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Abstract. Certain graphs whose vertices are some collection of subsets of a fixed n-
set, with edges detemmined by set intersection in some way, have long been conjectured
to be Hamiltonian. We are particularly concemed with graphs whose vertex set con-
sists in all subsets of a fixed size k, with edges determined by empty intersection, on
the one hand, and with bigraphs whose vertices are all subsets of either size k or size
n— k, with adjacency determined by set inclusion, on the other. In this note, we verify
the conjecture for some classes of these graphs. In particular, we show how to derive a
Hamiltonian cycle in such a bigraph from a Hamiltonian path in a quotient of a related
graph of the first kind (based on empty intersection). We also use a recent general-
ization of the Chv4tal-Erdos theorem to show that certain of these bigraphs are indeed
Hamiltonian. ’

1. Introduction.

All graphs in this note are finite simple graphs unless otherwise specified, there
being a few cases where loops or multiple edges are useful. Supporting definitions
and theorems may be found in [7] or [3]. Notation generally follows [3].

Graphs based on families of subsets appear in the literature in many contexts,
such as Kneser graphs [10] or in the study of Johnson schemes [12] to mention
two. These examples and others are described in [4]. There Chen and Lih call a
triple (n, k,t) of integers admissible if 0 < ¢t < k < nandn > 2k — ¢, with
strict inequality when ¢ = 0. For every admissible triple they define the uniform
subset graph G(n, &, 1) to have as vertices all k-sets of a fixed n-set, which for
convenience we take to be the integers from 1 to n. An edge zy between z and
y exists if |z N y| = t. The restriction to admissible triples guarantees that G
will be connected. In fact, Chen and Lih show that G is regular of degree (*)

"*), which is also its connectivity. They also show that each G has an edge
transitive automorphism group. Their big conjecture is that except for G(5,2,0)
and G(5,3, 1), each of which is a copy of the Petersen graph, all G(n, k,t) are
Hamiltonian. Earlier writers have conjectured thatevery G(2k+1,k,0),k > 2,
is Hamiltonian. Using the easily verified fact that G(6, 3, 1) is Hamiltonian, they
reduce their conjecture to the simpler form: Every G(n, k,0) is Hamiltonian for
n > 2k, excepting, of course, G(5,2,0). They also verify the conjecture for
certain infinite families of these graphs. In particular, they display functions e( k)
and f(k) such that G(n, k, 0) is Hamiltonian for all n > e( k), and G(n, k, 1) is
Hamiltonian for all n > f(k).
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In [13] the author considers a related family of bipartite graphs H(n, k,t) de-
fined as follows. For each admissible triple (n, k,t) let vertex sets S and T re-
spectively, be all k-sets and all (n — k)-sets of a fixed n-set, with zy' an edge
exactly when |z N y'| = k — t. (We use unprimed letters for elements of S and
primed letters for elements of T throughout.) These graphs are all conjectured to
be Hamiltonian, and some cases verified, in [13]). The connection between each
H(n, k,t) and the corresponding G(=, k,t) is also explained there. In fact, any
graph G has an associated bipartite graph (bigraph), denoted by VV(G) in [8},
and by K> A G in [7]. The construction is a special case of the conjunction of
two graphs, due to Miller (11). In [13] it is shown that for every admissible triple
H(n, k,t) = VV(G(n, k,t)), from which it follows that if G(n, k,1) is Hamil-
tonian and (}) is odd, then H(n, k,t) is Hamiltonian. It is also shown that each
H(n, k,t) has an edge transitive automorphism group. In this note we extend
to H(m, k,t) most of Chen and Lih’s theorems about G(n, k,t) and show how
certain properties of G(#n, k,t) may be used to generate a Hamiltonian cycle in
H(n, k,t).

2. Induction.

One of Chen and Lih’s most useful results in an induction theorem which asserts
thatif both G(n, k, t) and G(n, k+1,t+1) are Hamiltonian thensois G(n+1, k+
1,t + 1). Itis this result, combined with a natural isomorphism via complements
between G(n, k,t) and G(n,n— k,n— 2k — t), that leads to the simplification
of the general conjecture mentioned above. We will prove an analogous theorem
for H(n, k,t)’s at the same time correcting an error (which seems to be more
notational than conceptual) in the proof in [4]. In both situations the key lemma
is an inequality about the maximum cycle length (circumference) of each graph.
We denote the circumference of G(n, k,t) by c(n, k,t), and that of H(n, k,1)
by C(n,k,t).

Theorem 1. For any admissible triples, with p = ¢ or p = C throughout:

@) p(nk,t) <p(n+1,k,1).

® p(nk,t) <p(n+ 1, k+1,t+1).

© pink,t)=p(nn—k,n-2k+t).

@ p(nk,t)+p(nk+1,t+1) <p(n+1L,k+1,2+1).

Proof: Parts (a), (b), and (c), are proved as in [4]. For (a) G(#, k,t) and H(n, k,t)
may be embedded, respectively, in G(n+ 1, k,t) and H(n+1,k,t). For G the
mapping is given by f(z) = z for z € V(G). For each H the same function is
used for z € S, extended by f(z') = 2’ U{n+ 1} forz’' € T.

For (b) use the function given by g(z) = zU {n+ 1} for z € V(G) to embed
G(n,k,t) inG(n+ 1,k + 1,t + 1). Use the same function on S, extended to T
by g(z') = 2/, for H.
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For (c) taking complementary sets establishes the isomorphism, as already ob-
served about G’s. For the H’s taking complements essentially interchanges S and
T.

(d1) This is the case that requires some correction, for p = ¢, which is to say,
for the G’s. In G(n, k+ 1,t + 1) find a cycle of maximum length and embed it
as C; inG(n+ 1,k + 1,t+ 1) using f as in (a). For any edge zy € C; choose
elementag € TNy, 0, € (z—y) and by € (y—1x). Now, letv = yU{a;,n+ 1}
—{ao, i} andu=zU{n+1}—{a1}. Then|vNz|= |Juny| = [uNv|=t+ 1.
Hence, the edges zy, zv, yu, and uv all exist. By the edge transitivity of G(n, k, t)
choose a cycle of maximum length whose image C, under g (from (b)) uses uv.
Note that C; and C, have no vertices in common. Replace zy and uv by zv and
yu to change C; U C, into a cycle of length ¢(n, k,t) + c(n,k + 1, + 1) in
G(n+ 1,k+1,t+1).

(d2) For p = C partition the vertex set SUT of H(n+ 1,k+ 1,¢+ 1) into four
sets with 8; U S = S and 73 U T = T so that vertices in S, and T} are the sets
that contain the element n+ 1, while vertices in $) and T3 do not. As in (d1) let
C be the image under f of amaximum length cycle in A(n, k+1,t+1). Allof its
vertices are in S) UT} . For any edge zy' of Cy, zisa(k+ 1)-setin Sy and y’ is an
(n—k)-setin T}, withn+ 1 € (¢’ —x) and [zNy’'| = k—t. Now choose elements
a € (z—y') andbnotin zUy’. Letu = zU{n+1}—{a} and v’ = y'U{b}—{n+1}
sothatu € S and v' € T». From ju Nv'| = |z Nv'| = |y Nu| = k — ¢ all edges
uv', zv', and uy’ exist. As in (d1) find a cycle C, which is the image under g of
a maximum length cycle in H(n, k,t) that uses uv’. Replace zy’ and uv’ by zv'
and y'u to convert C; U C; to acycle, as in case (d1), to complete the proof. |

Theorem 2. If H(n,k,t) and H(n,k + 1,t + 1) are Hamiltonian then so is
H(n+1,k+1,t+1).

Proof: Theimages under f and g, respectively, of the vertex sets of H(n, k,t) and
H(n, k+1,t+1) havedisjoint unionequal to the vertex setof H(n+1, k+1,t+1).
Part (d2) of Theorem 1 proves the theorem. ]

Theorem 3. Fix k > 0. If H(n, k,0) is Hamiltonian for all n > ny and if
H(no,k + r,7) is Hamiltonian for r = 0,1,... ,ng — 2k, then H(n, k + r,7)
is Hamiltonian forall n> np and r=0,1,... ,n— 2k,

Proof: Follows by induction from Theorem 2 just as in [4]. [ |

Theorem 4. H(n, k,t) is Hamiltonian for every admissible triple (n, k,t) if
and only if H(n, k,0) is Hamiltonian forevery n> 2k > 0.

Proof: One direction is trivial. Converely, if H(2k + 1, k,0) is Hamiltonian,
thensois H(2k + 1,k + 1,1) by Theorem 1(c). Theorem 3, withng = 2k + 1,
completes the proof. |
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3. Special Cases.

The problem of showing that for each k and every n > 2 k, H(n, k,0) is Hamil-
tonian seems to be a hard one, of greatest difficulty whenn= 2k + 1. Fork =1
andn > 3, H(n,1,0) is K,, with a perfect matching removed, and certainly
Hamiltonian, By Theorem 3 H(n, k, k — 1) is Hamiltonian for every admissible
(nk,k-1).

For k = 2, we will show shortly that H(»,2,0) is Hamiltonian for all n > 8.
The case n = S is well-known, appearing in both [6] and [13]. A technique
for handling many such cases, including n = 5,6, and 7, among others, is dis-
cussed in the next section. From these results it follows that every (admissible)
H(n, k, k — 2) is Hamiltonian.

For larger k less is known. But it is a general fact that the problem becomes eas-
ier, for each k, as n grows. This is a consequence of the next theorem, whose proof
depends on variations of two well-known theorems. One, By Chvétal and Erdds,
asserts the existence of a Hamiltonian cycle in a graph if its independence number
is no larger than its connectivity. The other is a special case of a theorem of Hilton
and Milner [9] which we use to obtain an independence result about H(#, k,0).
The first variation is found in [13], the second in [14]. Some definitions are re-
quired. An arbitrary bigraph H with vertex set SUT is balanced if |S] = |T|. The
cross-independence number of any bigraph is the size of a largest independent set
of vertices U such that neither U N S nor U NT is empty. The theorem, in [13], is
that for a balanced bigraph if its cross-independence number is no larger than its
connectivity, then the graph is Hamiltonian. The special case of Theorem 2 of [9,
p- 370] (see also [14]) obtained by setting p = 1 and using the complements of our
By’s as the B;’s in [9] implies that the cross-independence number of H(n, k,0)
is 1+ (%) —(*;*). Combining these results with one more definition leads to the

next theorem. For each & let h(k) = min {n >2k(}) <2 (";")} .
Theorem 5. For k > 0, if n> h(k) then H(n, k,0) is Hamiltonian.

Proof: Each H(n, k,0) is connected and regular of degree (";*), and has an edge
transitive automorphism group. Hence, just as in [4), its connectivity is also 5.
Combining this with the theorems just quoted yields the result that H(#, k,0) is
Hamiltonian whenever (7) < 2 (*;*). But the ratio b(n, k) = (§) /(%) de-
creases monotonically to 1 as n increases. 1

The values of h(k) for k = 1 to 10, respectively, are 3,8, 16, 27,41, 58,78,
101, 126, and 154. A slightly weaker form of the theorem, with an explicit limit
on nis given next.

Theorem 6. H(n, k,0) is Hamiltonian for n > (3k* + k+ 2) /2.
Proof: It is enough to show that b(n, k) < 2 for n=(3k* + k + 2) /2. For this
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value of n the inequality reduces to by < 2 with

b= G+ k+2BK2+k)...(3k2 —k+4)
= Gk —k+2)(3K2 — k) ...(3k2 —3k+ 4)

One way to proceed is to observe that

3k2 —k+4 \* 2k k a\E
B < <3k2—3k+4) - (1* 3k2—3k+4) - (” T) = Gk
where a; = 3—,‘,-2;5;,‘7. One may calculate directly that ¢y < 2 for small values of
k. Further, a;, is monotone decreasing to 2/3. Hence, for all k > 25

1 k
c < (1+ F(azs)) = dy,

with ass = 625/902. But d; is monotone increasing, for k > 25, to e(®®) < 2.
Hence, b, < 2 for k > 25. Direct verification of by < 2 for 1 < k < 24 finishes
the proof. [ |

From this theorem and Theorem 3 it follows that every admissible H(n, k, k —
3) is Hamiltonian once it is verified that H(n, 3,0) is Hamiltonian forn= 7,8,
..., 15.

4. Generalized Petersen graphs.

In this section we extend and simplify some of the results found independently
by Dejter [5] and some of his students [6]. The simplification comes primarily
from exploiting the connections between G and VV(G) for G = G(n, k,0). The
improvements lie in removing restrictions on » used in [5] and in phrasing results
for wider application. We begin with a new class of graphs.

A generalized Petersen graph (GPG) may be of either odd or even type. A GPG
of odd type n is any graph all of whose vertices fall on one of two disjoint odd
length cycles, Cy: 2173 ... 2,21 and C2: 91Y3 ... Yn¥2V4 - .. Yn-1 Y1, OF ON ONE
of n disjoint paths P;: z;...y;, 1 < i < n, which have only their endpoints on
the cycles. The classical Petersen graph is a GPG of type S in which each F;
is a single edge. A GPG of even type n is any graph all of whose vertices fall
either on an even length cycle C,: 7122 . .. T, 71, or on either of two cycles each
of length %/2,Ca: 193 ... Yn1¥1,0r Ca: Y294 ... YnY2, OF ON One of n disjoint
paths P;: z; ... y; having only their endpoints on the cycles. As with the odd type,
the cycles are disjoint. A GPG of type 6 with 12 vertices may be constructed from
a cycle on 6 vertices and two copies of K3 by joining the vertices of each K3
to alternating vertices of the cycle. Roughly speaking, a GPG is spanned by an
n-gon surrounding an n-star with the vertices of the star and the n-gon joined by
paths. There is no restriction on the existence of other edges. The important point
is that the cycles and paths span the graph.
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Theorem 7. Let G beany GPG. Ifevery path P; of the definition has even length,
or if every such path has odd length, then VV (G) is Hamiltonian.

Proof: There are four cases, depending on whether G is of odd or even type and
whether the P;’s are of odd or even length. Hamiltonian cycles are shown for
VV(G) in Figure 1 using solid dots for vertices in S and open dots for vertices
in T. Graphs of type n= 5 and n = 6 with all odd P; and all even P; are shown
in the four diagrams. The constructions shown are clearly valid for larger values

of n. |

(a) Odd type GPG, odd F; (b) Odd type GPG, even F;

(c) Even Lype GPG, odd P; (d) Bven type GPG, even P

Figure 1: Examples of GPG’s
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Theorem 8. Let G be a GPG of even order n= 4 3. Then G is Hamiltonian.

Proof: The pattern shown in Figure 2 for n= 8 extends readily to any nifn=0
(mod 4). 123 156 i

G678 K

128 567
Figure 2: Theorem 8, with labels for G(10,3,0)/(8)

We conjecture that for every GPG G, VV(G) is Hamiltonian. The only dif-
ference here is that some paths may be odd and some even. We have verified
the conjecture for a number of cases, but the only ones we need for the present
application are those given in the theorems.

Virtually everyone who has worked on the problem of finding a Hamiltonian
cycle in some G(n, k,t) or H(n, k,t) has used one or another quotient graph
induced by permuting the ground set (the integers from 1 to n). In [6] one even
finds a quotient of a quotient put to effective use. For our purposes we need only
permutations given by a single cycle: (1,2,3...s) for2 < s < »n We denote
the corresponding permutation by (s) and the quotient graph by G(n, k,t) /(s) or
H(n, k,t)/(3). Itis sometimes useful to treat these quotients as labelled digraphs.
In that case a particular member of each orbit is chosen to be the representative
element, denoted by z- 0 for vertex z. Any other element of that orbit is identified
as z- r, where r is the smallest power of the permutation (s) that carries z-0 into
z-r. An arc from z to y in the quotient graph is labelled with integer j if z-0 is
adjacent to y- 7 in the original graph. Since x-0 may be adjacent to more than one
element of the orbit y, or even to an element of its own orbit, the quotient digraph
may have arcs or loops with multiple labels. An arc from x to y with label j has a
companion from y to z with label s — j. Only one of each such pair is shown in
the figures.

The next theorem is a variation of Theorem 10 of [S].

Theorem 9. For n > 2k > 4, let s = norn— 1, depending on whether
n is odd or even. Suppose that s and k are relatively prime and that there is a
Hamiltonian path in G(n, k,0) /(s) from =z to y, where z-0 is adjacent {0 - u,
and y-0 is adjacent to y-v with v=2u < s. Then G(n, k,0) is a GPG of type
s and H(n, k,0) is Hamiltonian.

315



Proof: The restrictions on k guarantee that every orbit has size s. The orbits = and
y provide the cycles C; and C, while the Hamiltonian path from z to y provides
the s paths required to show that G(n, k, 0) is a GPG of odd type s. Since every
path has the same length, Theorem 7 shows that H(n, k,0) is Hamiltonian. |

The requirements on z and y are not restrictive, for we may let = have as its
representative z-0 = {1,2,...,k}, and let y have as its representative y-0 =
{1,3,5,...,2k — 1}. If nis odd and if we form the quotient G(n, k,0)/(n)
then z-0 is adjacent to z- u for u = (n— 1)/2, and y-0 is adjacent to y- v for
v = n— 1. When nis even, using the quotient G(n, k,0) /(n—1), z- 0 is adjacent
toz-u foru = (n—2)/2,and y- 0 is adjacent to y- v for v = n—2. Thus, finding
a Hamiltonian path for this z and y is always sufficient.

A few simple examples will clarify the construction. The most classic of course
is G(5,2,0)/(5) which has only the two adjacent vertices z and y, shown in
Figure 3(a). (Each vertex is identified by its representative element.) Each of
G(6,2,0)/(5) and G(7,2,0)/(7) is an oriented version of K3, with some
loops, as shown in Figures 3(b) and (c). These examples complete our verification
that every H(n,2,0) is Hamiltonian.

12 2 13

1,4
. 2 /1\]1,3,4
. * 16
] 1,4 2,3,4

2,3
(a) G(5,2,0)/(5). (b) G(6,2,0)/(5)

1.3,4,6

2,3,4 /13\1, 3,5 :

14

0 L0
2,075 1T5,6 126 2 19

(c) G(7,2,0)/(7) (d) G(7,3,0)/(7)

Figure 3: Application of Theorem 9 to H(n,2,0).

For k = 3,G(7,3,0)/(7) is in Figure 3(d), where the existence of the desired
Hamiltonian path is clear. In fact, one may use a path from z withz-0 = 123 toy
with y- 0 = 135, relying on the arcs from z- 0 to z-3 and y- O to y- 6. Or one may
use a path that relies on the arcs from z-0 = {125} to 2-2 and z-0 to z-4, orone
that relies on the arcs from y-0 to y- 1 and 2- 0 to z- 2. A similar construction of a
Hamiltonian path is relatively easy to develop in each G(n, 3,0) /( s) for the cases
n= 11 o0r 12(s = 11),and n = 13 or 14(s = 13). In fact, the construction used
in the theorem works quite well for G(9,3,0)/(7) and for G(15,3,0)/(13).
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That is, it is not really necessary for s tobe nor n— 1. Having s > 2k,s > n—k

and s odd and relatively prime to k is sufficient. Only H(10,3,0) is yet to be
considered, to show thatevery H(n,3,0) is Hamiltonian. It then will follow from
Theorem 3 that every admissible H(n, k, k — 3) is Hamiltonian.

The graph G(10, 3,0) may be realized as a GPG of order 8. The vertices of
the quotient G( 10, 3, 0) /(8) are of two kinds. There are 13 vertices representing
orbits of size 8 and two of size 4. These two may be joined into a single “orbit”
whose elements 2-0 to z-7 are 159,269,379,489,15A4,26 A,37 A, and 48 A.
The cycle C, is given by the orbit of 123 under (8)®. The cycles C; and C; are
obtained by splitting the orbit of 126 into the orbits under (8)? of 367 and 126,
respectively. Paths P; comes from repeated application of (8)3 to P, where

P1:123,459,12 A,359,47 A,235,19 A, 247,135,467, 125,489,367 .

Figure 2 is labelled to match this example. It follows from Theorem 7 and Theo-
rem 8 that both G(10,3,0) and H(10,3,0) are Hamiltonian,

We conjecture that every G(n, k, 0) may be realized as a GPG, possibly with
some even and some odd length P;’s. We may remark that a Hamiltonian cycle in
G2k + 1,k,0)/(2k — 1), if its total length is relatively prime to 2k + 1, may
be used to generate a Hamiltonian cycle in G(2k + 1, k,0). In any event, it is
clear that finding a Hamiltonian path in G(n, k, 0) is an effective way to generate
a Hamiltonian cycle in many of these graphs.

\
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