k-equitable Labellings of Cycles and Some Other Graphs

Zsuzsanna Szaniszló

Department of Mathematics University of Nebraska-Lincoln 810 Oldfather Hall Lincoln,NE 68588

Department of Mathematics Kossuth University 4010 Debrecen, Hungary

Abstract. In this thesis we examine the k-equitability of certain graphs. We prove the following: The path on n vertices, P_n , is k-equitable for any natural number k. The cycle on k vertices, C_n , is k-equitable for any natural number k, if and only if all of the following conditions hold: $n \neq k$; if $k \equiv 2,3 \pmod{4}$ then $n \neq k-1$; if $k \equiv 2,3 \pmod{4}$ then $n \neq k \pmod{2k}$. The only 2-equitable complete graphs are K_1 , K_2 , and K_3 . The complete graph on n vertices, K_n , is not k-equitable for any natural number k for which $1 \leq k \leq n$. If $1 \leq k \leq n$, then determining the $1 \leq k \leq n$ equitability of $1 \leq k \leq n$ and $1 \leq k \leq n$ then determining the $1 \leq k \leq n$ notching of a metal bar. The star on $1 \leq k \leq n$ then determining the for any natural number $1 \leq k \leq n$ and $1 \leq k \leq n$ is $1 \leq k \leq n$ and $1 \leq n \leq$

1. Introduction.

The definition of k-equitable labellings was introduced by I. Cahit in [1] as a natural generalization of cordial labellings. In [1] and [3] Cahit proves results on 3-equitability of certain graphs. In this paper we find necessary and sufficient conditions for k-equitability of cycles and some other graphs for arbitrary natural number k.

2. Basic definitions and results.

By a graph we mean a finite undirected graph without loops and multiple edges. Let G be a graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \dots, e_m\}$.

A labelling (or numbering) of G is a mapping f of the vertex set to the natural numbers N. If f is a labelling, $v_i, v_j \in V(G)$ and $e = (v_i, v_j) \in E(G)$ then $f(e) = |f(v_i) - f(v_j)|$.

Definition 2.1: Let G be a graph and f be a labelling such that $f: V(G) \to \{0, 1, \ldots, k-1\} \subseteq N$. Let $v_f(i)$ and $e_f(i)$ denote the number of vertices and edges, respectively, with the label i. The labelling is called vertex-k-equitable if

$$|v_f(i) - v_f(j)| \le 1$$
 for all $i, j \in \{0, 1, ..., k-1\}$.

The labelling is called edge-k-equitable if

$$|e_f(i) - e_f(j)| \le 1 \text{ for all } i, j \in \{0, 1, \dots, k-1\}.$$

A labelling is called k-equitable if it is both edge- and vertex-k-equitable. A graph G is said to be k-equitable if it admits a k-equitable labelling.

Remark 2.2: The definition of k-equitability was introduced by I. Cahit [1]. In the case k = 2 the labelling was called cordial by Cahit [2].

Cahit proved that every tree is 2-equitable [2], and that the path on n vertices, P_n , is 3-equitable for any $n \in N$ [1].

Theorem 2.3. The path on n vertices, P_n , is k-equitable for any $k, n \in N$.

Proof: Consider the following labelling: for any h = 0, 1, ...

$$f(v_{2hk+2i+1}) = f(v_{2hk-2i}) = i \text{ where } i = 0, 1, \dots, \lfloor k/2 \rfloor$$

$$f(v_{2hk+2i}) = f(v_{2hk-(2i-1)}) = k-1-(i-1) \text{ where } i = 0, 1, \dots, \lfloor k/2 \rfloor -1$$
if k is odd and $i = 0, 1, \dots, k/2$ if k is even.

Thus, as the first 2 k vertex-labels we have:

$$f(v_1) = 0 = f(v_{2k})$$

$$f(v_2) = k - 1 = f(v_{2k-1})$$

$$f(v_3) = 1 = f(v_{2k-2})$$

$$f(v_4) = k - 2 = f(v_{2k-3})$$
...
$$f(v_k) = [k/2] = f(v_{2k-(k-1)}).$$

The actual labelling of the path consists of copies of this sequence of vertex-labels. It is clear that the labelling is vertex-k-equitable, and it is easy to check that it is edge-k-equitable as well.

Remark 2.4: From now on, the labelling f defined in the proof of Theorem 2.3. will be called the "basic" labelling.

Example 2.5: 5-equitable labelling of P_{18} :

3. The k-equitability of cycles.

Let C_n denote the cycle on n vertices.

Theorem 3.1. C_n is 2-equitable if and only if $n \not\equiv 2 \pmod{4}$. See [2].

Theorem 3.2. C_n is 3-equitable if and only if $n \not\equiv 3 \pmod{6}$. See [3]. Now suppose k > 3 and let $n \equiv r \pmod{2k}$, $0 \le r < 2k$.

Lemma 3.3. The sum of the edge-labels over a closed path must be even. See [10].

Theorem 3.4. There is no k-equitable labelling of C_n if any of the following conditions holds:

- (i) n=k;
- (ii) n = k 1 and $k \equiv 2, 3 \pmod{4}$;
- (iii) r = k and $k \equiv 2, 3 \pmod{4}$.

Proof: (i) In a vertex-k-equitable labelling we have to use k different vertex-labels, so there will be no edge-label 0 among the k edge-labels, therefore, at least one edge-label will occur twice, and the labelling cannot be edge-k-equitable; therefore, it cannot be k-equitable.

(ii) In a vertex-k-equitable labelling we have to use k-1 different vertex-labels, so there will be no edge labelled 0 among the k-1 edges. If the labelling is edge-k-equitable as well, then all the edge-labels are different and, thus, the sum of the edge-labels is k(k-1)/2. This sum must be even by Lemma 3.3.

Therefore, if $k \equiv 2,3 \pmod{4}$, there is no k-equitable labelling of C_{k-1} .

(iii) If n = (2A + 1)k and $A \neq 0$, then each edge- and vertex-label must occur exactly (2A + 1) times in a k-equitable labelling. The sum of the edge-labels is (2A + 1)(k - 1 + 0)k/2 = (2A + 1)(k - 1)k/2. This sum must be even by Lemma 3.3. Therefore, there is no k-equitable labelling of $C_{(2A+1)k}$ if $k \equiv 2, 3 \pmod{4}$.

Remark 3.5: In part (ii) k-equitable labelling would mean the same as graceful labelling since it is obvious from the definitions that a graph G with e edges is (e+1)-equitable if and only if G is graceful.

Theorem 3.6. C_n is k-equitable for any n and k if and only if none of the conditions (i), (ii), (iii), in Theorem 3.5 hold.

Proof: The necessity follows from Theorem 3.5. We prove the sufficiency by constructing k-equitable labellings for every other case.

Recall that $n \equiv r \pmod{2k}$, $0 \le r < 2k$.

The "basic" labelling (cf. Theorem 2.3 and Remark 2.4) gives k-equitable labelling in the following cases:

Case 1. r=0.

Case 2. $r \le k/2$ and r is odd.

Case 3. r > k and r is odd.

The truth of this statement can be easily seen from the definition of the "basic" labelling.

Case 4.
$$r = 2$$
.

Use the "basic" labelling for the first n-4 vertices. In order to get a k-equitable labelling, for the remaining 4 vertices and the 5 edges incident with them we need the

vertex-labels:
$$k = 1, 0, a, b$$

the edge-labels: k = 1, k = 2, 0, c, d

where $a \neq b$ and $c \neq d$.

Define the labelling function f' in the following way:

$$f'(v_i) = f(v_i) \text{ if } i = 1, 2, ..., n-4$$

where $f(v_i)$ is the corresponding vertex-label in the "basic" labelling

$$f'(v_{n-3}) = 1$$

$$f'(v_{n-2}) = k - 2$$

$$f'(v_{n-1}) = 0$$

$$f'(v_n) = k - 1.$$

Now f' is a k-equitable labelling since $f'(v_1) = f(v_1) = 0$ and $f'(v_{n-4}) = f(v_{n-4}) = f(v_{2k-2}) = 1$ and the labels of the edges incident with the last four vertices are k-1, k-1, k-2, k-3, and 0.

Example: 4-equitable labelling of C_{10} :

Case 5. $r < k/2, r = 2h, h \neq 1$.

Define f' such that if f is the "basic" labelling, then $f'(v_i) = f(v_i)$ if $i = 1, 2, \ldots, n-1$ and $f'(v_n) = \lfloor k/2 \rfloor$. Then $f'(v_{n-1}) = f(v_{n-1}) = f(v_{2k+2h-1}) = h-1$ where $h=2,\ldots, \lfloor k/4 \rfloor$ and f' is obviously a vertex-k-equitable labelling. In $C_n \setminus \{v_n\}$ the labels of the edges incident with the last r-1 vertices are decreasing by one starting with k-1 if we do not consider the edge labelled 0. There are r-2 edges of this type, thus, each edge-label

$$\geq k-1-(r-2)+1=k-r+2\geq k-k/2+2\geq k/2+2$$
.

The edges incident with v_n have labels

$$f'(e_n) = |f'(v_n) - f'(v_1)| = [k/2] - 0 = [k/2] \quad \text{and}$$

$$f'(e_{n-1}) = |f'(v_n) - f'(v_{n-1})| = [k/2] - (h-1) < [k/2]$$

Example: 10-equitable labelling of C_{24} . The sequence of the vertex-labels is:

$$f'(v_1) = 0 - 0 - 1 - 8 - 2 - 7 - 3 - 6 - 4 - 5 - 5 - 4$$
$$-6 - 3 - 7 - 2 - 8 - 1 - 9 - 0 - 0 - 1 - 9 - 5 = f'(v_{24})$$

Case 6. r > k and r is even.

If f is the "basic" labelling, then we define f' in the following way:

$$f'(v_i) = f(v_i)$$
 if $i = 1, 2, ..., n-1$ and $f'(v_n) = 0$.

f' is obviously a vertex-k-equitable labelling. In the last r-k steps the edge-labels are increasing in the "basic" labelling, so the largest is:

$$f'(e_{n-2}) = |f'(v_{n-1}) - f'(v_{n-2})| = k - 2(i+1).$$

On the other hand,

$$f'(e_{n-1}) = |f'(v_n) - f'(v_{n-1})| = k - (i+1)$$

since

$$f'(v_{n-1}) = f(v_{n-1}) = f(v_{2k-2i-1}) = k-1-i$$

and

$$f'(v_{n-2}) = f(v_{n-2}) = f(v_{2k-2i-2}) = i+1.$$

Since $f'(e_n) = 0$ we can conclude that f' is a k-equitable labelling.

Example: 10-equitable labelling of C_{18} . The sequence of the vertex-labels is:

$$f'(v_1) = 0 - 9 - 1 - 8 - 2 - 7 - 3 - 6 - 4 - 5 - 5 - 4 - 6 - 3 - 7 - 2 - 8 - 0 = f'(v_{18})$$

Case 7. k/2 < r < k and k - r is even.

Let n = 2Ak + r and f be the "basic" labelling. Define the labelling f' in the following way:

$$f'(v_i) = f(v_i) \text{ if } i = 1, 2, 3, \dots, 2Ak$$

$$f'(v_{2Ak+1}) = f(v_k)$$

$$f'(v_{2Ak+2}) = f(v_{k-1})$$

$$\dots$$

$$f'(v_{2Ak+r}) = f(v_{k-(r+1)})$$

Though $v_{2Ak+r+1}$ and $v_{2Ak+r+2}$ do not exist, we may define the following two numbers:

$$f'(v_{2,Ak+r+1}) = f(v_{k-r})$$

$$f'(v_{2,Ak+r+2}) = f(v_{k-(r+1)}).$$

Now define the labelling f'' such that

$$f''(v_i) = f'(v_i) \text{ if } i = 1, 2, \dots, 2Ak$$

$$f''(v_{2Ak+1}) = f'(v_{2Ak+1})$$

$$f''(v_{2Ak+i}) = f'(v_{2Ak+i}) \text{ if } f'(e_{i-2}) \le \lfloor k/2 \rfloor - 1$$

$$f''(v_{2Ak+j}) = f'(v_{2Ak+j+2}) \text{ if } f'(e_{j-2}) > \lfloor k-2 \rfloor - 1 \text{ and } j < r$$

$$f''(v_n) = 0.$$

That is, f'' differs from f' in the following way: $f''(v_n) = 0$, and instead of the label of the vertex which is adjacent to the edges labelled [k/2] and [k/2] + 1 in the f' labelling, we use the second next vertex-label (from f') as the f'' label and continue the labelling from there.

In this way f'' is a k-equitable labelling.

Indeed, the vertex-k-equitability is obvious. For the edge-equitability note that

$$f''(v_{2Ak}) = f(v_{2Ak}) = 0$$

$$f''(v_{2Ak+1}) = f(v_k) = [k/2]$$

$$f''(v_{2Ak+r-1}) = f''(v_{n-1}) = f(v_{k-r})$$

$$= (k-1) - ((k-r)/2 - 1) = k - k/2 + r/2 = k/2 + r/2 \ge r + 1.$$

Thus,

$$f''(e_{2Ak}) = [k/2]$$

$$f''(e_{n-1}) = f''(e_{2Ak+r-1}) = f''(v_{2Ak+r-1})$$

$$f''(e_n) = 0$$

by definition, and the edges between $e_{2.k+1}$ and e_{n-2} have the labels $1, \ldots, r$. (It is an increasing sequence, and we cut out the edge-labels $\lfloor k/2 \rfloor$ and $\lfloor k/2 \rfloor + 1$.) Therefore, f'' is a k-equitable labelling.

Example: k = 10 [k/2] = 5.

The sequence of the vertex-labels in the "basic" labelling is: 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, ...

Case 8. k/2 < r < k-1 and k-r is odd.

This case is very similar to Case 7. The only difference is that we do not define the label of the last vertex separately, that is, $f''(v_n) = f'(v_{2Ak+r+2})$.

Thus, f'' is a k-equitable labelling since

$$f''(v_n) = f'(v_{2Ak+r+2}) = f(v_{k-(r+1)}) = (k-1) - (k-(r+1))/2$$

$$= k/2 + r/2 + 1/2$$

$$f''(v_{n-1}) = \begin{cases} f'(v_{2Ak+r+1} & \text{if } f'(e_{r-1}) > \lfloor k/2 \rfloor - 1 \\ f'(v_{2Ak+r-1}) & \text{if } f'(e_{r-1}) \le \lfloor k/2 \rfloor - 1 \end{cases}$$

$$f'(v_{2Ak+r+1}) = f(v_{k-r}) = (k-r-1)/2$$

$$f'(v_{2Ak+r-1}) = f(v_{k-r+2}) = (k-r+2-1)/2 = (k-r+1)/2.$$

Therefore,

$$f''(e_n) = f''(v_n) = (k+r+1)/2 > r+1$$

$$f''(e_{n-1}) = |f''(v_n) - f''(v_{n-1})|$$

$$= \begin{cases} (k+r+1)/2 - (k-r-1)/2 = r+1 \text{ if } f'(e_{r-1}) > [k/2] - 1 \\ (k+r+1)/2 - (k-r+1)/2 = r \text{ if } f'(e_{r-1}) \le [k/2] - 1 \end{cases}$$

$$f''(e_{2Ak}) = f''(v_{2Ak+1}) = [k/2].$$

The edges between e_{2Ak+1} and e_{n-2} have the labels $1, \ldots, r-1$ if $f'(e_{r-1}) \leq [k/2] - 1$ or $1, \ldots, r+1$ if $f^p(e_{r-1}) > [k/2] - 1$. Example: k = 10, r = 7.

Case 9. r = k - 1.

If n = 2Ak + k - 1 for some $A \in N$, then if A = 0, we have the same problem as that of the graceful labelling of C_{n-1} , which was solved in [10] (cf. Remark 3.6).

If $A \neq 0$ and $k \equiv 0$, 1 (mod 4), we can use the "basic" labelling for the first 2Ak vertices and a graceful labelling for the last k-1 vertices. If $A \neq 0$ and $k \equiv 2,3 \pmod{4}$, then in a k-equitable labelling one edge- and one vertex-label appears one time less than all the others. The sum of the edge-labels must be even, no matter what the "missing" vertex-label is.

In this case k(k-1)/2 is odd and $\lfloor k/2 \rfloor$ is also odd, so we can leave out the edge-label $\lfloor k/2 \rfloor$, for example.

Let f be the "basic" labelling, and define f' in the following way:

$$f'(v_i) = f(v_i) \text{ if } i \leq (2A-1)k$$

for the last 3k - 1 vertices let

$$f'(v_{2(A-1)k+1}) = f'(v_{2(A-1)k+3}) = 0$$

$$f'(v_{2(A-1)k+2j+1}) = h \text{ if } j = 3h \text{ or } j = 3h+1 \text{ or } j = 3h-1$$

$$\text{and } 2 \le j \le 3k/2 - 1$$

$$f'(v_{2(A-1)k+2j}) = k - p \text{ if } j = 3p \text{ or } j = 3p-1 \text{ or } j = 3p-2$$

$$\text{and } 0 < j < (3k-1)/2$$

$$f'(v_{2(A-1)k+3k-1}) = \lfloor k/2 \rfloor.$$
In this way, $f'(v_{2(A-1)k+3k-2}) = \lfloor k/2 \rfloor \text{ since}$
a)
If k is odd then $3k - 2 = 2j+1$, that is, $2j+1 \equiv (-2) \pmod{3}$.
If $j = 3p$ then $2j+1 = 6p+1 \equiv (-2) \pmod{3}$, if $j = 3p-1$ then $2j+1 = 6p-1 \equiv (-1) \pmod{3}$, if $j = 3p-2$ then $2j+1 = 6p-3 \equiv 0 \pmod{3}$, thus, $j = 3p$ and $3k-2 = 6p+1$ $p = (3k-3)/6 = k/2-1/2 = \lfloor k/2 \rfloor$.
b)
If k is even then $3k-2 = 6p+1$ $p = (3k-3)/6 = k/2-1/2 = \lfloor k/2 \rfloor$.
b)
If $k = 3h + 1$ then $k = 2j = 6h = 0 \pmod{3}$, if $k = 3h + 1$ then $k = 2j = 6h = 2 \pmod{3}$, if $k = 3h + 1$ then $k = 2j = 6h + 2 \equiv 2 \pmod{3}$, if $k = 3h + 1$ then $k = 2j = 6h + 2 \equiv 2 \pmod{3}$, thus, $k = 3h - 1$ and $k = 2h + 2h = 2 \pmod{3}$.
Now define the labelling $k = 2h + 2h = 2 \pmod{3}$.

$$f''(v_i) = f'(v_{i+1})$$
 if $f'(e_{i-1}) = f'(e_i) = [k/2]$, $f''(v_i) = f'(v_i)$ otherwise.

It is easy to see that f'' is a k-equitable labelling. The vertex-k-equitability is clear. For the edge-k-equitability note that among the last 3k-1 edge-labels in the labelling f' we have 3 of each edge-label except 0 and [k/2]. 0 occurs once as the label of e_{n-1} and $\lfloor k/2 \rfloor$ occurs four times, since $f'(e_n) = \lfloor k/2 \rfloor$. The difference between f' and f'' is that we interchange the labels of the two vertices that are incident with exactly two edges labelled [k/2]. In this way we lose three [k/2] edge-labels, but gain two 0 and one [k/2] edge-label.

Hence, f'' is a k-equitable labelling.

a)

Example:
$$k = 10$$

$$f'(C_n):$$

$$0 - \dots - 0 - 9$$

$$- 7 - 3$$

$$- 7 - 3 - 6 - 3 - 6 - 4 - 6 - 4 - 5 - 4 - 5 - 5$$

$$f''(C_n):$$

$$0 - \dots - 0 - 9$$

$$- 7 - 3$$

$$- 7 - 3 - 6 - 3 - 6 - 4 - 6 - 4 - 5 - 4 - 5 - 5$$

Case 10. r = k that is, n = (2A + 1)k for some $A \in N$.

The non-existence of a k-equitable labelling for A=0 and for $k\equiv 2,3$ (mod 4) when $A\neq 0$ is given by Theorem 3.5. We construct k-equitable labellings for the remaining cases.

a) $k \equiv 0 \pmod{4}$ that is, k = 4B for some $B \in N$.

Let f be the "basic" labelling and use the notation $v_i' = v_{2(A-1)k+i}$. Now define the labelling f' in the following way:

$$f'(v_i) = f(v_i) \text{ if } 1 \le i \le 2(A-1)k$$

$$f'(v_1') = f'(v_2') = f'(v_4') = 0$$

$$f'(v_{2i+1}') = k - p \text{ if } i = 3p$$

$$\text{or } i = 3p - 1 \text{ or } i = 3p - 2 \text{ and } 1 \le i \le 3B$$

$$f'(v_{2i}') = p \text{ if } i = 3p$$

$$\text{or } i = 3p + 1 \text{ or } i = 3p + 2 \text{ and } 3 \le i \le 3B$$

$$f'(v_{6B+2}') = f'(v_{6B+4}') = f'(v_{6B+8}') = 3B - 1$$

$$f'(v_{6B+3}') = f'(v_{6B+5}') = B$$

$$f'(v_{6B+4i+2}') = 3B - 2p \text{ if } i = 3p - 2$$

$$\text{or } i = 3p - 1 \text{ or } i = 3p \text{ and } 1 \le i < (6B - 5)/4$$

$$f'(v_{6B+4i}') = 3B - (2p + 1) \text{ if } i = 3p$$

$$\text{or } i = 3p + 1 \text{ or } i = 3p + 2 \text{ and } 3 \le i < (6B - 7)/4$$

$$f'(v_{6B+2i+1}') = B + p \text{ if } i = 3p$$

$$\text{or } i = 3p + 1 \text{ or } i = 3p + 2 \text{ and } 3 \le i \le 3B - 4$$

$$f'(v_{12B-6}') = f'(v_{12B-1}') = f'(v_{12B-2}') = 2B$$

$$f'(v_{12B-5}') = f'(v_{12B-3}') = f'(v_{12B-2}') = 2B - 1 \text{ and}$$

$$f'(v_{12B-4}') = 2B + 1.$$

That is, the sequence of the last 3k vertex-labels is:

$$0-0-(k-1)-0-(k-1)-1-(k-1)-1-(k-2)-1-(k-2)$$

$$-2-(k-2)-2-...-(B-1)-3B-(B-1)-3B-B-3B$$

$$---(3B-1)-B-(3B-1)-B---(3B-2)-(B+1)$$

$$-(3B-1)-(B+1)-(3B-2)-(B+1)-(3B-3)-(B+2)$$

$$-(3B-2)-(B+2)-...-(2B+1)-(2B-2)-(2B+2)$$

$$-(2B-2)-(2B+1)-(2B-2)----2B-(2B-1)$$

$$-(2B+1)-(2B-1)-(2B-1)-2B-2B.$$

The labelling f' is obviously k-vertex-equitable and it is easy to check that it is k-edge-equitable as well.

Example: k = 8 B = 2.

$$f'(v_{2(A-1)k}) = 0 - 0 - 0 - 7 - 0 - 7 - 1 - 7 - 1 - 6 - 1 - 6 - 2$$
$$-6 - -5 - 2 - 5 - 2 - 4 - 3 - 5 - 3 - 3 - 4 - 4 = f'(v_n)$$

b) $k \equiv 1 \pmod{4}$ that is, k = 4B + 1 for some $B \in N$. As in part a) let f be the "basic" labelling and use the notation $v_i' = v_{2(A-1)k+i}$. If k = 5, then define the labelling f' in the following way:

$$f'(v_i) = f(v_i) \text{ if } 1 \le i \le 2(A-1)k$$

$$f'(v_1') = f'(v_2') = f'(v_4') = 0$$

$$f'(v_3') = f'(v_5') = f'(v_7') = 4$$

$$f'(v_9') = f'(v_{12}') = f'(v_{13}') = 1$$

$$f'(v_{11}') = f'(v_{14}') = f'(v_{15}') = 2.$$

That is:

$$f'(v_{(2A-1)k}) = 0 - 0 - 0 - 4 - 0 - 4 - 1 - 4 - 1$$
$$-3 - 1 - 2 - 3 - 3 - 2 - 2 = f'(v_n).$$

Suppose k > 5. Now we can define a k-equitable labelling in a very similar way to part a). Let

$$f'(v_i) = f(v_i) \text{ if } 1 \le i \le 2(A-1)k$$

$$f'(v_1') = f'(v_2') = f'(v_4') = 0$$

$$f'(v_{2i+1}') = k - p \text{ if } i = 3p$$

$$\text{or } i = 3p - 1 \text{ or } i = 3p - 2 \text{ and } 1 \le i \le 3B + 1$$

$$f'(v_{2i}') = p \text{ if } i = 3p$$

$$\text{or } i = 3p + 1 \text{ or } i = 3p + 2 \text{ and } 3 \le i \le 3B + 2$$

$$f'(v_{6B+5}') = f'(v_{6B+7}') = f'(v_{6B+11}') = B + 1$$

$$f'(v_{6B+6}') = f'(v_{6B+8}') = 3B$$

$$f'(v_{6B+2i}') = 3B - (p-1) \text{ if } i = 3p - 2$$

$$\text{or } i = 3p - 1 \text{ or } i = 3p \text{ and } 5 \le i < (6B-7)/2$$

$$f'(v_{6B+4i+1}') = B + 2p \text{ if } i = 3p - 1$$

$$\text{or } i = 3p \text{ or } i = 3p + 1 \text{ and } 2 \le i \le (6B-6)/4$$

$$f'(v_{12B-6}') = f'(v_{12B-1}') = f'(v_{12B-2}') = 2B$$

$$f'(v_{12B-4}') = f'(v_{12B-3}') = f'(v_{12B-2}') = 2B + 1 \text{ and}$$

$$f'(v_{12B-4}') = 2B - 1.$$

The sequence of the last 3k vertex-labels is:

$$0-0-(k-1)-0-(k-1)-1-(k-1)-1-...$$

$$-(3B+1)-B-(3B+1)-B-3B-B$$

$$--(B+1)-3B-(B+1)-3B-(B+2)-(3B-1)$$

$$-(B+1)-(3B-1)-(B+2)-(3B-1)-(B+3)$$

$$-...-(2B-2)-(2B+2)-(2B-3)-(2B+2)$$

$$-(2B-2)-2B-(2B+1)-(2B-1)-(2B+1)$$

$$-(2B+1)-2B-2B.$$

Example: k = 9.

$$f'(v_{2(A-1)k}) = 0 - 0 - 0 - 8 - 0 - 8 - 1 - 8 - 1 - 7 - 1 - 7 - 2 - 7 - 2$$
$$-6 - 2 - -3 - 6 - 3 - 6 - -4 - 5 - 3 - 5 - 5 - 4 - 4 = f'(v_n)$$

4. k-equitable labellings of K_n .

Denote by K_n the complete graph on n vertices. Thus, K_n has n vertices and n(n-1)/2 edges. First note that in a k-equitable labelling, if a number occurs at least twice as a label, then all the possible corresponding labels (that is, vertex-labels or edge-labels) must have been used.

Case 4.1.
$$k = 2$$
.

Suppose we have h vertices labelled 0 and m labelled 1 in an equitable labelling. Then the number of the edges labelled 0 is h(h-1)+m(m-1))/2 and the number of the edges labelled 1 is (hm+mh)/2. The labelling is edge-equitable exactly if $|(h(h-1)+m(m-1)/2-2hm/2|\leq 1$. The labelling is vertex-equitable exactly if $|h-m|\leq 1$. If we have a vertex-equitable labelling, then we have the following possibilities:

a)
$$h = m$$
 b) $h = m + 1$ c) $h = m - 1$.

A vertex-equitable labelling is equitable if and only if it is edge-equitable as well. This means we must have the following conditions:

- a) (when h = m).
- $|2(h^2 h) 2h^2| \le 2$ that is, $|2h| \le 2$ that is, $h \le 1$, thus, h = m = 1 or h = m = 0.
 - b) (when h = m + 1).
- $|(m+1)m+m(m-1)-2m(m+1)| \le 2$ that is, $|-2m| \le 2$ that is, $m \le 1$, thus, m = 1 and n = 2, or n = 0 and n = 1.
 - c) (when h = m 1).

Because of the symmetry this gives the same result as part b). Therefore, the only 2-equitable complete graphs are K_1 , K_2 and K_3 .

Case 4.2, k > 2.

Let n > k. Assume we have a vertex-equitable labelling. Denote by A the maximum number of occurences of the vertex-labels. Naturally $A \ge 1$. If A = 1, then there cannot be an edge labelled 0 in a vertex-equitable labelling since each vertex-label can occur at most once. Hence, $k \le n$. Thus, if n > k, then A > 1.

In a vertex-equitable labelling we have the following possibilities:

vertex-label 0 A A A-1 A-1 vertex-label
$$(k-1)$$
 A A-1 A A-1 edge-label $(k-1)$ A A-1 $(k-1)^2$ case a b c

Each vertex-label occurs at least (A-1) times in a vertex-equitable labelling, hence, the label 1 occurs at least

a)
$$2A(A-1) + (k-3)(A-1)^2$$
 b) $A(A-1) + (k-2)(A-1)^2$ c) $(k-1)(A-1)^2$ times.

In an edge-equitable labelling the number of the edges labelled 1 and k-1 can differ at most by one. This gives the following conditions:

a)
$$|2A(A-1)+(k-3)(A-1)^2-A^2| \le 1$$
 that is, $|A^2-2A+(k-3)(A-1)^2| < 1$.

If $\overline{A} > 2$ then $A^2 - 2A \ge 3$ and $(k-3)(A-1)^2 \ge 0$, hence, there is no solution to the inequality if A > 2.

If
$$A = 2$$
 then $|4 - 4 + (k - 3)1^2| = |k - 3| \le 1$, hence, $k \le 4$.

b)
$$|A(A-1)+(k-2)(A-1)^2-A(A-1)| \le 1$$
 that is, $|(k-2)(A-1)^2| \le 1$.

Since A > 1, this can happen if and only if $|k-2| \le 1$, that is, $k \le 3$. Therefore, k = 3, since k > 2, and, hence, A = 2.

c)
$$|(k-1)(A-1)^2 - (A-1)^2| \le 1$$
 that is, $|(k-2)(A-1)^2| \le 1$.

Similarly to part b) we get k = 3 and A = 2.

Thus, if A > 1 then A = 2, and k can be 3 or 4.

In a k-equitable labelling of K_n , therefore, each of the vertex-labels can occur at most twice, at least one of them does occur twice, and, hence, each of the vertex-labels occurs at least once. Thus, $k+1 \le n \le 2k$.

Hence, if n = k + i then obviously the number of the edges labelled 0 is exactly i, since the labelling is k-equitable.

Now let us consider the number of the edges labelled 1. When we use each vertex-label exactly once, we have k-1 edges labelled 1. After this each new non-zero vertex-label gives at least two edges labelled 1, while a vertex labelled 0 gives at least one edge labelled 1. Thus, the number of the edges labelled 1 is at least k-1+1+2(i-1)=k+2i-2. Since the number of the edges labelled 0 is i, we must have $|(k+2i-2)-i| \le 1$, that is, $|k+i| \le 3$. Since $i \ge 1$ and $k \ge 3$, there is, therefore, no k-equitable labelling of K_n if k < n.

Therefore, let $n \leq k$.

Then in a k-equitable labelling of K_n the edge-label 0 cannot occur, since all the vertex-labels must be different, thus, K_n is k-equitable if and only if all the n(n-1)/2 edges have different labels. Therefore, k > n(n-1)/2 is a natural necessary condition for K_n to be k-equitable. To find a sufficient condition one should solve the classical combinatorial problem involving the notching of a metal bar of length k at integer points in such a way that all the distances between two notches, or between a notch and an end point, are distinct. If there are (n-2) notches and 2 end points, then there are n(n-1)/2 lengths which must be distinct. Hence, this problem is equivalent to finding the smallest k for which K_n is k-equitable.

According to [6] the best known k values for K_n if $2 \le n \le 10$ are:

$$n=2$$
 $k=2$
 $n=7$
 $k=26$
 $n=3$
 $k=4$
 $n=8$
 $k=37$
 $n=4$
 $k=7$
 $n=9$
 $k=49$
 $n=5$
 $k=12$
 $n=10$
 $k=65$
 $n=6$
 $k=18$

5. k-equitable labellings of complete bipartite graphs.

Denote by $K_{m,n}$ the complete bipartite graph on m+n vertices; that is, the graph $K_{m,n}$ has the vertex set $V(K_{m,n}) = V_1 \cup V_2$ where $|V_1| = m$ and $|V_2| = n$ and $K_{m,n}$ has the edge set $E(K_{m,n}) = \{e_{i,j} = (u_i, v_j) : u_i \in V_1, v_j \in V_2\}$. $K_{1,n}$ is frequently called a star on n vertices and denoted by S_n .

Lemma 5.1. S_n is k-equitable for any $k, n \in N$.

Proof: Label the vertex in the centre by 0 and label the end-vertices with copies of the decreasing sequence $(k-1), (k-2), \ldots, 0$. This labelling is obviously k-equitable.

Lemma 5.2. In a k-equitable labelling of $K_{2,n}$, V_1 consists of vertices labelled 0 and k-1, whenever n > k+2.

Proof: Two identical vertex-labels cannot occur in V_1 , because if they do, in a vertex-equitable labelling there would be at least two fewer edge-labels 0 than any other edge-labels.

In order to have edges labelled k-1, either the vertex-label 0 or the vertex-label k-1 must occur in V_1 . Suppose only one of them occurs. There are n+2 vertices in $K_{2,n}$, which means that in a vertex-equitable labelling at most [(n+2)/k]+1 vertex-labels of the same kind can occur. Hence, this is the maximum number of the edge-labels k-1 as well.

There are 2n edges in $K_{2,n}$, thus, in a k-equitable labelling there are at least $\lfloor 2n/k \rfloor$ of each different edge-label. Therefore, in an edge-equitable labelling the following relation must hold: $\lfloor (n+2)/k \rfloor + 1 \geq \lfloor 2n/k \rfloor$. Thus, we must have $(n+2)/k+1 \geq 2nk$, that is, $n+2+k \geq 2n$, that is, $2+k \geq n$ which contradicts our assumption that n > k+2.

Theorem 5.3. Let $n \equiv h \pmod{k}$, $0 \leq h < k$. Then $K_{2,n}$ is k-equitable if and only if any of the following conditions hold:

- (i) h = k 1
- (ii) h < k/2 1
- (iii) $n = \lfloor k/2 \rfloor$ and k is odd.

Proof: Necessity: Let n > k + 2. By Lemma 5.2 the vertex-labels in V_1 are 0 and k - 1. Hence, the edge-label 0 can occur only if 0 or k - 1 is used as a vertex-label in V_2 . In order to get a vertex-equitable labelling, the vertex-labels 0 and k - 1 can be used a certain number of times in V - 2 only if all the other vertex-labels have already been used as many times. This can happen when k = 0 or k = k - 1.

If 0 < h < k-1, then in an edge-equitable labelling each edge-label occurs at least $\lfloor 2n/k \rfloor$ times and cannot occur more than $\lfloor 2n/k \rfloor + 1$ times. To have $\lfloor 2n/k \rfloor$ edges labelled 0, we have to use at least $\lfloor n/k \rfloor$ of each of the vertex-labels 0 and k-1. That means that all the other vertex-labels must have been used at least $\lfloor n/k \rfloor$ times as well. For vertex-equitability the remaining vertices must have different labels, and for edge-equitability, the arising 2h edge-labels must be all different as well. Among these 2h edge-labels there is neither 0 nor k-1, hence, $2h \le k-2$, that is, $h \le k/2-1$. Let $n \le k-2$. Then there is no edge labelled 0 among the 2n edges in a vertex-equitable labelling. Therefore, if the labelling is edge-equitable as well, all the edge-labels must be different. Thus, 2n < k-1 and n < k/2-1/2.

If k is even then $n \le k/2 - 1/2$ if and only if $n \le k/2 - 1$. If k is odd then $n \le k/2 - 1/2$ if and only if $n \le [k/2]$.

Sufficiency: (i) In V_1 use the vertex-labels 0 and k-1. In V_2 use the vertex-label 0 exactly one time less than any other vertex-labels. This labelling is k-equitable. Indeed, the vertex-equitability is obvious. For the edge-equitability note that there are 2Ak + 2k - 2 edges in $K_{2,n}$, where n = Ak + k - 1. The "missing" edge-labels, that is, the edge-labels that occur one time less than any other, are 0 and k-1.

(ii) In V_1 use the vertex-labels 0 and k-1 again, in V_2 use the vertex-labels $1,2,\ldots,h$ one more time than any other vertex-labels.

This labelling is obviously vertex-k-equitable. For the edge-equitability note that the labels of the edges adjacent to the vertex labelled i are |0 - i| = i and |k - 1 - i| = k - 1 - i when $1 \le i \le h$. Moreover, $i \le k/2 - 1$, hence, $|0 - i| \le k/2 - i$ and $|k - 1 - i| \ge k - 1 - (k/2 - 1) = k/2$.

(iii) In V_1 use the vertex-labels 0 and 1, and in V_2 use the vertex-labels 2i where $0 \le i \le \lfloor k/2 \rfloor$. Thus, the vertex-labels are obviously different and the edge-labels are different as well, since the labels of the two edges adjacent to any vertex in V_2 have different parity. Hence, the labelling is k-equitable.

Conclusion.

Many open problems concerning k-equitability remain. Of these, probably the most "hopeful" problem is to determine necessary and sufficient conditions for k-equitability of complete bipartite graphs $K_{m,n}$ with $n \geq 3$. As for trees, even to prove k-equitability ($k \geq 4$) of all caterpillars appears to be quite difficult: it is probably more realistic to try to prove this for some special classes of caterpillars. On the other hand, it is possible that the proving of the k-equitability of the caterpillars or even the k-equitability of all trees for some specific values of k (for example, k=3) is an easier problem.

Acknowledgement

I would like to thank Professor Alexander Rosa for his help and encouragement.

References

- 1. I. Cahit, Equitable tree labellings, Manuscript.
- 2. I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria 23 (1987), 201–208.
- 3. I. Cahit, On cordial and 3-equitable labellings of graphs, Utilitas Math. 37 (1990), 189-198.
- 4. J.A. Gallian, A survey: recent results, conjectures and open problems on labelling graphs, J. Graph Theory 13 (1989), 491-504.
- 5. J.A. Gallian, A guide to the graph labelling zoo, Discrete Appl. Math. (to appear).
- 6. S.W. Golomb, *How to number a graph*, in "Graph Theory and Computing", Academic Press, New York, 1972, pp. 23–27.
- 7. R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math. 1 (1980), 382-404.
- 8. E. Mendelsohn and A. Rosa, One-factorizations of the complete graph—a survey, J. Graph Theory 9 (1985), 43-65.
- G. Ringel, Problem 25, in "Theory of Graphs and its Applications", Proceedings of the Symposium Smolenice 1963, House of Czechoslovak Academy of Science, Praque, 1964, p. 162.
- 10. A. Rosa, On certain valuations of the vertices of a graph, in "Theory of Graphs", International Symposium, Rome 1966, Dunod, Paris, 1967, pp. 349-355.
- 11. A. Rosa, Cyclic Steiner triple systems and labellings of triangular cacti, Scientia Series A: Math. Sciences 1 (1988), 87-95.

vincian C

The property of the second sec

्रेष्ट्रीय विद्यार्थित करिए । असुम्बद्धानम्बद्धारम् स्थानसम्बद्धान् स्थानस्य स्थानस्य स्थानस्य स्थानस्य स्थानस्य स्थानस्य स्थानस्य स्थानस्य

The second secon

The state of the s

And the second s

The control of the co

High Albert and the second control of the control of the control of the second of the