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Abstract. We determine the minimal number of queries sufficient to find an unknown
integer x between 1 and n if at most one answer may be erroneous. The admissible
form of query is: “Which one of the disjoint sets Ay ..., Ax does z belong 107"

1. Introduction

S.M. Ulam in [U] raised the following question: what is the minimal number of
yes-no queries sufficient to find an unknown z from set {1, ..., n} if at most one
answer may be a lie. This problem was solved by A. Pelc in [P1] (an analogous
problem, for two lies admitted, was solved by W. Guzicki in [G], and for any fixed
number of lies by J. Spencer in [S]).

Also A. Pelc in [P2] solved the problem of determining the minimal number
of weighings on a beam balance to find counterfeit (heavier) one among = coins
if at most one weighing result may be erroneous. It corresponds to the previous
problem; the difference is that here the queries admit three possible answers: left
pan goes down (which means that z is among the coins on the left pan), right pan
goes down (z is on the right pan), the pans are balanced (z is among the remaining
coins). There is also the additional condition, due to the physical interpretation,
that numbers of coins on left and right pan must be equal.

Our result, solution of Ulam’s problem for queries admitting K possible an-
swers, is a generalization of original Ulam’s problem (corresponding to the case
K = 2) as well as the simplified version of the problem of detecting a false coin
using beam balance, when we do not require two of the three sets we ask about to
have equal sizes (case K = 3).

2. Preliminaries

We will follow the notation and terminology of [P1] and [P2].

Let us consider a game played by two players: the Questiorer and the Respon-
der. The Responder chooses an integer z from the set {1,...,n} and the Ques-
tioner has to determine z, asking some queries of form: “Which one of the disjoint
sets Ay, ..., Ag does z belong t0?”, where A; U---UAg = {1,...,n} (some of
the sets Ay,..., Ax may be empty) and K is a fixed integer not less than 2. The
Responder is allowed to lie at most once.

We will show, what is the minimal number of queries, sufficient for the Ques-
tioner to find z in the worst case.

At each stage, current state of the game is described by a pair of integers: (a, b).
The first number a is the size of Lo, the set of all elements of {1,...,n} which
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satisfy all answers given so far. The second number b is the size of L, the set of
numbers which satisfy all but one answer. At the beginning of the game the state
is (n, 0); the only states, in which z is determined, are (1, 0) and (0, 1).

The query “Which one of the sets A,,..., Ax does z belong to?” will be de-
noted as

(z1,m):...:(zk,yx),

where z; = |A; N Lo|, yj = |A; N Ly forj = {1,...,K}.

The sequence of r identical components of a query (zl Y1) (3, y) will
sometimes be denoted shorter as r - (zy, ¥1).

It is easy to see, that if the current state of the game is (a,b), the query
(z1,m):...:(zk,yx), where foreach j € {1,..., K} z;,y; > 0, Eslz, = a,
2;=1.'/; = b, yields one of the states (z1,a — 1 + yl),...,(:z:x,a — Tk + yK).

Definition 2.1. i-th weight of a state (a,b):

wi(a,b) = [(K~1)-i+1)-a+b for i >0.

Intuitively, w;(a, b) is the number of possibilities for the Responder if the cur-
rent state is (@, b) and the Questioner still has i spare queries.

Lemma 2.2. With the above notation

> wii(zj,0 — 35 + y;) = wila,b) for i >0.
j=1

Proof:

K K
E‘w,—_l(z,-,a—x,-+ y;)=E([(K -1)-(i-1)+1] ‘Tita—x; + yj)

j=1 j=1

= [(K—1)-(i-1)+1]- Ez,+za— Zz,+2y,

j=1 J=1 j=1
=[(K-1)-(s—1)+1]-a+(K—=1)-a+d
=[(K —1)-i+ 1] -a+ b= w;(a,b).

Hence, for instance, asking a query such that the weights of all possible answers
are equal, reduces the weight of the current state by a factor of K.
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Definition 2.3. Character of a state (a,b):

ch(a,b) = min{i: w;(a,b) < K*}.

Let us denote as N(a, b) the minimal number of queries sufficient to reach
(1,0) or (0, 1) from the state (a,b). Formally, we define N(a,b) as follows:
N(0,1) = N(1,0) = 0, and N(a,b) = i if there exists a query (z1,%1):...,:
(zk,yx) for (a,b) such that N(z;,a — z; + y;) < i —1 forall 7, but there is no
query such that N(z;, e — z; + y;) <1 —2 forall j.

Lemma 24.
(@ Ifa' >aand b > b, then N(a',V') > N(a,b).
(®) N(a,b) > ch(a,b).

Proof:

(@) is obvious.

() Letch(a,b) = i. By definition w;_1(a,b) > K*~'. Hence by 2.2 any
query yields a state (z, y) such that w;_2(z,y) > % - wi—1(a, b) (the state
with the biggest ({ — 2) weight). Repetition of this argument shows, that
any sequence of § — 1 queries yields a state (z', y') such that we(2',y') =
z' + y' > 1, so the searched number is not found.

|

We will often use 2.4 without referring to it.
2.4 (b) is the motivation for the following definition:

Definition 2.5. A state (a,b) is nice <> N(a,b) = ch(a,b).
3. Which states are nice?

Example 3.1. If K = 2 or 3, then the state (2,0) is nice, because ch(2,0) =

3 and it is easy to see, that three queries is enough to decide which one of two
numbers was chosen. However if K > 4, then ch(2,0) = 2 and two queries
will not suffice to detect the chosen number, because the only sensible query yields
the state (1,1) and ch(1,1) = 2.

The following lemma shows, that nice states are located quite regularly:
Lemma 3.2. If N(a,b) =1, then N(a,b+ 1) =i or (a,b+ 1) is nice.

Proof: Proceed by induction on 1.

If i = O (hence (a,b) is (1,0) or (0, 1)), then the thesis is true, because the
states (1,1) and (0, 2) are nice.

Let now N(a,b) = i+ 1 and (z1,91):...,:(zx,yx) be a query for (e, b)
suchthatforallj € {1,...,K} N(zj,a—z;+y;) <i.
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Case 1. w;s1(a,b) < K1,

Then by 2.2 Jjwi(z;,a — z; + y;) < K*. For the state (a,b + 1) the query
(zj,a — z; + y;), instead of which we have (z;,a — z; + y; + 1). By inductive
assumption N(zj,a — z; + y; + 1) < 1 or (zj,a — z; + y; + 1) is nice. But

wi(zj,a—1;+y;+ 1) < K',s0ch(zj,a—zj+y;+1) <i. Hence N(a, b+ 1) =
i+ 1.

Case 2. wj1(a,b) = K™*1,
First we state an auxiliary lemma:
Lemma 3.3. If wi(a,b) = K*, (a,b) # (1,0), then ch(a,b+ 1) =i+ 1.
Proof: Immediate by 2.3. 1
From 2.2 it follows, that Vj w;(z;,a — z; + y;) = K*. For (a,b+ 1) the

(zj,a—zj+y;) for2 < j < K. By inductive assumption (z1, 6 —z1 + y1 + 1) is
nice (itcannotbe N(z1,e—z1+y1+1) < 1,becausech(z,a—z1+y1+1) = i+1
by 3.3). Hence N(a,b+ 1) < 1+ 2= ch(a,b+ 1),s0 (e,b + 1) is nice. 1

Corollary 3.4. Ifa state (a,b) is nice andb' > b, then the state (a,b") is nice. I
The following example illustrates lemma 3.2:

Example 3.5. Let K = 2. ch(3,0) = 4, but N(3,0) > 4, because the only
sensible query (1,0): (2,0) yields the state (2,1), and W3(2,1) = 9 > 23,
Alsoch(3,1) = 4,50 (3, 1) isnot nice, hence by 3.2 it requires the same number
of queries as (3,0).

It is easy to see, that N (3, 14) = 5 ((1,9):(2,5) is a good first query),
and ch(3,15) = 6, so (3, 15) requires more queries than (3, 14), hence by 3.2
(3,15) is nice.

The case of states having form ( K*, ) is the simplest:

Lemma 3.6. Foreach i > 0 and b > 0 the state (K*,b) is nice.

Proof: By 3.4 itis sufficient to show, that Vi ( K*,0) is nice.
Proceed by induction on 1.
For 1 = 0 the thesis is true, because the state (1,0) is nice.

K — K*%), which are nice by inductive assumption and by 2.2 their character is
less than the character of (K*+!,0). 1
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4. Typical states
Definition 4.1.A state (a,b) is typical < b> (K —-1) -(a—1).

For the initial state (n, 0), wheren = K-d+7,0 < r < K -1, itisclearthat the
best query is one that splits the state uniformly, thatis r-(d+1,0): (K —1) -(d,0).
The states we get then, (d+ 1,(K —1) -d+r—1) and(d,(K —1) -d+r),are
typical.

For fixed a let us introduce the following notation:

t(a) =(a,(K-1)-(a—-1)),
the minimal typical state, and
c(a) = min{K*: K* > a}.

In order to calculate N(n,0) in [P 1] and [P2] it was enough to show, that for
K =2 and K = 3 all typical states are nice. However, as the following example
shows, it is not true for bigger K:

Example 4.2. Let K = 4. The state (5, 12) is typical, ch(5,12) = 3. But any
query yields a state requiring at least as many queries as the state (2,3), that is
more than two (see 3.1).

We will now determine N(t(a)) for a < KX—2, By 3.2 we will then be able
to determine N (a, b) for any typical state (a, b), where a < K¥-2,

Lemma 4.3.

@ ch(t(KH))=i+2for1 <i< K-2,
(b) ch(t(KX-2+1)) > K.

Proof:

@ wi(H(K)) =[(K-1D-G+2)+1]-K+(K-1 - (K-1 <
(K-1)-K+11-K°+(K-1)-(K'-1)= K*2 —K+1< K*2,
wint (HK)) = [(K—1)-(§+ 1)+ 1] - K*+ (K —1) -(K'=1) > k™1,

®) wg((KE241))=[(K—1) -K+1)-(K¥2+1)+(K-1)-K¥2 =
KX+ K2 - K+1> KK,

|
Now we can prove the following theorem:

Theorem 4.4. If 2 < o < KX-2, then N(t(a)) = ch(t(c(a))).

Proof: If a is equal K*, then a = c(a) and by 3.6 t(a) is nice, so N(i(a)) =
ch(t(c(a))). '

It is sufficient to show, thatfor0 <1< K —3 holds N(t(K*'+ 1)) > i+ 3,
(c(Ki+1) = K*', byd3 ch(t(K*)) =i+3,forK'+1 <a < K*! we
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use 2.4 (a)). We will show even more, that already N(K* + 1,0) > i+ 3 for
0<i<K-3.
Itlseasytosee,thatN(K° +1,0) = N(2,0) =3 (see 3.1).

Nowletl < i< K —3 and(2;,0):...: :(zk, 0) be the best query for ( K* +
1,00. 2z = K+ 1,50 z; > K1 for some j. By inductive assumption
N(m,,K+1—:x:,)>(z—l)+3 hence N( KV +1,0) > i+ 3. 1

In the next part of this section we will prove, that fora > K K-2 the state t(a)
(and hence also any typical state) is nice.

Definition 4.5. Let ch(a,b) = 1 > 0. A query (z1,01):...:(zx,yx) isa
splitting <

1) vi<yj, ] < K,|lzj-=zp,|<L1,

2 V1<j,;'<K, |w._1(z,,a-z,+y;)—w._l(zf,a—z)'+y,')l<1

Condition (1) in 4.5 assures that a splitting applied to a typical state (a, b) leads
to typical states; (2) together with 2.2 assure that the character of the received state
is less than ch(a, b) . Thus, if there exists a splitting of (s, b) into nice states, then
(a, b) is also nice.

Remark 4.6. If K|a, then there exists a splitting for state (a,b).

Proof: Leta= K -c,b=K -d+ r,where0 < r< K — 1,
The query 7 - (c,d+ 1): (K — 1) - (¢, d) is a splitting. ]

The case when K Ja is more complicated:

Lemma4.7. Let ch(t(a)) =i+ l,a=K -c+r,1<r<K-1.Ifi<L f‘(_,,,
then there exists a splitting fort(a) .

Proof: Let(K—1)-(a—1)—(K—-1)-(K—7)-i= K.-d+7,0<r < K1,
d>0.Ifr+7 < K, then

r-(c+1,d):v - (c,d+ (K —1) -1+ D:(K—-r—7) (c,d+ (K —1)-9),
andif r+ 7 > K, then
(K—1)-(c,d+(K—1) i+ 1): (K —71")-(c+ 1,d):(r+7r' —K)-(c+1,d+1)

is a splitting. 1
Lemma4.8. If K > 4,a > KX-2, then there exists a splitting for t(a).

Proof: We can assume that K fa (see 4.6).
By 4.7 it is sufficient to show that if ch(¢(a)) = i+ 1, theni < $=%
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Lets = | =\ | (the integer part). We will show that i < s, thatis ws.1(#(a)) <
KM-I .

a< (K —1)-(s+1) = ws1(i(a))
<[(K-1)-(s+1)+1]-(K-1) - (s+D+(K -1) - [(K-1) - (s+1)—1]
=(G+1)2 (K-1D%+(s+1)- K- (K-1)—K+1< K*'fors,K >4,
butifa > K¥-2,thens = | 8=k | > K222 = KX=3 > K > 4. ]
Lemma 4.9.
(@) For K = 2 there exists a splitting for t(a) if a > 6, and states t(a) for
a < 6 are nice.

(b) For K = 3 there exists a splitting for t(a) if a > 9, and states t(a) for
a < 9 are nice.

Proof:
(@) Following notation of 4.8 we have w,.1(t(a)) < 8% +4 -s+2 < 2**! for
s > 5 thatisa > 6.

t(2) and t(4) are nice by 3.6. For ¢(3) the query (2,0):(1,2) and for ¢(5)

the query (3,0): (2,4) yields nice states (by 3.4) with lower character.
() wse1(t(a)) <4-8*+14 .3+4 <3*! fors >4 thatisa > 9.

t(3) is nice by 3.6. There exists a splitting for t(6) by 4.6 , for t(5) and ¢(8) by
4.7. Fort(2),t(4) andt(7) thequeries (1,0):(1,0):(0,2),(2,0):(2,0):(0,6)
and (3,2): (3, 2): (2, 8) respectively yield nice states with lower character. §

Theorem 4.10. If o > KX-2, then the state t(a) is nice.

Proof: If K = 2 or K = 3, then the thesis follows by 4.9.

Let K > 4,50 by 4.8 there exists a splitting for t(a). For K¥~2 < o < KX~!
by 3.2 we have that even if the splitting for t(a) does not lead to a nice state, then
it leads to a state requiring exactly K (by 4.3 (a)) queries, and by 4.3 (b) we have
ch(t(a)) > K, so the state t(a) is nice.

For a > KX-! by induction on log x a it follows that the splitting for (a)
leads to a nice state. 1

5. The main result
In this section we formulate the main result of our paper.

Theorem 5.1. Letn=K -a+7r,6 20,0 <r< K -1.
Let us denote

(a,(K —1)-a) ifr=0,

P(")={(a+l,(K_1)-a+'r—l) ifr #0.
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Then

ch(p(n)) ifa > KK-2
N(n,0) = l+{ max(ch(p(n)), ch(t(c(a)))) ifa< KX-2 andr=0,
max(ch(p(n)),ch(t(c(a+ 1)))) ifa < KX-2 andr #0.

Proof: p(n) is the state we achieve after asking the best query for the state (,0).
Ifa > KX-2, then by 4.10 (or 3.6 for a = K*~%) p(m) is nice, so it requires
ch(p(n)) queries. If a < KX-2, then the thesis follows by 4.4. (]

Our proof also shows an algorithm of asking queries. The first one is a query
most uniformly splitting the state (n,0), thatis r - (a + 1,0): (K — 1) - (a,0)
and yields a typical state. If current state satisfies the assumptions of 4.6 or 4.7,
then we ask a splitting, if it does not, we extend it to the state c(a), adding some
elements of {1,...,n} excluded by earlier answers. What queries we should.ask
for such states follows from the proofs of 3.6 and 3.2. Several states, which should
be treated individually, are mentioned in 4.9.
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