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Abstract. A \-packing of pairs by quintuples of a v-set V is a family of 5-subsets of
V (called blocks) such that every 2-subset of V occurs in at most A blocks. The packing
number is defined to be the maximum number of blocks in such a ) packing. These
numbers are determined here for A = 0 (mod 4) and all integers v > 5 with the
exceptions of (v, \) €{(22,16),(22,36),(27,16)).

1. Introduction
Let V by a v-set (of points). A \-packing of pairs by quintuples of V (briefly
packing) is a family of 5-subsets of V' (called blocks) such that every 2-subset
of V occurs in at most )\ blocks. The packing number Dy(v) is defined to be
the maximum number of blocks in such a packing. The packing problem is to
determine the packing number.

Schoenheim [7] has shown that

Dy < (212920 ) = py(w) 1)
5 4

where | z] is the floor of z. The values of D, (v) for all v have been determined
by Yin [9],[10] with 11 possible exceptions of v. Recently, Assaf and Hartman
have studied in [1] the packing number D4 (v). They prove the following.

Theorem 1.1. If v is an integerand v > 5, then

Bs(v) whenv # 3 (mod 5) andv #7,

D4(v) = { Bs(v) -1 whenv=3 (mod 5) orv=17.

The following result is contained in [5).

Theorem 1.2, If v=0o0r1 (mod 5) and v > 5, then Dy(v) = By(v) for
all A=0 (mod 4)..

It is our purpose here to determine D) (v) forallA =0 (mod 4) and all inte-
gersv > S with the possible exceptions of (v, \) € {(22,16),(22,36),(27,16)}.
We shall sometimes refer to a A-packing of pairs by quintuples of a v-set V as a
(v,5,)) packing. A (v, 5,)) packing with D, (v) blocks will be called a maxi-
mum packing.
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2. Preliminaries

In order to state our results we need several other types of designs. The related
definitions can be found in [2],[9]. In what follows, we say thata GDD (X, G, A)
with index ) is a (K, )\)-GDD if |A| € K for every block A € A. The type of
aGDD (X,G, A) is defined to be the multiset {|G| : G € G}, which is usually
denoted exponentially by 1/ 2% .., if there are j groups of size 1, k groups of size
2, etc. When K = {k}, a (K,)\)-GDD is written as a (k,))-GDD. A (k,))-
GDD of type n* is called a transversal design, denoted by TD (k, A, n). We also
refer to a BIBD with parameters (v, k,\) asaB (&, A; v). By (v, w; K,))-IPBD
we mean an incomplete PBD of order v with a hole of size w, block sizes from K
and index A. Write (v, w; k, A)-IPBD for K = {k} and define

IPy(w) = {v:a(v,w;5,)) — IPBD exists}.

We now list some of those results which will be used later.

Lemma 2.1. ([5]) There exists a B(5, \; v) forall integers v > 5 which satisfy
Mv—=1)=0 (mod 4) and \w(v—1) =0 (mod 20) with the exception of
v=15and A= 2.

Lemma 2.2, ([4]) Thereexistsa(n,9;5,1)-IPBDif n=19 or17 (mod 20),
n> 37 and n # 49. There exists a (n,13;5,1)-IPBDif n= 13 (mod 20)
and n> 53.

Lemma 2.3. ([5]) There exist the following designs:

(1) a(5,2)-GDDoftype5’;

(2) a(5,1)-GDDoftype 5°;

(3) a(6,2)-GDDoftype 5"; and

{4) aTD(7,\,r) forall positibe integers r and all integers A > 2.

Constructions by filling in the groups of GDDs provide us with the following
useful results.

Lemma 24. Let t,a,b and w be non-negative integers satisfying 0 < a,b <t
andt > 1. Let A\ = 8,12 or 16. Then 25t + Sa + 5b+ w € IP\(5b+ w) Iif
{5t+w,5a+w} C IP\(w),;and 25t +w € IP\(5t+ w) if 5t+ w € IP\(w)
anda=5b=0,.

Proof: From Lemma 2.3, we have a TD(7, %‘-,t) . Insuch a TD, we delete t — a
points from one group and ¢ — b points from another group. We then give weight
5 to every point of the resulting design and use Wilson’s Fundamental Construc-
tion for GDDs ([8]). The required input designs (5, 4)-GDDs of type 5° and
57 exist by Lemma 2.3, and a (5,4)-GDD of type 5% can be constructed using
a B(5,4;6) and a TD(5,1,5). Therefore there exists a (5,))-GDD of type
(5t)3(5a)!(5b)!. Adding w new points to this GDD gives the conclusion.
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Lemma2.5. Lett,a,band c be non-negative integers satisfying0 < a,b+c < t
andt > 1. Then 25t + Sa+ 5b+ 2c+ 2 € IPe(5b+ 2¢c+ 2) if {5t+ 2,
S5a+2} C IPi(2).

Proof: Delete 3 points from one group of a TD(6,2,5) and a (6,2)-GDD of
type 57 (see Lemma 2.3) respectively. This produces ({5, 6 },2)-GDDs of type
552! and 5%2!. Since both a B(5,4;5) and a B(5,4; 6) exist by Lemma 2.1,
we can know that a (5, 8)-GDD of type 532! or 562! exists. From the proof of
Lemma 2.4, we have alsoa (5, 8)-GDD of type 5° or 5¢ or 57. So the conclusion
holds by using the Fundamental Construction and the fact thata TD(7, 2, t) exists
for all positive integers ¢.

The following useful construction was shown by Yin in [9].

Lemma 2.6. Let e and m by positive integers satisfying e =0 (mod m) and
let g > 0. Suppose that the following designs exist:

(1) a(u+e+gq,e+q; K,)\)-IPBD; and

) a(u+q,q; K,(m—1))\)-IPBD.
Then there exists a (u + w,w; K, m)\) -IPBD where w = q + .

We shall also make use of the following result.

Lemma 2.7. Let A =0 (mod 4) and v > 9. Thenv € IP\(2) if v=2 or
4 (mod S) andv € IR(3) ifyv=3 (mod 5).

Proof: Careful inspection of the proof Theorem 1.3, Lemmas 2.2, 2.3 and Corol-
lary 4.3 in [1] yields the conclusion for A = 4 and v # 43,68. A (43,3;5,4)-
IPBD can be constructed by applying Lemma 2.6 with K = {5},e=4,g = 1,
u = 40, and A = m = 2. The conditions are satisfied because of Lemma 2.1.
Adding 3 infinite points to a resolvable B(5, 1; 65) (see [3]) guarantees that 68 €
IP4(3) since a B(S5,4; 6) exists by Lemma 2.1. We then get the required result
by taking 3 copies of a (v, w; 5,4)-IPBD with w = 2 or 3.

Finally, we mention the following two lemmas.

Lemma 2.8. If there exists a B(5,;v), Dy (v) = By(v) — € and Dy, (v) <
Byia(v) — ¢, then Dyyp(v) = Byy(v) — e wheree=0 or 1.

Proof: Constructa(v,5,)’) packing with By/(v) —e blocks ona v-set V. Adjoin

its blocks to a B (5,); v) also defined on V. This produces a (v,5,) + )\')
packing with By (v) — € blocks and the conclusion holds.

Lemma29. Let A =0 (mod 4) and v > 5. Suppose that v € IP,(u) and
one of the following two holds:

(1) v=u=3 (mod 5);
(2) vyu=2o0r4 (mod 5).
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Then Dy(v) = By(v) if Dy(u) = By(u).

Proof: This is because that the number of pairs (counting multiplicities) which
occur less than ) times in the blocks of a maximum (v, 5, A) packing is the same
as that of a maximum (u, 5, )) packing.

3. Packing number D,(v) forv=3 (mod 5)

We first note that Dy(v) < By(v) —1 whenl =4 (mod 20) and ) = 3

{mod 5). The proof is similar to the case for A = 4 and A = 3 (mod 5)
(see [1]). In view of Lemma 2.1, Lemma 2.8 and Theorem 1.1, it is sufficient to
determine D) (v) = By(v) for A = 8,12 and 16.

Lemma3.l. If v=3 (mod 5) and v > 5, then Dg(v) = Bsg(v).

Proof: When v > 13, it is shown in Lemma 2.7 that {v+ 1,v — 1} C IP4(2).
Define I(n) = {1,2,...,n}. Let (I(v-1),{1,2},A) bea(v—1,2;5,4)-
IPBD.Let (I(v+ 1), {v,v+1},B) bea(v+ 1,2;5,4)-IPBD. Let D denote the
configuration obtained from B by replacing symbol v + 1 by v wherever it occurs.
It is easy to check that A U D forms an 8-packing on I(v) with Bg(v) blocks.
Forv = 8,let V = Z¢ U {z,y}. Develop under the action of Z the following
base blocks to obtain an 8-packing on V' with Bg(8) blocks.

T 1

(orbit length 3)

(orbit length 3)
(orbit length 2)
0 4 (orbit length 2)

The conclusion then follows from (1.1).
Lemma 3.2, If v € {8,13, 18}, then B12(v) = Di2(v).

Proof: From (1.1), we construct a (v, 5, 12) packing with B)>(v) blocks as fol-
lows, for each v € {8, 13,18}, to yield the result.
For v = 8, let the point set be Z; U {A, B, C, D}. Then the blocks are

3
2 5
1 3
2 5
0 4

NNwWNDWN

H e
Qe OOOO

A B 1 2 3 (threetimes)
A C 0 1 3 (threetimes)
A D 0 1 2 (threetimes)
A B C 0 2 (threetimes)
A B D 0 3 (threetimes)
A C D 2 3 (threetimes)
A B C D 1 (threetimes)
B C 0 1 2 modd

B D 0 1 2 mod4

D C 0 1 2 mod4
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For v = 13, let the point-set be V = (Zs x Z3) U {z, y, z}. Let A consist of
the following 75 blocks:

(0,0) 0,1) (2,1) (3,1) mod (5,-) (taken twice)
(0,0) (1,0) 4,0) (0,1) mod (5,—) (taken twice)
(0,0) (0,1) (2,1) (3,1) mod (5, —) (taken twice)
{0,0) (1,0) 4,0) (0,1) mod (5,-) (taken twice)
(1,0) 4,0) (2,1) 3,1) mod (5,-)

(1,0) 4,0) 2,1) (3,1) mod (5,—) (taken 3 times)
0,0) (0,1) (2,1) 3,1) mod(5,-)

N NN HARAR

It is readily checked that each pairset of V not contained in F = {z, y, z} occurs
exactly in 10 blocks of A, whereas no pairset of F is contained in any block of
A. Now construct a (5,2)-GDD of type 25 (Zs x Z;,G, B) by Lemma 2.3 and
define D = {FUG:G € G}. To the required set of blocks, take two copies of
the blocks in D, denoted by C. It follows that A U B U C forms a 12-packing on
V with By, (13) blocks.

For v = 18, let the point-setbe V = Z;5 U {00;: 1 € Z3 }. Delete one pointin a
B(4,1;16) (see [5]) to produce a (4, 1)-GDD of type 3°. We label the GDD as
(Z15,G,A). Define B; = {{oo;}UA: A € A} and D; = {{o0;,00:41}UG: G €
G} for each i € Z;. Take two copies of all blocks in B; U D; for each i € Z3.
These blocks together with the blocks of a B(5,6; 15) on Z;s form a 12-packing
on V with B;3(18) blocks.

Lemma 3.3. If v € {23,33,43,48)}, then D1z (v) = By2(v).

Proof: Take 3 copies of all blocks in a (33, 8; 5,4)-IPBD which exists by Theo-
rem 4.2 in [1]. This gives that 33 € I P12(8). From Lemma 2.1 and Lemma 2.2,
we can use Lemma 2.6 with K = {5} and (u,e,q,m,)\) = (40,4,1,2,1) to
get43 € IP,(3). We also apply Lemma 2.6 with K = {5} and (u,e,q,m,)\) =
(40,10,3,2,2) to obtain 48 € IP,(8), and hence 48 € IPj,(8). This guar-
antees that Dy2(v) = Bia(v) for v = 33 or 48 because of Lemma 3.2 and
Lemma 29. For v = 23, we have a B(5, 10; 23) by Lemma 2.1. Applying
Lemma 2.6 with K = {5} and (u,e,q,m,)) = (20,4,1,2,1) we have also
a (23,3; 5,2)-IPBD. This gives rise to a 12-packing with B)2(23) blocks and
hence Dy, (23) = By3(23). For v = 43, the proof is similar.

Lemma 34. D12(28) = B12(28).

Proof: Let V = Z,s U {z,y, 2z}. We construct a 12-packing on V with B;3 (28)
blocks below.

We first start witha TD(6, 1, 5) and delete two points from one group to obtain
a ({5,6},1)-GDD of type 553!. This gives rise to a (28, 3; {5,6},1)-IPBD.
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Let us label its point-setas V = Zas U{z, y, 2} and the hole as {z, y, z}. We then
easily construct a (28, 3; {5,6},3)-IPBD (V,{z,y, 2}, A) in such a way that
A contains the special blocks: B, = {z,0,1,2,3,4}, B, = {y,0,1,2,3,4},
B3 = {2,0,1,2,3,4}. Tothe required set of blocks, we remove B;, B>, and B;
from A and replace them with the blocks: {z,y,2,0,1},{z,y,2,0,2},{z.y. 2,
0,3},{z,9,2,0,4},{z,9,2,1,2},{z,9,2,1,3},{z,9,2,1,4},{z,9,2,2,4},
{z,v,2,2,3},{z,y,2,3,4},and {0,1,2,3,4} (taken 11 times). We then put
a B(5,4;|A]) on each block A € A\{Bi, B2, B3}, where we make use of the
B(5,4;5) and B(5,4;6) in Lemma 2.1. The result is a 12-packing on V with
B12(28) blocks.

Lemma 3.5. D12(38) = B12(38).

Proof: Start with a TD(6,1,7) and delete 6 points from one group to get a
({5,6},1-GDD of type 751!. Let the point-set be Z3s U {z} and the group
of size one be {z}. On each block A of the GDD except for one distinguised
block, say By = {z,0,1,2,3,4}, we construct a B(5,4; |A]). Then we ad-
join two new points y, z to the GDD and put a (9, 2; 5,4)-IPBD on each group
of size 7 together with points y, z in such a way that the hole is {y, z}. Here
9 € IP4(2) follows from Lemma 2.7. Copy the resulting configuration three
times and make the permutation (z, y, 2). This gives a configuration D which is
based on V = Z3s U {z, y, 2} and satisfies the following properties:

1 B =‘{BO = {z,y,z}, B = {3,0,1,2,3,4}, B, = {y,0,1-2,3,4}’
B3y ={2,0,1,2,3,4}}CD,

(2) |A| =S5 forany A € D\B,

(3) no pair of points of V which lies in {z,y,2} or {0,1,2,3,4} occurs in
any block of D\B,

(4) each pair of points of V' not contained in {z,y,2,0,1,2,3,4} occurs in

- exactly 12 blocks of D\B, and

(5) each pair of points in which one point lies in {z, y, 2} and the other lies in
{0,1,2,3,4} occurs in exactly 8 blocks of D\B.

Now we replace those blocks in B with the blocks as in Lemma 3.4. The result

is a 12-packing on V' with B;2(38) blocks and the conclusion holds.

Lemma3.6. If y=3 (mod 5) and v > 5, then D13(v) = Bj2(v).

Proof: It is shown in Lemmas 3.2-3.5 that the conclusion holds for v < 53.
Noticing Lemma 2.7 and Lemma 2.9, we apply Lemma 2.4 witht > 2 andw = 3
to obtain the result for v = 25t + 5a+ 5b+ 3 > 53, where (a, b) is taken from
{(0,0), (0,1),(0,2),(2,1),(2,2)} whent = 2, and from {(0, 1), (0,2),
(0,3),(2,2),(2,3),(3,3)} whent > 3.

Lemma3.7. Ifv=3 (mod 5) and v > 5, then D1¢(v) = Bis(v).
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Proof: For these values of v, a 16-packing with By (v) blocks can be constructed
by taking two copies of the blocks of a maximum (v, 5, 8) packing.

The foregoing can be summarized as follows.
Theorem 3.8. If v=3 (mod S),v>5and A =0 (mod 4), then

Ba(v) when )\ % 4 (mod 20),

Da(v) = { By(v)—1 whenl=4 (mod 20).

4. Packing numbers D,(v) forv=2 or4 (mod 5)
It is easy to show the following.

Lemma 4.0. D24 (7) = B2 (7) = 50.
Lemmad.l. Ifv=2 or4 (mod 5) and v > 5, then Dg(v) = Bg(v).

Proof: Take two copies of the blocks of a maximum (v, 5,4) packing to obtain
the result for v > 9. When v = 7, let the point-set be Z; U {z,y, z}. Then the
blocks are:

z y 0 1 2 mod4
y 2 01 2 mod4
z 2 0 1 2 mod4
z y 2z 01 mod4

Lemmad4.2. Ifv=2 or4 (mod 5) and v > 5, then Dy>(v) = Bja(v) — 1.

Proof: Assume that there exists a (v, 5, 12) packing on V with B;,(v) blocks.
LetY; be the numbers of blocks containing x (z € V). It is easily verified that the
degree of vertex z (z € V') in the non-occurence graph must be 12(v~ 1) —4Y,
which is divisible by 4. However the number of pairs of points of V which occur in
Iess than 12 blocks (counting multiplicities) is 6 v(v — 1) — 10 B12(v) = 2 when
v=2or4 (mod 5). Thisisacontradiction. We then have D3 (v) < B2 (v) —
1. On the other hand, a 12-packing with Bj2(v) — 1 blocks can be constructed
by taking three copies of the blocks of a maximum (v, 5, 4) packing whenv > 9.
A (7,5,12) packing with B;2(7) — 1 blocks follows from a B(5,10;7) and a
maximum (7,5, 2) packing ([9]). Therefore the conclusion holds.

Lemmad3. If v € {7,9,12,17}, then Dys(v) = Bis(v).

Proof: We construct a 16-packing with B¢ (v) blocks for these values of v to
yield the result.
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For v = 7, let the point-set be Z4 U {z, y, z}. Then the blocks are:
mod 4 (taken twice)
mod 4 (taken twice)
mod 4 (taken twice)

H H B AN 8K
teeeeTe O0OON N

NNNNN == —_OO0O
Nt =t OO O N NN b s
WWNWN=WWWNDNDN

N

For v = 9, let the point-set be Z¢ U {z,y, z}. Then the blocks can be obtained
by developing under the action of Zg the following base blocks:
5 z y 0 1 3
y 2z 0 1
z z 0 1

]

3
2
(orbit length 3)
(orbit length 3)
(orbit length 3)
(orbit length 2)

(orbit length 2)
z (orbit length 2)

For v = 12, let the point-set be Zg U {A, B,C} U {z,y, z}. It was shown in
{5] thata B(4,3;9) and a B(3, 1;9) both exist. Puta B(4,3;9) with block set
Aon Zg U {4, B,C} and a B(3, 1;9) with block set Bon Zs U {A,B,C} in
such a way that {4, B,C} € B. Define

Si={{z}JUE:E€c AJU{{y}UE:E€ A}U{{2}UE:E € A} and

S ={{z,y}UF:Fe FYU{{y,2}UF:Fe F}U {{z,2}JUF:F € F},
where F = B\{{A, B, C}}. Then the required family of blocks follows from the
87 blocks in S; U S> and the following 18 blocks:

N OO OO O
NN WWWO ADAM
SAh bbbV

HQ@ B @ HHNR
OO QO i pmb e N e e

A B C 0 2 modb6

z y z A B A1 2 4 5
x y z B C B 2 3 4 5
z y z C A Cc 01 2 5
A 0 2 3 5 A0 1 3 4
B 0 1 2 3 B 01 4 5
C 0 3 4 5 CcC 1 2 3 4
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For v = 17, let the point-set be Z14 U {z,y, z}. The blocks then are obtained
by developing under the action of Z;4 the following base blocks:

01 2 4 6 y 01 5 7
0 2 4 5 8 vy 0 3 7 11
01 4 6 9 y 0 5 11 13
0 3 4 5 8 z 0 3 7 8
z 0 1 2 5 2z 0 3 6 10
z 0 2 4 7 2z 0 4 5 6
z 0 2 3 8 z y 2z 0 1
z 0 2 7 9 (orbit length 7)

y 0 2 7 9 (orbit length 7)

2 0 1 7 8 (orbit length 7)

Lemma 4.4. If v € {14,19,24}, then D1¢(v) = Big(v).

Proof: For given values of v, let V = Z,_; U {oo}. We first construct a (v —
1,5, 12) packing of Z,,_; with By2(v — 1) blocks. Then we construct a configu-
ration D on V such that each pairset of V containing the point co occurs in exactly
16 blocks in D and each other pairset of V' occurs in exactly 4 blocks in D. This
gives rise to the result, where D consists of the following blocks:

Forv = 14;: co 0 1 3 9 mod 13  (taken 4 times)
Forv=19: o 1 5 7 10 mod 18
oo 0 2 4 7 mod 18
oo 0 5 6 8 mod 18
oo 0 1 4 10 mod 18
oo 0 4 10 11 mod 18
Forv=24: 0 1 4 6 13 mod 23  (taken twice)
co 0 2 5 8 mod 23
co 0 4 12 13 mod 23
oo 0 7 8 12 mod 23
co 0 8 10 17 mod 23

Lemma 4.5. Dy6(34) = Bys(34).

Proof: Let V = Zz U {00;:0 < i < 6}. A(34,7;5,16)-IPBD can be con-
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structed by developing under the action of Z>; the following base blocks:

ocg 0 10 11 13 (taken 4 times)

ooy 0 12 17 21 (taken 4 times)

oo 0 1 3 7 oos 0 1 7 16
oo 0 3- 8 14 oos 0 3 14 18
oo, 0 5 7 8 cos 0 5 8 15
oo, 0 2 8 9 cos 0 2 9 13
co3 0 2 6 15 oo 0 1 3 16
oo3 0 5 11 15 o0os 0 3 8 18
o033 0 2 3 10 oos 0 5 7 15
o033 0 6 7 11 o0g 0 2 8 13
oo 0 3 7 16 0 1 3 7 16
oo4 0 8 14 18 0 3 8 14 18
oo4 0 7 8 15 0 5 7 8 15
o4 0 8 9 13 0 2 8 9 13

So the result follows from Lemma 2.9 and Lemma 4.3.

Lemmad6. If v = 2 (mod 5),v > 5 and v # 22,27, then Big(v) =
Dys(v).

Proof: By Lemma 4.3, it is sufficient to establish the lemma for v > 32. As
we did in the proof of Lemma 3.6, we can apply Lemma 2.4 with w = 2 to
give the conclusion for v > 52. For 32 < v < 47, we use Lemma 2.9 by a
suitable IPBD. First note that 37 € IPy6(9) by Lemma 2.2. We readily obtain
that 42 € IP;6(7) by deleting two points from one group inaT'D(6,1,7) and
adding two infinite points to each group of the resulting GDD. Taking K = {5}
and (u,e,q,m,)) = (40,12,1,2,8), (25,2,6,2,8) in Lemma 2.6, we also
obtain that {32,47} C IP¢(7), where we make use of a (53,13;5,8)-IPBD
in Lemma 2.2 and a (33, 8; 5, 8)-IPBD in Theorem 4.2 in [1]. The required fact
that 31 € IP;(6) follows from a B(6,1;31) and a B(S,8;6).

Lemmad.7. If v=4 (mod 5) and v 5, then Dyg(v) = Bis(v).

Proof: It is shown in Lemmas 4.3—4.5 that Dig(v) = Bjs(v) ifv =9, 14,19,
24, or 34, It is'’known that {29,39,49,79} C IP;(7) (see Lemma 4.3 [6]), and
hence {29,39,49,79} C IPis(7). Wecanalso obtain that 44 € IPys(9) using
aTD(6,1,7) and the fact that9 € IP;¢(2) inLemma2.7. Sincea B(S, 16; 10)
exists from Lemma 2.1, adjoining one infinite point to a (5, 16)-GDD of type
9581 which comes fromaTD(6,1,9),a(54,9; 5, 16)-IPBD is obtained. So the
conclusion holds for v € {29,39,44,49,54,79} by making use of Lemma 2.9.
The remaining cases for 9 < v < 79 are covered by applying Lemma 2.7 and
Lemma 2.5 with t = 2, (a,b,¢) = (0,1,1),(0,2,1),(2,1,1) and (2,2, 1).
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We also apply Lemma 2.7 and Lemma 2.5 with ¢ > 3. This guarantees that
D16(v) = By6(v) whenever v > 84 and the proof is complete.

We wish to remark that Dy(v) < By(v) — 1 when ) = 12 (mod 20) and
v=2or4 (mod 5). The proof is similar to that of Lemma 4.2. The foregoing
can be summarized as follows.

Theorem4.8. If v=2 or4 (mod 5) and v > 5,2 =0 (mod 4), then

By(v) when A =4 (mod 20) and (v,)) #(7,4),
Dy(v)= By(v) =1 when)=12 (mod 20) or(v,)) = (7,4),
avI= By(v) when A =0 or 8 (mod 20),
By(v) when A = 16 (mod 20) and v # 22 or27.
5. Miscellaneous Values

The purpose of this section is to handle the remaining cases for v = 22, 27 and
A=16 (mod 20).

Lemma 5.1. Ds¢(22) = Bsg(22).

Proof: First note that Hanani [5] has constructed directly a TD(8,2,4). By the
appropriate deletion of points from this T'D, we readily obtain a ({5,6,7},2)-
GDD of type 364!, Using Lemma 2.1, we then geta (5,40)-GDD of type 3641,
Let us label the GDD as (X,G, A), where [X| = 22,G = {Gi:1 < i< 6}U
{Z4}. OneachsetG;UGj, 1 < i < j < 6, weconstructa B(5, 4; 6) with block
set B;;. On X\Z4, we construct an (18, 5,12) maximum packing with block
family B. For1 <1< 6 and0 <t < 3, we construct a B(S, 4; 6) with block
set A ontheset G;U{t,t+ 1,t+ 2}, wheret+ 1 and ¢t + 2 are taken module 4.
Let C consist of the following blocks:

Giu{0,1} GauU{0,1}
G u{2,3} GaU{2,3}
G,u{0,2} GsU{0,2}
G uU{1,3} Gsu{1,3}
G u{0,3} Gs U{0,3}
Gyu{1,2} GsU{1,2}

Let D = {G; U {s,b}: (a,b) = (0,1),(0,2),(0,3),(1,2),(1,3) or (2,3),
i=1,2,...,6}. Itis then a straightforward verification that '

AUBUCUDU ( U B.-,-) u [ U ( U A.-;)J
1<i<i<6 1<ig6 \0<t<3

is a 56-packing on X’ with Bsg(22) blocks.
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Lemma 5.2. D3(27) = B6(27).

Proof: Itis well known thataresolvable B(5, 1; 25) exists. Delete one point from
the design. This givesrisetoa (5, 1)-GDDof type 4 6,say (V,G, A), in which the
set of blocks can be partitioned into holey parallel class, each of which is a partition
of V\G for some G € G. Write G = {G1,Gs,...,Gs}. Let A1,Az,...,A¢
denote these holey parallel classes, where A; partitions V\G; (1 < 1 < 6). To
the required result, we use this GDD together with three new points z, y and z and
proceed as follows.
(1) For1 < i < S, on sets {z,y} UG, {y,2} UG; and {z,z} U G;, we
separately construct a B(5,4;6).
(2) ForeachA € A4; (1 <i<6),onsets AU{z}, AU {y}and AU {2}, we
separately construct a B(5,4;6).
(3) For1l < i< 5,onsets {z} UG, {y} UG; and {2} U G}, we separately
construct a B(5,8;5).
4 OnGe U {z,y, 2}, weconstructa (7,5, 16) maximum packing.
(5) Foreach A € Ag, weconstructa B(5,5;9) on AUGs, and then copy each
block in A; (1 < 1 < 5) 5 times.
(6) Constructa(5,5)-GDD of type 4° with group set {G1,Ga,...,Gs}.
(7) Construct a(5, 14)-GDD of type 4 with group set {G1,G2,...,Gs}-
Thus, a 36-packing with B¢ (27) blocks on V U {z, y, z} is formed when the
total collection of blocks from the above systems is taken.

Combining the results of Lemmas 2.1, 2.8, 5.1, and 5.2, we have established
the following.

Theorem 5.3. Dyom+16(22) = B2om+16(22) and Dyprne16 (27) = Baonr16(27)
wherem > 2 and n > 1.

6. Concluding Remarks

Summarizing the previous results, we have already determined Dy (v) for all pos-

itive integers A = 0 (mod 4) and v > 5 with exceptions of (v, \) = (22, 16),
(22, 36) and (27, 16). The author would like to thank the referee for pointing out
the result for A = 8, 12, 16, with a few possible exceptions, has been obtained (in
a paper to appear in J.C.T.) by A. M. Assaf and N. Shalaby independently.
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