called simple if for every k-subset B, #(B) =0 or 1; and is called
trivial if for all k-subsets B, #(B) = 1.

In this paper, following Hedayat and Li [5], we adopt vector representation
of designs and trades. In this connection we first order all the k-subsets of V'
lexicographically and we let f; to be the frequency of the b k-subset in the
design. Therefore, every t-design is identified with a ( 4 )-dimensiona.l vector

(fis fas-+> £ « \). Likewise, a (v, k,#) trade is represented by a ( M )-vector in
1
which the frequencies of blocks of T; appears with minus signs.
It is known [3] that the (v, k, £) trades form a Z-module with dimension (‘; )-
:YZ Graham, Li and Li [2], obtained a basis for this module in terms of

polynomials. The elements of the basis they produce are minimal trades. They
considered the following polynomial

O(%1,++,%0) = (21 — 22)(28 — 24) -+ (T2e42 — Tag2) Zaga -+ Tapea. (1)

If we multiply the factors out and identify each z; with ¢ € V, then the resulting

form is a (v, k, t) trade. It is shown that all minimal trades for given v, k and ¢
are isomorphic [2] and [6].

In this paper, first we show that if v = 2k and &k = £ + 1, then every

(v, k,t) trade or every i-design is self-complementary if ¢ is odd and is quasi-
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complementary if ¢ is even. From these facts we drive some useful conclusions
about the support of a t-design.

Next we study the special case of v = 10, k = 5 and £ = 4. In this respect we
show that designs with b* < 152 are nonexistent. Using the trade-off methodol-
ogy, we construct 88 4-designs with various support sises. Finally, we make some
remarks about existing and nonexisting various support sises.

As mentioned in [4], the construction of ¢-designs becomes more complicated
when the set of A;’s are relatively prime. In the case of 4-designs, 4-(10,5,6m)
designs are examples of such designs with smallest v. Since the only simple design
in this case is the trivial design, the usual techniques of construction of designs
with various support sises can not be applied and one has to use other techniques
such as the trade-off.

2. ON TRADES AND DESIGNS WITH v=2k AND k=t{+1

Theorem 1. Every (2t + 2,¢ + 1,¢) trade is self-complementary if ¢ is odd,
and is quasi-complementary if ¢ is even.

Proof. Let v=2t +2 and k = ¢ + 1. Then the polynomial (1) will be of the
following form:

©(21) 22+ Bo) = (21 — 22)(%3 — 2a) -+ (T2e41 — Z2042)-

Note that there are always ¢ + 1 factors in (1). By a simple induction on ¢, it
follows that the trade obtained from this polynomial has the claimed property.

Since all minimal trades are isomorphic, they all have this property. Now the
theorem follows from the fact that the minimal trades form a basis for Z-module
of (v, k,t) trades. O

Theorem 2. Every t-design with v = 2k and k = ¢+ 1 is self-complementary
if ¢ is odd, and is quasi-complementary if £ is even.

Proof. Suppose D, and D, are two ¢ — (v, k,)) designs, then D; - Dy is a
(v, k,¢) trade [1]. Let D be a t— (v, k, ) design and D’ be the trivial t— (v, k, \')
design, then T = X'D — AD' is a (v, k,¢) trade. Thus D = (1/A)(AD’ + T).
Ko=2k k=1t+1and ¢ is odd, then from Theorem 1, it follows that T is
self-complementary and likewise D. If ¢ is even, then T is quasi-complementary
and for every block B in D,

#(B) + #(V - B)=2)/X. (2)
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Hence D is quasi-complementary. O

Corollary 1. For every odd ¢, the support size of any ¢ — (2t +2,¢ + 1,1)
design is even.

Corollary 3. For ¢ even, if a nontrivial simple ¢ — (2t + 2,¢ + 1,1) design
exists, then A = /2 = (¢ + 2)/2.

Remark. In connection with Corollary 2, it is interesting to note that for
t = 6, there exists a simple nontrivial 6-design with A = (¢ + 2)/2 [7]. For the
case ¢ = 4, there is no such design. For ¢ > 6, the problem of existence of such

designs is open.

3. STUDY OF 4-(10,6,6m) DESIGNS WITH REPBATED BLOCKS

From the necessary conditions for the existence of a t-design, it follows that
for v=10, k=5, ¢t = 4 we have

do=42h,, A =210y, do=(28/3)M ds=(7/2A

Hence, A\, = 6m. Since the trivial design has 252 blocks with A, = 6, therefore
the trivial design is the only simple design in this case, and all of the nontrivial
designs are with repeated blocks, and to produce such designs one has to reduce
the support sise of the trivial design. There are at least two problems of interest
in cases like this: (1) what are the possible 5*’s? and (2) for a given b*, what is
the minimum 5?

Providing a complete solution to these problems via the existing techniques
geems rather difficult. In the remaining parts of the article we offer some partial
solutions.

3.1 A SET OF POSSIBLE 5’8

In Table 1 we have demonstrated 88 designs with various support sises. A
few words about the method of construction are in order. In {5], a method of
construction of ¢-designs with repeated blocks called “the method of trade-ofi”
was introduced. Hedayat and Li and subsequently different authors, have used
this method to construct BIB-desigus. In short, the method is based on the fact
that if D is a ¢—(v, k, A) design and T is a (v, k,¢) trade, then T'+ D is a design if
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and only if D+ T has non-negative frequencies. In practice, one usually chooses
T to be a minimal trade, since to produce such a trade is very simple [6]. The
resulting design, D + T, may have larger or smaller support sise than D. By
applying this method over and over with the same process, designs with desired
b*’s might be obtained.

As far as we know, this is the first time that the trade-off methodolegy is
being applied to construct i-designs with ¢ > 2. Specifically, we do the following:
take a design D and let B € D; form all the minimal trades containing B; add
each of these trades to D; then the designs with new b*’s are recorded (the b*’s of
the new designs differ at most by 16 from the b* of the old design, since ¢ = 4); the
design with smallest b* is chosen a8 a starting design and the process continues.

Here, we note that our initial designs are the multiples of the trivial design.
A computer program based on the above algorithm was written and an extensive
. search was carried out to construct the designs of Table 1.

In Table 1, for every 162 < b* < 252, except for b*=153, 154, 165, 158,
159, 160, 161, 166, 167, 169, a design is given. In the remaining part of this
section nonexistence of designs with 4* < 152 is established. The existence or
nonexistence of designs with remaining values of 5*’s is under investigation.

Lemma 1. The support sise of every 4-(10,5,6) design is even.

Proof. For a given 4-(10,5,6) design D, let nq, n; and n; denote the number
- of blocks in D of the form labed with frequencies 0, 1 and 2, respectively. By
the quasi-complementarity of D, b* = ng + 2n; + ny. Note that

no+ iy +ng3 = A = 126,

Hence b* = 126 + n,. Suppose n, is odd, e.g. n; = 25 + 1. Now we observe that
the total number of quadruples of the form 1zyz in D is 4(2s + 1) + 8ny = 4
(mod 8), while in every 4-(10,5,6) design there are 504=0 (mod 8) quadruples of
the form 1zys, and hence a contradiction. O

3.2 THE MINIMUM SUPPORT SIZE

In this section we would like to show that d3;, = 152. To achieve this, we
take a closer look at the block structure of a 4-(10,5,6m) design D.

If every block appearsin D, then 4°=252. For otherwise, if #(B) = 0 for some
block B, then because of the quasi-complementarity of D, #(V - B) = 12m/6 =
2m. With no loss of generality, suppose B = 12345 and #{12345) = 2m. Now,
with regards to the parameters of D, we can partition the blocks of D into the
following classges:
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classes | frequencies blocks

I 2m 12345

I 4im 1234- 1235~ 1245- 1346~ 2346-
m 1lm 123- - 124-- 125-- 134- - 135- -
Iv

145- - 234-- 235-- 245- - 345- -
om | 12--- 13--- 14 -- 16--- 23---
24--- 25--- 34--- 35-- 45---
] 8m  |l---- 2---- 3 --- & --- b----

In this table, the frequencies column says that , for example, there are 4m
blocks of the form 1234z, where z € {6,7,8,9,0}. The blocks of the form 1234z
are a subclass of class II, and so on.

Since the maximum frequency of a block in [} is 2m, each subclass of classes
I,---,V have at least 2, 6, 5, and 3 distinct blocks, respectively. Therefore, D
has at least 14+10+60+-504-15=136 distinct blocks. This is a rough lower bound
for 6%,

A closer look at the block structure of classes I and I reveals that this
number can be improved to 152, as shown by the following argument.

Lemma 2. The following situation is impcasible:

In class II, only the subclass 1234- has 3 distinct blocks and the other sub-
clagses of this class have 2 distinct blocks, At the same time in class ITI, only the
subclasses 123- -, 124- -, 134- - and 234- - have 6 distinct blocks each and the
rest of the subclasaes of this class have 7 distinct blocks each.

Proof. Suppose the above situation occurs. Since the maximum frequency
of a block is 2m, hence the subclass 123- - contains exactly one block, say 123ab
with a,b € {6,7,8,9,0}, such that 0 < #(123ab) < 2m. Since the quadruples
1234 and 1235 must occur A, = 6m times, the subclass 1234- contains the blocks
12344 and 1234} with frequencies not equal to 2m and the other block of this
subclass has frequency of 2m. By considering the blocks with frequencies not
equal to 2m in subclasses 124- -, 134- - and 234- - it follows that: the blocks
with frequencies not equal to 2m in subclasses 123- -, 124- -, 134- - and 234- -
are as follows

123ab 124ab 134ab 234ad

and the blocks with frequencies not equal to 2m in subclass 1234- are of the form
1234a and 1234b.

Now consider the subclass 125- -. The blocks with frequencies# 2m are
125¢d, 125¢ce, 125de. Since otherwise a quadruple 125z exists such that it has
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the frequency# 2m in these 3 blocks while the other blocks of this design which
contain 125z each have frequencies of 2m and this is contradictory to A, = 6m.
Now we consider the quadruples

12¢d, 12ce, 12de. (3)

These quadruples must occur in subclass 12- - - of class IV with frequencies# 2m.
But this subclass is the complement of the subclass 345- - of class IIl. Without
loss of generality, we can assume that these blocks with frequencies 2m, in the
subclass 345- - are of the following form:

34567, 34568, 34578.
Hence the blocks with frequencies# 2m in subclass 12- - - are as follows:
12890, 12790, 12680.
Thus the six quadruples
1229, 1220, sz € {6,7,8)}

appear in subclass 12- - - with frequencies# 2m. Whereas in subclass 125- -
only 3 quadruples (3) occur with frequencies# 2m and in the rest of the blocks
of D, all the quadruples with the form 12zy, z,y € {6,7,8,9,0} appear with
frequencies 2m, and this is in contradiction with A, =6m. O

Theorem 8. In 4-(10,5,6m) designs, by, = 152.

Proof. Table 1 contains a design with 5*=152. Thus it suffices to prove that
for every 4-(10,5,6m) design, b* > 152.

If each subclass of class III has at least 7 distinct blocks, then by quasi-
complementarity, b* > 136 + 10 + 10 = 158.

Suppose in calss IIT at least one subclass, e.g. 123- -, has exactly 6 distinct
blocks. Hence in this subclass there exists a block, e.g. B = 12367, such that
0 < #(B) < 2m. Since each one of the 2 quadruples 1236 and 1237 must occur in
2m blocks, hence in one of the subclasses 1234- or 1235- (take 1234-), there exists
a block B' = 12346 such that 0 < #(B') < 2m. Thus at least 3 distinct blocks
exist in subclass 1234-. Now, if in class IIl every one of the subclasses (with the
possible exceptions 123- -, 124- -, 134- -, 234- -) has more than 6 distinct blocks,
then by Lemma 2, 5* > 152.

Now suppose that another subclass of III, beside 123- -, 124- -, 134- -, 234- -,
e.g. 125- -, has excatly 6 distinct blocks. Therefore, by the above reasoninig,
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in class II at least one of the subclasses 1235- or 1245- must contain at least 3
distinct blocks. Suppose 1245- be such a subclass having 3 distinct blocks. In
this way, the quadruples 1244 and 124b appear with frequencies# 2m. In order
these quadruples attain 6m frequency, subclasses 1234-, 1245-, 124- -, besides
those which were counted, must have 3 distinct blocks with frequencies= 2m. If
each of the 3 subclasses 135- -, 235- - and 345- - has at least 7 distinct blocks,
thus the design D will have at least 136+-8+8=152 distinct blocks.

If at least one of these 3 subclasses, namely 136- -, 235- - and 345- -, contains
exactly 6 distinct blocks, then by repeating the above argument, it follows that
b*>152. 0

4. CONCLUDING REMARKS

For a given triple (v, k,¢), the problem of the spectrum consists of two ques-
tions:

(i) what is the set of all feasible b*’s of ¢ — (v, k) designs, and in particular,
what is 83,7

(ii) For a feasible b*, what is the set of all b's such that a ¢ — (v, k) design
with b blocks and b* distinct blocks exists and, in particular, for a given feasible
b*, what is the minimum of such b’s?

Concerning the problem of spectrum, here we list the solved and unsolved
problems for the case 4-(10,5):

1) 162 < b* < 252, by, = 152.

2) By Table 1, only the existence of designs with 4* =153, 154, 157,.--, 161,
163, 165, 166, 167, and 169 remains open.

3) For those b*’s for which a design with b = 262 is given in Table 1, the
question (ii) is completely answered: the set of possible b's is 252m, for m =
1,2,---.

4) For odd b*’s, b > 504 (by Lemma 1). Hence for all odd 5*’s in Table 1,
except for b* = 173, the minimum b is equal to 504. The problem of existence of
designs with odd 5*’s and b = 262m, for odd m remains open.

5) Since (10,5,4) trades with volume s, for 1 < s < 16 [6] and 16 < s < 24 (8]
do not exist, hence designs with b = 252, 236 < b* < 252 and 228 < b* < 2368 do
not exist. Therefore, these designs with possible minimum b (j.e., b=504) appear
in Table 1.

5) In Table 1 designs with 5* = 4 (mod 6) and b° < 228 are given with
b = 504. The existence of these designs with b = 2562 remains open.

282



Acknowledgments. We thank M. Hamidi and M. 8. Vishkaii for their
assistence in computer programming.

References

(1] Foody, W. and A. Hedayat, On theory and applications of BIB dwgns with
repeated blocks, Ann. Statist. 5(1977), 932-045.

[2] Graham, B. L., 8.-Y. R. Li and W. -C. W. Li, On the structure of t-designs,
SIAM J. Alg. Dis. Methods 1(1980), 8-14.

[3] Graver, J. E. and W. B. Jurkat, The modular structure of integral designs,
J. Combin. Theory Ser. A 15(1973), 75-90.

(4] Hedayat, A. and H. L. Hwang, BIB(8,56,21,3,6) and BIB(10,30,9,3,2) designs
with repeated blocks, J. Combin. Theory Ser. A 36(1084), 73-91.

[5] Hedayat, A. and 8. -Y. R. Li, The trade off method in construction of BIB
designs with repeated blocks, Ann. Statist. 7(1979), 1277-1287.

[6] Hwang, H. L., On the structure of (v, k, t) trades, J. Statist. Plann. Inference
13(1986), 170-191.

(7] Kreher, D. L. and S. P. Radsissowski, The existence of simple 6-(14,7,4)
designs, J. Combin. Theory Ser. A 43(1986), 237-243.

8] Malik, F., On (v, &, ¢) trades, MS dissertation, University of Tehran(1987).

283



