On λ -packings of pairs by quintuples: $\lambda \equiv 0 \pmod{4}$

Jianxing Yin

Dept. of Mathematics of Suzhou University Suzhou, 215006 P.R. of China

Abstract. A λ -packing of pairs by quintuples of a v-set V is a family of 5-subsets of V (called blocks) such that every 2-subset of V occurs in at most λ blocks. The packing number is defined to be the maximum number of blocks in such a λ packing. These numbers are determined here for $\lambda \equiv 0 \pmod{4}$ and all integers $v \geq 5$ with the exceptions of $(v, \lambda) \in \{(22, 16), (22, 36), (27, 16)\}$.

1. Introduction

Let V by a v-set (of points). A λ -packing of pairs by quintuples of V (briefly packing) is a family of 5-subsets of V (called blocks) such that every 2-subset of V occurs in at most λ blocks. The packing number $D_{\lambda}(v)$ is defined to be the maximum number of blocks in such a packing. The packing problem is to determine the packing number.

Schoenheim [7] has shown that

$$D_{\lambda}(v) \le \left\lfloor \frac{v}{5} \left\lfloor \frac{\lambda(v-1)}{4} \right\rfloor \right\rfloor = B_{\lambda}(v) \tag{1.1}$$

where $\lfloor x \rfloor$ is the floor of x. The values of $D_2(v)$ for all v have been determined by Yin [9],[10] with 11 possible exceptions of v. Recently, Assaf and Hartman have studied in [1] the packing number $D_4(v)$. They prove the following.

Theorem 1.1. If v is an integer and $v \ge 5$, then

$$D_4(v) = \begin{cases} B_4(v) & \text{when } v \not\equiv 3 \pmod{5} \text{ and } v \neq 7, \\ B_4(v) - 1 & \text{when } v \equiv 3 \pmod{5} \text{ or } v = 7. \end{cases}$$

The following result is contained in [5].

Theorem 1.2. If $v \equiv 0$ or 1 (mod 5) and $v \geq 5$, then $D_{\lambda}(v) = B_{\lambda}(v)$ for all $\lambda \equiv 0 \pmod{4}$.

It is our purpose here to determine $D_{\lambda}(v)$ for all $\lambda \equiv 0 \pmod{4}$ and all integers $v \geq 5$ with the possible exceptions of $(v, \lambda) \in \{(22, 16), (22, 36), (27, 16)\}$. We shall sometimes refer to a λ -packing of pairs by quintuples of a v-set V as a $(v, 5, \lambda)$ packing. A $(v, 5, \lambda)$ packing with $D_{\lambda}(v)$ blocks will be called a maximum packing.

2. Preliminaries

In order to state our results we need several other types of designs. The related definitions can be found in [2],[9]. In what follows, we say that a GDD $(X, \mathcal{G}, \mathcal{A})$ with index λ is a (K, λ) -GDD if $|A| \in K$ for every block $A \in \mathcal{A}$. The type of a GDD $(X, \mathcal{G}, \mathcal{A})$ is defined to be the multiset $\{|G| : G \in \mathcal{G}\}$, which is usually denoted exponentially by $1^j 2^k \ldots$ if there are j groups of size 1, k groups of size 2, etc. When $K = \{k\}$, a (K, λ) -GDD is written as a (k, λ) -GDD. A (k, λ) -GDD of type n^k is called a transversal design, denoted by TD (k, λ, n) . We also refer to a BIBD with parameters (v, k, λ) as a B $(k, \lambda; v)$. By $(v, w; K, \lambda)$ -IPBD we mean an incomplete PBD of order v with a hole of size w, block sizes from K and index λ . Write $(v, w; k, \lambda)$ -IPBD for $K = \{k\}$ and define

$$IP_{\lambda}(w) = \{v: a(v, w; 5, \lambda) - IPBD \text{ exists}\}.$$

We now list some of those results which will be used later.

Lemma 2.1. ([5]) There exists a $B(5, \lambda; v)$ for all integers $v \ge 5$ which satisfy $\lambda(v-1) \equiv 0 \pmod{4}$ and $\lambda v(v-1) \equiv 0 \pmod{20}$ with the exception of v=15 and $\lambda=2$.

Lemma 2.2. ([4]) There exists a (n, 9; 5, 1) -IPBD if $n \equiv 19$ or 17 (mod 20), $n \geq 37$ and $n \neq 49$. There exists a (n, 13; 5, 1) -IPBD if $n \equiv 13$ (mod 20) and $n \geq 53$.

Lemma 2.3. ([5]) There exist the following designs:

- (1) a(5,2)-GDD of type 5^7 ;
- (2) a(5,1)-GDD of type 5^9 ;
- (3) a(6,2)-GDD of type 5^7 ; and
- (4) a $TD(7, \lambda, r)$ for all positibe integers r and all integers $\lambda \geq 2$.

Constructions by filling in the groups of GDDs provide us with the following useful results.

Lemma 2.4. Let t, a, b and w be non-negative integers satisfying $0 \le a, b \le t$ and $t \ge 1$. Let $\lambda = 8, 12$ or 16. Then $25t + 5a + 5b + w \in IP_{\lambda}(5b + w)$ if $\{5t + w, 5a + w\} \subseteq IP_{\lambda}(w)$; and $25t + w \in IP_{\lambda}(5t + w)$ if $5t + w \in IP_{\lambda}(w)$ and a = b = 0.

Proof: From Lemma 2.3, we have a TD $(7, \frac{\lambda}{4}, t)$. In such a TD, we delete t-a points from one group and t-b points from another group. We then give weight 5 to every point of the resulting design and use Wilson's Fundamental Construction for GDDs ([8]). The required input designs (5,4)-GDDs of type 5^5 and 5^7 exist by Lemma 2.3, and a (5,4)-GDD of type 5^6 can be constructed using a B(5,4;6) and a TD(5,1,5). Therefore there exists a $(5,\lambda)$ -GDD of type $(5t)^5(5a)^1(5b)^1$. Adding w new points to this GDD gives the conclusion.

Lemma 2.5. Let t, a, b and c be non-negative integers satisfying $0 \le a$, $b+c \le t$ and $t \ge 1$. Then $25t + 5a + 5b + 2c + 2 \in IP_{16}(5b + 2c + 2)$ if $\{5t + 2, 5a + 2\} \subseteq IP_{16}(2)$.

Proof: Delete 3 points from one group of a TD(6,2,5) and a (6,2)-GDD of type 5^7 (see Lemma 2.3) respectively. This produces ($\{5,6\},2$)-GDDs of type 5^52^1 and 5^62^1 . Since both a B(5,4;5) and a B(5,4;6) exist by Lemma 2.1, we can know that a (5,8)-GDD of type 5^52^1 or 5^62^1 exists. From the proof of Lemma 2.4, we have also a (5,8)-GDD of type 5^5 or 5^6 or 5^7 . So the conclusion holds by using the Fundamental Construction and the fact that a TD(7,2,t) exists for all positive integers t.

The following useful construction was shown by Yin in [9].

Lemma 2.6. Let e and m by positive integers satisfying $e \equiv 0 \pmod{m}$ and let $q \geq 0$. Suppose that the following designs exist:

- (1) $a(u+e+q,e+q;K,\lambda)$ -IPBD; and
- (2) $a(u+q,q;K,(m-1)\lambda)$ -IPBD.

Then there exists a $(u + w, w; K, m\lambda)$ -IPBD where $w = q + \frac{\varepsilon}{m}$.

We shall also make use of the following result.

Lemma 2.7. Let $\lambda \equiv 0 \pmod{4}$ and $v \geq 9$. Then $v \in IP_{\lambda}(2)$ if $v \equiv 2$ or 4 (mod 5) and $v \in IP_{\lambda}(3)$ if $v \equiv 3 \pmod{5}$.

Proof: Careful inspection of the proof Theorem 1.3, Lemmas 2.2, 2.3 and Corollary 4.3 in [1] yields the conclusion for $\lambda=4$ and $v\neq 43$, 68. A (43, 3; 5, 4)-IPBD can be constructed by applying Lemma 2.6 with $K=\{5\}$, e=4, q=1, u=40, and $\lambda=m=2$. The conditions are satisfied because of Lemma 2.1. Adding 3 infinite points to a resolvable B(5,1;65) (see [3]) guarantees that $68\in IP_4(3)$ since a B(5,4;6) exists by Lemma 2.1. We then get the required result by taking $\frac{\lambda}{4}$ copies of a (v,w;5,4)-IPBD with w=2 or 3.

Finally, we mention the following two lemmas.

Lemma 2.8. If there exists a $B(5, \lambda; v)$, $D_{\lambda'}(v) = B_{\lambda'}(v) - \epsilon$ and $D_{\lambda'+\lambda}(v) \le B_{\lambda'+\lambda}(v) - \epsilon$, then $D_{\lambda'+\lambda}(v) = B_{\lambda+\lambda'}(v) - \epsilon$ where $\epsilon = 0$ or 1.

Proof: Construct $a(v, 5, \lambda')$ packing with $B_{\lambda'}(v) - \epsilon$ blocks on a v-set V. Adjoin its blocks to a $B(5, \lambda; v)$ also defined on V. This produces a $(v, 5, \lambda + \lambda')$ packing with $B_{\lambda+\lambda'}(v) - \epsilon$ blocks and the conclusion holds.

Lemma 2.9. Let $\lambda \equiv 0 \pmod{4}$ and $u \geq 5$. Suppose that $v \in IP_{\lambda}(u)$ and one of the following two holds:

- (1) $v \equiv u \equiv 3 \pmod{5}$;
- (2) $v, u \equiv 2 \text{ or } 4 \pmod{5}$.

Then
$$D_{\lambda}(v) = B_{\lambda}(v)$$
 if $D_{\lambda}(u) = B_{\lambda}(u)$.

Proof: This is because that the number of pairs (counting multiplicities) which occur less than λ times in the blocks of a maximum $(v, 5, \lambda)$ packing is the same as that of a maximum $(u, 5, \lambda)$ packing.

3. Packing number $D_{\lambda}(v)$ for $v \equiv 3 \pmod{5}$

We first note that $D_{\lambda}(v) \leq B_{\lambda}(v) - 1$ when $\lambda \equiv 4 \pmod{20}$ and $\lambda \equiv 3 \pmod{5}$. The proof is similar to the case for $\lambda = 4$ and $\lambda \equiv 3 \pmod{5}$ (see [1]). In view of Lemma 2.1, Lemma 2.8 and Theorem 1.1, it is sufficient to determine $D_{\lambda}(v) = B_{\lambda}(v)$ for $\lambda = 8$, 12 and 16.

Lemma 3.1. If $v \equiv 3 \pmod{5}$ and $v \geq 5$, then $D_8(v) = B_8(v)$.

Proof: When $v \ge 13$, it is shown in Lemma 2.7 that $\{v+1,v-1\} \subseteq IP_4(2)$. Define $I(n) = \{1,2,\ldots,n\}$. Let $(I(v-1),\{1,2\},\mathcal{A})$ be a (v-1,2;5,4)-IPBD. Let $(I(v+1),\{v,v+1\},\mathcal{B})$ be a (v+1,2;5,4)-IPBD. Let \mathcal{D} denote the configuration obtained from \mathcal{B} by replacing symbol v+1 by v wherever it occurs. It is easy to check that $\mathcal{A} \cup \mathcal{D}$ forms an 8-packing on I(v) with $B_8(v)$ blocks. For v=8, let $V=Z_6\cup\{x,y\}$. Develop under the action of Z_6 the following base blocks to obtain an 8-packing on V with $B_8(8)$ blocks.

```
      x
      0
      1
      2
      3

      x
      0
      2
      3
      5
      (orbit length 3)

      y
      0
      1
      2
      3

      y
      0
      2
      3
      5
      (orbit length 3)

      x
      y
      0
      2
      4
      (orbit length 2)

      x
      y
      0
      2
      4
      (orbit length 2)
```

The conclusion then follows from (1.1).

Lemma 3.2. If $v \in \{8, 13, 18\}$, then $B_{12}(v) = D_{12}(v)$.

Proof: From (1.1), we construct a (v, 5, 12) packing with $B_{12}(v)$ blocks as follows, for each $v \in \{8, 13, 18\}$, to yield the result.

For v = 8, let the point set be $Z_4 \cup \{A, B, C, D\}$. Then the blocks are

```
A
   \boldsymbol{B}
               3 (three times)
A C 0 1
               3 (three times)
               2 (three times)
A D 0 1
A B C 0 2 (three times)
A B D 0
              3 (three times)
A \quad C \quad D \quad 2
              3 (three times)
A B C D
              1 (three times)
\boldsymbol{B}
   C \quad 0 \quad 1
               2 mod 4
B D 0 1
               2 mod 4
D C 0 1
              2
                  mod 4
```

For v = 13, let the point-set be $V = (Z_5 \times Z_2) \cup \{x, y, z\}$. Let \mathcal{A} consist of the following 75 blocks:

```
(0,0) (0,1) (2,1) (3,1)
                           mod(5, -) (taken twice)
    (0,0) (1,0) (4,0) (0,1)
                           mod(5, -) (taken twice)
    (1,0) (4,0) (2,1) (3,1)
                           mod(5, -)
\boldsymbol{x}
    (0,0) (0,1) (2,1) (3,1)
                           mod(5, -) (taken twice)
                           mod (5, -) (taken twice)
   (0,0) (1,0) (4,0) (0,1)
   (1,0) (4,0) (2,1) (3,1)
                           mod(5, -)
                           mod(5, -) (taken 3 times)
z (1,0) (4,0) (2,1) (3,1)
   (0,0) (0,1) (2,1) (3,1)
                           mod(5, -)
    (0,0) (1,0) (4,0) (0,1)
                           mod(5, -)
```

It is readily checked that each pairset of V not contained in $F = \{x, y, z\}$ occurs exactly in 10 blocks of A, whereas no pairset of F is contained in any block of A. Now construct a (5,2)-GDD of type 2^5 $(Z_5 \times Z_2, \mathcal{G}, \mathcal{B})$ by Lemma 2.3 and define $\mathcal{D} = \{F \cup G: G \in \mathcal{G}\}$. To the required set of blocks, take two copies of the blocks in \mathcal{D} , denoted by C. It follows that $A \cup B \cup C$ forms a 12-packing on V with $B_{12}(13)$ blocks.

For v=18, let the point-set be $V=Z_{15}\cup\{\infty_i:i\in Z_3\}$. Delete one point in a B(4,1;16) (see [5]) to produce a (4,1)-GDD of type 3^5 . We label the GDD as $(Z_{15},\mathcal{G},\mathcal{A})$. Define $\mathcal{B}_i=\{\{\infty_i\}\cup A:A\in\mathcal{A}\}$ and $\mathcal{D}_i=\{\{\infty_i,\infty_{i+1}\}\cup G:G\in\mathcal{G}\}$ for each $i\in Z_3$. Take two copies of all blocks in $\mathcal{B}_i\cup\mathcal{D}_i$ for each $i\in Z_3$. These blocks together with the blocks of a B(5,6;15) on Z_{15} form a 12-packing on V with $B_{12}(18)$ blocks.

Lemma 3.3. If $v \in \{23, 33, 43, 48\}$, then $D_{12}(v) = B_{12}(v)$.

Proof: Take 3 copies of all blocks in a (33,8;5,4)-IPBD which exists by Theorem 4.2 in [1]. This gives that $33 \in IP_{12}(8)$. From Lemma 2.1 and Lemma 2.2, we can use Lemma 2.6 with $K = \{5\}$ and $(u,e,q,m,\lambda) = (40,4,1,2,1)$ to get $43 \in IP_2(3)$. We also apply Lemma 2.6 with $K = \{5\}$ and $(u,e,q,m,\lambda) = (40,10,3,2,2)$ to obtain $48 \in IP_4(8)$, and hence $48 \in IP_{12}(8)$. This guarantees that $D_{12}(v) = B_{12}(v)$ for v = 33 or 48 because of Lemma 3.2 and Lemma 2.9. For v = 23, we have a B(5,10;23) by Lemma 2.1. Applying Lemma 2.6 with $K = \{5\}$ and $(u,e,q,m,\lambda) = (20,4,1,2,1)$ we have also a (23,3;5,2)-IPBD. This gives rise to a 12-packing with $B_{12}(23)$ blocks and hence $D_{12}(23) = B_{12}(23)$. For v = 43, the proof is similar.

Lemma 3.4. $D_{12}(28) = B_{12}(28)$.

Proof: Let $V = Z_{25} \cup \{x, y, z\}$. We construct a 12-packing on V with $B_{12}(28)$ blocks below.

We first start with a TD(6, 1, 5) and delete two points from one group to obtain a $(\{5,6\},1)$ -GDD of type 5^53^1 . This gives rise to a $(28,3;\{5,6\},1)$ -IPBD.

Let us label its point-set as $V = Z_{25} \cup \{x, y, z\}$ and the hole as $\{x, y, z\}$. We then easily construct a $(28, 3; \{5, 6\}, 3)$ -IPBD $(V, \{x, y, z\}, A)$ in such a way that A contains the special blocks: $B_1 = \{x, 0, 1, 2, 3, 4\}, B_2 = \{y, 0, 1, 2, 3, 4\}, B_3 = \{z, 0, 1, 2, 3, 4\}$. To the required set of blocks, we remove B_1, B_2 , and B_3 from A and replace them with the blocks: $\{x, y, z, 0, 1\}, \{x, y, z, 0, 2\}, \{x, y, z, 0, 3\}, \{x, y, z, 0, 4\}, \{x, y, z, 1, 2\}, \{x, y, z, 1, 3\}, \{x, y, z, 1, 4\}, \{x, y, z, 2, 4\}, \{x, y, z, 2, 3\}, \{x, y, z, 3, 4\},$ and $\{0, 1, 2, 3, 4\}$ (taken 11 times). We then put a B(5, 4; |A|) on each block $A \in A \setminus \{B_1, B_2, B_3\}$, where we make use of the B(5, 4; 5) and B(5, 4; 6) in Lemma 2.1. The result is a 12-packing on V with $B_{12}(28)$ blocks.

Lemma 3.5. $D_{12}(38) = B_{12}(38)$.

Proof: Start with a TD(6,1,7) and delete 6 points from one group to get a $(\{5,6\},1\text{-GDD} \text{ of type } 7^51^1$. Let the point-set be $Z_{35} \cup \{x\}$ and the group of size one be $\{x\}$. On each block A of the GDD except for one distinguised block, say $B_1 = \{x,0,1,2,3,4\}$, we construct a B(5,4;|A|). Then we adjoin two new points y,z to the GDD and put a (9,2;5,4)-IPBD on each group of size 7 together with points y,z in such a way that the hole is $\{y,z\}$. Here $9 \in IP_4(2)$ follows from Lemma 2.7. Copy the resulting configuration three times and make the permutation (x,y,z). This gives a configuration \mathcal{D} which is based on $V = Z_{35} \cup \{x,y,z\}$ and satisfies the following properties:

- (1) $\mathcal{B} = \{B_0 = \{x, y, z\}, B_1 = \{x, 0, 1, 2, 3, 4\}, B_2 = \{y, 0, 1, 2, 3, 4\}, B_3 = \{z, 0, 1, 2, 3, 4\}\} \subset \mathcal{D},$
- (2) |A| = 5 for any $A \in \mathcal{D} \setminus \mathcal{B}$,
- (3) no pair of points of V which lies in $\{x, y, z\}$ or $\{0, 1, 2, 3, 4\}$ occurs in any block of $\mathcal{D}\setminus\mathcal{B}$,
- (4) each pair of points of V not contained in $\{x, y, z, 0, 1, 2, 3, 4\}$ occurs in exactly 12 blocks of $D\setminus B$, and
- (5) each pair of points in which one point lies in $\{x, y, z\}$ and the other lies in $\{0, 1, 2, 3, 4\}$ occurs in exactly 8 blocks of $\mathcal{D}\setminus\mathcal{B}$.

Now we replace those blocks in \mathcal{B} with the blocks as in Lemma 3.4. The result is a 12-packing on V with $B_{12}(38)$ blocks and the conclusion holds.

Lemma 3.6. If
$$v \equiv 3 \pmod{5}$$
 and $v \ge 5$, then $D_{12}(v) = B_{12}(v)$.

Proof: It is shown in Lemmas 3.2–3.5 that the conclusion holds for v < 53. Noticing Lemma 2.7 and Lemma 2.9, we apply Lemma 2.4 with $t \ge 2$ and w = 3 to obtain the result for $v = 25t + 5a + 5b + 3 \ge 53$, where (a, b) is taken from $\{(0,0), (0,1), (0,2), (2,1), (2,2)\}$ when t = 2, and from $\{(0,1), (0,2), (0,3), (2,2), (2,3), (3,3)\}$ when $t \ge 3$.

Lemma 3.7. If $v \equiv 3 \pmod{5}$ and $v \ge 5$, then $D_{16}(v) = B_{16}(v)$.

Proof: For these values of v, a 16-packing with $B_{16}(v)$ blocks can be constructed by taking two copies of the blocks of a maximum (v, 5, 8) packing.

The foregoing can be summarized as follows.

Theorem 3.8. If $v \equiv 3 \pmod{5}$, $v \ge 5$ and $\lambda \equiv 0 \pmod{4}$, then

$$D_{\lambda}(v) = \begin{cases} B_{\lambda}(v) & \text{when } \lambda \not\equiv 4 \pmod{20}, \\ B_{\lambda}(v) - 1 & \text{when } \lambda \equiv 4 \pmod{20}. \end{cases}$$

4. Packing numbers $D_{\lambda}(v)$ for $v \equiv 2$ or 4 (mod 5)

It is easy to show the following.

Lemma 4.0. $D_{24}(7) = B_{24}(7) = 50$.

Lemma 4.1. If
$$v \equiv 2$$
 or 4 (mod 5) and $v \geq 5$, then $D_8(v) = B_8(v)$.

Proof: Take two copies of the blocks of a maximum (v, 5, 4) packing to obtain the result for $v \ge 9$. When v = 7, let the point-set be $Z_4 \cup \{x, y, z\}$. Then the blocks are:

Lemma 4.2. If
$$v \equiv 2$$
 or 4 (mod 5) and $v \ge 5$, then $D_{12}(v) = B_{12}(v) - 1$.

Proof: Assume that there exists a (v, 5, 12) packing on V with $B_{12}(v)$ blocks. Let Y_x be the numbers of blocks containing x ($x \in V$). It is easily verified that the degree of vertex x ($x \in V$) in the non-occurrence graph must be $12(v-1)-4Y_x$ which is divisible by 4. However the number of pairs of points of V which occur in less than 12 blocks (counting multiplicities) is $6v(v-1)-10B_{12}(v)=2$ when $v \equiv 2$ or 4 (mod 5). This is a contradiction. We then have $D_{12}(v) \leq B_{12}(v)-1$. On the other hand, a 12-packing with $B_{12}(v)-1$ blocks can be constructed by taking three copies of the blocks of a maximum (v, 5, 4) packing when $v \geq 9$. A (7, 5, 12) packing with $B_{12}(7)-1$ blocks follows from a B(5, 10; 7) and a maximum (7, 5, 2) packing ([9]). Therefore the conclusion holds.

Lemma 4.3. If
$$v \in \{7, 9, 12, 17\}$$
, then $D_{16}(v) = B_{16}(v)$.

Proof: We construct a 16-packing with $B_{16}(v)$ blocks for these values of v to yield the result.

For v = 7, let the point-set be $Z_4 \cup \{x, y, z\}$. Then the blocks are:

```
0
               1
                   2
                          mod 4
                                      (taken twice)
x
                   2
               1
                          mod 4
                                      (taken twice)
         0
X
    z
         0
               1
                   2
                          mod 4
                                      (taken twice)
y
    z
    0
         1
              2
                   3
T.
              2
                   3
    0
         1
IJ
              2
                   3
    0
         1
z
              0
                   1
         z
X
    u
              0
                   2
\boldsymbol{x}
    y
         z
                   3
              0
x
    IJ
                   2
               1
x
         z
    y
                   3
               1
x
    IJ
         z
              2
                    3
         z
X
    IJ
```

For v = 9, let the point-set be $Z_6 \cup \{x, y, z\}$. Then the blocks can be obtained by developing under the action of Z_6 the following base blocks:

For v=12, let the point-set be $Z_6 \cup \{A,B,C\} \cup \{x,y,z\}$. It was shown in [5] that a B(4,3;9) and a B(3,1;9) both exist. Put a B(4,3;9) with block set A on $Z_6 \cup \{A,B,C\}$ and a B(3,1;9) with block set B on $Z_6 \cup \{A,B,C\}$ in such a way that $\{A,B,C\} \in B$. Define

$$S_1 = \{\{x\} \cup E : E \in A\} \cup \{\{y\} \cup E : E \in A\} \cup \{\{z\} \cup E : E \in A\}$$
 and $S_2 = \{\{x,y\} \cup F : F \in \mathcal{F}\} \cup \{\{y,z\} \cup F : F \in \mathcal{F}\} \cup \{\{x,z\} \cup F : F \in \mathcal{F}\},$ where $\mathcal{F} = \mathcal{B} \setminus \{\{A,B,C\}\}$. Then the required family of blocks follows from the 87 blocks in $S_1 \cup S_2$ and the following 18 blocks:

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	0	2	mod 6				
\boldsymbol{x}	y	z	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{A}	1	2	4	5
\boldsymbol{x}	y	z	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{B}	2	3	4	5
\boldsymbol{x}	y	z	\boldsymbol{C}	\boldsymbol{A}	\boldsymbol{C}	0	1	2	5
\boldsymbol{A}	0	2	3	5	\boldsymbol{A}	0	1	3	4
\boldsymbol{B}	0	1	2	3	\boldsymbol{B}	0	1	4	5
\boldsymbol{C}	0	3	4	5	\boldsymbol{C}	1	2	3	4

For v = 17, let the point-set be $Z_{14} \cup \{x, y, z\}$. The blocks then are obtained by developing under the action of Z_{14} the following base blocks:

Lemma 4.4. If $v \in \{14, 19, 24\}$, then $D_{16}(v) = B_{16}(v)$.

Proof: For given values of v, let $V = Z_{v-1} \cup \{\infty\}$. We first construct a (v-1,5,12) packing of Z_{v-1} with $B_{12}(v-1)$ blocks. Then we construct a configuration \mathcal{D} on V such that each pairset of V containing the point ∞ occurs in exactly 16 blocks in \mathcal{D} and each other pairset of V occurs in exactly 4 blocks in \mathcal{D} . This gives rise to the result, where \mathcal{D} consists of the following blocks:

For
$$v = 14$$
: ∞ 0 1 3 9 mod 13 (taken 4 times)
For $v = 19$: 0 1 5 7 10 mod 18
 ∞ 0 2 4 7 mod 18
 ∞ 0 5 6 8 mod 18
 ∞ 0 1 4 10 mod 18
 ∞ 0 4 10 11 mod 18
For $v = 24$: 0 1 4 6 13 mod 23
 ∞ 0 4 12 13 mod 23
 ∞ 0 7 8 12 mod 23
 ∞ 0 8 10 17 mod 23

Lemma 4.5. $D_{16}(34) = B_{16}(34)$.

Proof: Let $V = \mathbb{Z}_{27} \cup \{\infty_i : 0 \le i \le 6\}$. A (34,7;5,16)-IPBD can be con-

structed by developing under the action of Z_{27} the following base blocks:

∞0	0	10	11	13	(taken	(taken 4 times)					
001	0	12	17	21	(taken	(taken 4 times)					
002	0	1	3	7	∞5	0	1	7	16		
002	0	3 ·	8	14	005	0	3	14	18		
002	0	5	7	8	005	0	5	8	15		
002	0	2	8	9	005	0	2	9	13		
003	0	2	6	15	006	0	1	3	16		
003	0	5	11	15	∞6	0	3	8	18		
003	0	2	3	10	∞6	0	5	7	15		
003	0	6	7	11	∞6	0	2	8	13		
004	0	3	7	16	0	1	3	7	16		
004	0	8	14	18	0	3	8	14	18		
004	0	7	8	15	0	5	7	8	15		
004	0	8	9	13	0	2	8	9	13		

So the result follows from Lemma 2.9 and Lemma 4.3.

Lemma 4.6. If $v \equiv 2 \pmod{5}$, $v \geq 5$ and $v \neq 22,27$, then $B_{16}(v) = D_{16}(v)$.

Proof: By Lemma 4.3, it is sufficient to establish the lemma for $v \ge 32$. As we did in the proof of Lemma 3.6, we can apply Lemma 2.4 with w = 2 to give the conclusion for $v \ge 52$. For $32 \le v \le 47$, we use Lemma 2.9 by a suitable IPBD. First note that $37 \in IP_{16}(9)$ by Lemma 2.2. We readily obtain that $42 \in IP_{16}(7)$ by deleting two points from one group in a TD(6,1,7) and adding two infinite points to each group of the resulting GDD. Taking $K = \{5\}$ and $(u, e, q, m, \lambda) = (40, 12, 1, 2, 8), (25, 2, 6, 2, 8)$ in Lemma 2.6, we also obtain that $\{32, 47\} \subset IP_{16}(7)$, where we make use of a (53, 13; 5, 8)-IPBD in Lemma 2.2 and a (33, 8; 5, 8)-IPBD in Theorem 4.2 in [1]. The required fact that $31 \in IP_3(6)$ follows from a B(6, 1; 31) and a B(5, 8; 6).

Lemma 4.7. If $v \equiv 4 \pmod{5}$ and $v \geq 5$, then $D_{16}(v) = B_{16}(v)$.

Proof: It is shown in Lemmas 4.3–4.5 that $D_{16}(v) = B_{16}(v)$ if v = 9, 14, 19, 24, or 34. It is known that $\{29, 39, 49, 79\} \subset IP_2(7)$ (see Lemma 4.3 [6]), and hence $\{29, 39, 49, 79\} \subset IP_{16}(7)$. We can also obtain that $44 \in IP_{16}(9)$ using a TD(6, 1, 7) and the fact that $9 \in IP_{16}(2)$ in Lemma 2.7. Since a B(5, 16; 10) exists from Lemma 2.1, adjoining one infinite point to a (5, 16)-GDD of type 9^58^1 which comes from a TD(6, 1, 9), a (54, 9; 5, 16)-IPBD is obtained. So the conclusion holds for $v \in \{29, 39, 44, 49, 54, 79\}$ by making use of Lemma 2.9. The remaining cases for $9 \le v \le 79$ are covered by applying Lemma 2.7 and Lemma 2.5 with t = 2, (a, b, c) = (0, 1, 1), (0, 2, 1), (2, 1, 1) and (2, 2, 1).

We also apply Lemma 2.7 and Lemma 2.5 with $t \ge 3$. This guarantees that $D_{16}(v) = B_{16}(v)$ whenever $v \ge 84$ and the proof is complete.

We wish to remark that $D_{\lambda}(v) \leq B_{\lambda}(v) - 1$ when $\lambda \equiv 12 \pmod{20}$ and $v \equiv 2$ or 4 (mod 5). The proof is similar to that of Lemma 4.2. The foregoing can be summarized as follows.

Theorem 4.8. If $v \equiv 2$ or 4 (mod 5) and $v \ge 5$, $\lambda \equiv 0$ (mod 4), then

$$D_{\lambda}(v) = \begin{cases} B_{\lambda}(v) & \text{when } \lambda \equiv 4 \pmod{20} \text{ and } (v,\lambda) \neq (7,4), \\ B_{\lambda}(v) - 1 & \text{when } \lambda \equiv 12 \pmod{20} \text{ or } (v,\lambda) = (7,4), \\ B_{\lambda}(v) & \text{when } \lambda \equiv 0 \text{ or } 8 \pmod{20}, \\ B_{\lambda}(v) & \text{when } \lambda \equiv 16 \pmod{20} \text{ and } v \neq 22 \text{ or } 27. \end{cases}$$

5. Miscellaneous Values

The purpose of this section is to handle the remaining cases for v=22, 27 and $\lambda \equiv 16 \pmod{20}$.

Lemma 5.1. $D_{56}(22) = B_{56}(22)$.

Proof: First note that Hanani [5] has constructed directly a TD(8,2,4). By the appropriate deletion of points from this TD, we readily obtain a $(\{5,6,7\},2)$ -GDD of type 3^64^1 . Using Lemma 2.1, we then get a (5,40)-GDD of type 3^64^1 . Let us label the GDD as $(\mathcal{X},\mathcal{G},\mathcal{A})$, where $|\mathcal{X}|=22$, $\mathcal{G}=\{G_i:1\leq i\leq 6\}\cup\{Z_4\}$. On each set $G_i\cup G_j$, $1\leq i< j\leq 6$, we construct a B(5,4;6) with block set B_{ij} . On $\mathcal{X}\setminus Z_4$, we construct an (18,5,12) maximum packing with block family \mathcal{B} . For $1\leq i\leq 6$ and $0\leq t\leq 3$, we construct a B(5,4;6) with block set A_{it} on the set $G_i\cup \{t,t+1,t+2\}$, where t+1 and t+2 are taken module 4. Let \mathcal{C} consist of the following blocks:

$$\begin{array}{lll} G_1 \cup \{0,1\} & G_4 \cup \{0,1\} \\ G_1 \cup \{2,3\} & G_4 \cup \{2,3\} \\ G_2 \cup \{0,2\} & G_5 \cup \{0,2\} \\ G_2 \cup \{1,3\} & G_5 \cup \{1,3\} \\ G_3 \cup \{0,3\} & G_6 \cup \{0,3\} \\ G_3 \cup \{1,2\} & G_6 \cup \{1,2\} \end{array}$$

Let $\mathcal{D} = \{G_i \cup \{a, b\}: (a, b) = (0, 1), (0, 2), (0, 3), (1, 2), (1, 3) \text{ or } (2, 3), i = 1, 2, ..., 6\}$. It is then a straightforward verification that

$$\mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D} \cup \left(\bigcup_{1 \leq i < j \leq 6} \mathcal{B}_{ij}\right) \cup \left[\bigcup_{1 \leq i \leq 6} \left(\bigcup_{0 \leq i \leq 3} \mathcal{A}_{it}\right)\right]$$

is a 56-packing on X with $B_{56}(22)$ blocks.

Lemma 5.2. $D_{36}(27) = B_{36}(27)$.

Proof: It is well known that a resolvable B(5,1;25) exists. Delete one point from the design. This gives rise to a (5,1)-GDD of type 4^6 , say $(V,\mathcal{G},\mathcal{A})$, in which the set of blocks can be partitioned into holey parallel class, each of which is a partition of $V\setminus G$ for some $G\in \mathcal{G}$. Write $\mathcal{G}=\{G_1,G_2,\ldots,G_6\}$. Let $\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_6$ denote these holey parallel classes, where \mathcal{A}_i partitions $V\setminus G_i$ $(1\leq i\leq 6)$. To the required result, we use this GDD together with three new points x,y and z and proceed as follows.

- (1) For $1 \le i \le 5$, on sets $\{x,y\} \cup G_i$, $\{y,z\} \cup G_i$ and $\{x,z\} \cup G_i$, we separately construct a B(5,4;6).
- (2) For each $A \in A_i$ $(1 \le i \le 6)$, on sets $A \cup \{x\}$, $A \cup \{y\}$ and $A \cup \{z\}$, we separately construct a B(5,4;6).
- (3) For $1 \le i \le 5$, on sets $\{x\} \cup G_i$, $\{y\} \cup G_i$ and $\{z\} \cup G_i$, we separately construct a B(5,8;5).
- (4) On $G_6 \cup \{x, y, z\}$, we construct a (7, 5, 16) maximum packing.
- (5) For each $A \in A_6$, we construct a B(5,5;9) on $A \cup G_6$, and then copy each block in A_i (1 < i < 5) 5 times.
- (6) Construct a $(5,\overline{5})$ -GDD of type 4^5 with group set $\{G_1,G_2,\ldots,G_5\}$.
- (7) Construct a(5, 14)-GDD of type 4^6 with group set $\{G_1, G_2, \ldots, G_6\}$.

Thus, a 36-packing with $B_{36}(27)$ blocks on $V \cup \{x, y, z\}$ is formed when the total collection of blocks from the above systems is taken.

Combining the results of Lemmas 2.1, 2.8, 5.1, and 5.2, we have established the following.

Theorem 5.3. $D_{20\,m+16}(22) = B_{20\,m+16}(22)$ and $D_{20\,n+16}(27) = B_{20\,n+16}(27)$ where $m \ge 2$ and $n \ge 1$.

6. Concluding Remarks

Summarizing the previous results, we have already determined $D_{\lambda}(v)$ for all positive integers $\lambda \equiv 0 \pmod{4}$ and $v \geq 5$ with exceptions of $(v, \lambda) = (22, 16)$, (22, 36) and (27, 16). The author would like to thank the referee for pointing out the result for $\lambda = 8$, 12, 16, with a few possible exceptions, has been obtained (in a paper to appear in J.C.T.) by A. M. Assaf and N. Shalaby independently.

References

- 1. A.M. Assaf and A. Hartman, On packing designs with block size 5, Discrete Math 79 (1989/90), 111-121.
- 2. T. Beth, D. Jungnickel, and H. Lenz, "Design Theory", Bibliographisches Institut, Zurich, 1985.

- 3. R.C. Bose, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements, Calcutta Math. Soc. Golden Jubilee Vol. (1959), 341–354.
- 4. A.M. Foley, W.H. Mills, R.C. Mullin, Rolf Rees, D.R. Stinson, and J. Yin, The spectrum of PBD ($\{5, k^*\}$, v) for k = 9, 13. preprint.
- 5. H. Hanani, Balanced incomplete block designs and related designs, Discrete Math 11 (1975), 255-269.
- 6. R.C. Mullin and J.D. Horton, *Bicovers of pairs by quintuples:* v odd, $v \not\equiv 3 \pmod{10}$, Ars Combinatoria 31 (1991), 3–19.
- 7. J. Schoenheim, On maximal systems of k-tuples, Studia Sci. Math. Hungar. 1 (1966), 363–368.
- 8. R.M. Wilson, Constructions and uses of pairwise balanced designs, Math. Centre Tracts 55 (1974), 18-41.
- 9. J. Yin, On the packing of pairs by quintuples with index 2, Ars Combinatoria 31 (1991), 387-301.
- 10. J. Yin, On bipackings of pairs by quintuples. submitted.