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Abstract. A labeling (function) of a graph G is an assignment f of nonnegative in-
tegers to the vertices of G. Such a labeling of G induces a labeling of L(G), the line
graph of G, by assigning to each edge uv of G the label | f(u) — f(v)|. In this paper
we investigate the iteration of such graph labelings.

1. Introduction

Given any finite simple graph G, V(G) and E(G) will denote the sets of vertices

and edges in G, respectively. The line graph of a graph G containing at least
one edge, denoted by L(G), is defined as follows: V(L(Q)) = E(G), and two
vertices are adjacent in L( Q) if the corresponding edges of G are both incident
with acommon vertex of G. For any positive integer n, L*(G) will denote the line
graphof L™ (@), where L°(G) = G. The reader is referred to [4] for properties
and characterizations of a line graph.

A labeling (function) of a graph G is an assignment f of nonnegative integers
to the vertices of G. We use F(G) to denote the set of all labelings of a graph
G. We then define the function I¢ : F(G) — F(L(G)) as follows: given any
f € F(G), Ie(f)(uv) = |f(v) — f(v)] for each vertex uv in L(G). I will
be abbreviated as [ if the context is clear. In general, we define I* : F(G) —
F(L™G)) sothat I*(f) = I(I™' (f)) for any f € F(G). Such a graph label-
ing has its origin from the graceful labeling of graphs. A graph G is called graceful
if there exists an injection f : V(G) — {0,1,...,|E(G)|} such that the induced
mapping f* : E(G) — {1,2,...,|E(G)|},defined by f*(uv) = |f(u) - f(v)|
for all uv € E(Q) is a bijection. Interest in graceful graphs began in the mid
1960’s with a conjecture of G. Ringel [10] and a paper by A. Rosa [11]. In the
intervening two decades, the so-called Ringel-Kotzig Conjecture that all trees are
graceful has been the focus of a large number of papers. Numerous variations of
graceful labelings have been investigated. For further details on graceful graphs
and their applications, we refer the readers to [3] and [7].

In this paper we will consider the iteration of graph labelings. A labeling f of
a graph G is called convergent if I*( f) = 0 or L*(QG) is undefined for some
nonnegative integer n (the smallest such n will be called the convergence rate of
S, denoted by rg( f), or simply r( f)), and f is called divergent otherwise (in
which case we write r(f) = o00). We also define M(f) = max{f(u) | u €
V(&) } and m( f) = min{f(u) | v« € V(G)}. Notice that r( f) = r(af + b)
for any nonnegative integers a and b, where a # 0. Also, any constant labeling
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J has convergence ralL either zero or one, depending on whether f = 0, and any
nonzero labeling of a h containing no edges has convergence rate 1.

For any graph G apd positive integer N, define »(G,N) = max{r(f) | f
is a convergent labelilng of G such that M(f) = N}. Let P, denote the path
containing n vertices, then we have L®( P,) is undefined. Hence any labeling of
P, has convergence raE atmost n. On the other hand, for any positive integer N, if
we assign one of the two vertices in P, of degree 1 by N and the rest of the vertices
of P, by 0, then the resulting labeling of P, has convergence rate n. Therefore we
have r( P,, N) = n. Also notice that v(G, N) = max{r(G;,N) |1 < i < k},
where {G; |1 < i< |k} is the set of components of G. Hence we will assume G
is a connected graph other than P, for the remainder of this paper.

2. A General Result
Let C,, denote the cycle on » vertices. Then the following lemma can be easily
checked:
Lemma 2.1. If G #,C2,, forany n, then L(G) is connected and nonbipatrtite.

Lemma 2.1 implies|that given any graph G, L™(G) is undefined for some pos-
itive integer n if and only if G is a path, Hence for the rest of this paper we will
assume L™( &) is defined for every positive integer n. We now have the following:

Lemma 2.2, Let f bf a labeling of a nonbipartite graph G. If f is not a constant
function, then f is divergent. .

Proof: Let n = r(f) be the convergence rate of f, and suppose 2 < n <

oco. This implies that I*(f) = 0, and hence I ( f) is a constant labeling in
F(L™!(G)). By Lemma 2.1 we have L™2 (@) is a nonbipartite graph, hence
we may select vertices vy , .. ., v, such that v; is adjacent to v;,; in L"2 (G) for
1 < i< t, where vy |= vy and t > 3 is odd. Assume I™2(f)(v;) = z; for
1 <4<t Thenwehave |y —z22| = |z2—23| = - -+ = |z —z1| = I (f). This
implies that z;— zi41 = 8;(ze—1 —x¢) for1 < i < t, where§; = +1. Adding all of
the ¢ inequalities together, we obtain (8; + 8 +- - -+ 8;) (1 —z¢) = 0. Notice that
81+ 8 +---+8 # 0 sincet is odd. This implies that I*~! (f) = |z¢_1 —ze| = 0,
which contradicts the ftct that r(t) = n. This proves Lemma 2.2. ]

Corallary 2.3. Given any labeling f of  bipartite graph G with maximum va-
lency at least 3, we have either r(f) €2 arr(f) = oo.

Proof: By Lemma 2.11‘ we have L(G) is nonbipartite. Hence I( f) is either con-
stant or divergent, which implies that either »( f) < 2 or r(f) = oco. |

Given any bipartite igraph G with bipartition X and Y, if we label the vertices
in X with a positive | and the vertices in Y with 0, then the resulting labeling
of G has convergence rate 2. Hence by Lemma 2.2 and Corollary 2.3, we have
shown the following: |
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Theorem 2.4. r(G,N) = 1 if G is nonbipartite and r(G,N) = 2 if G is
bipartite with maximum valency at least 3.

By Theorem 2.4 it suffices to consider the labelings of an even cycle C, onn
vertices vy, vz, ..., v, where v; is adjacent to v;;; for 1 < ¢ < n (the computa-
tion is reduced to modulus n). We will use r(n, N) to denote r(C,, N) for the
remainder of this paper.

3. Labeling Even Cycles
We write n = 2*q, where ¢ and ¢ are both positive integers and g is odd. Clearly,
any labeling f of C,, can be abbreviated as an n-tuple (a1, a32,...,6,), Wherea; =
F(v) for1 < i < n. Hence we may assume F(C,) is the set of all n-tuples over
nonnegative integers. Notice that (a),...,6,) and (@;,G41,.--,8ny--+,8i—1)
have the same convergence rate for any 2 < 1 < n Hence we may assume
I(f) = (Je1 — ez2],]a2 — a3),...,|as — 61]). We also define S(f) = (a1 +
a2,02 + @3,...,8, + a1) for any labeling f = (a,...,a,) of C,,and S¥(f) =
S(8*-1(f)) in general. A labeling f = (a1,...,8,) of C, is even (odd) if o;
is even (odd) for all 1 < i < n. Clearly we have I'( f) + S*( f) is even for any
positive integer 1. The following Lemma can be easily checked (a proof of part ii)
can be seen in [6]):
Lemma 3.1. i) For any odd integer q > 1, there exists an integer k > 1 such
that q | (2* — 1), ii) For any positive integers k and i such that 0 < i < 2*, the
number (2:) is even,
Lemma 3.2. If a labeling f = (a1,02,...,8,) is convergent, where n = 2'q,
then a; + aytys isevenforall 1 <i< n
Proof: First of all, it can be easily checked that for any positive integer k we have
SH(f) = (z1,2,...,50), Where z; = 350 (asyforl < i< mLetk > 1be
an integer such that g | (2% — 1) by Lemma 3.1. Then we have n | (2% —2¢),
k)
Assume S2'(f) = (=z1,22,...,%) and S2“"(F = (y1,2,...,un). Then
. z(tfk) 2((4&) - —-
forl < i< ny = 320 ( j )a,-+,- = a; + Gy = G5 + Gt =
)_“j;o G‘)aw = z; (mod 2). So S2'(f) + S2“P(f) is even. Similarly, we
have S2“Y () + S2“*” () is even, and so on. Since I'(f) + S(f) is even,
I2'(f) + I2“*® (f) is even for any positive integer i. This indicates that I2'( f) is
even, otherwise f would be divergent. Hence S'( f) is also even, or equivalently,
a; + ayty; is even forall 1 < 1 < n This completes the proof of Lemma 3.2. J

The proof of Lemma 3.2 immediately implies the following:

Corallary 3.3. Given any labeling f = (a1, ...,a,) of C,, where n= 2%q, we
have

i) If f is convergent, then I*'( f) is even;
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ii) I™(f) is even whenever n is a powerof 2;
iii) IFM(f) =1, ihenfisconvezgentifandonlyif I?'(f) = 0 ifand only
I:fa,'=a._‘+2tf0f8”l ngn.

Applying Lemma 3,2, Corollary 3.3, and mathematical induction, we immedi-
ately have the following:

Corollary 3.4. All labelings of C, converge if and only if n is a power of 2.

Corollary 3.4 was ﬁpt proved in [5] (the case n = 4 was also indicated in [8]).
A different proof using some basic properties of polynomial rings was given in
[12).

Theorem 3.5. r(2%q|N) < (2¢ — 1) log,(N + 1) + 1 withequality if N = 1.

Proof: Let f = (ai,.{.,a,) be aconvergent labeling of Cz¢, such that M( f) =
N.If f isnotacons nt, then write f = zfo + y so that x and y are both nonneg-
ative integers and fj is a labeling which is neither even nor odd. By Corollary 3.3
i), we have I%'( fo) is even. Let k; denote the smallest nonnegative integer so
that I¢*5+1( fo) is eve“n, which implies that I*1( fo) must be odd by the choice of
k;. But then k; > 1 by the choice of fo. If I*1( fy) is not a constant, then w rite
IM(fo) = 2y fi + y1 suchthat z; > 2 and y; > 1 are both integers and f; is nei-
ther even nor odd. Similarly, let k; > 1 be the smallest integer such that I*2( f;)
is odd, and write I*2( fi) = x3 f + y2 if I*(f1) is not a constant, where z; > 2
and y; > 1 are both integers and f, is neither even nor odd, and so on. Finally,
there exists a positive|integer s such that I*( f,_;) is an odd constant labeling,
and we write I*+( fs-1) = f,. Hence we have obtained a finite sequence of label-
ings fo, f1,..., fs such that i) 7(f) = v(fo); i) M(f) > M(fo), M(fs-1) 2
M(f) and M(fis1) 22M(fi)+1forl <i<s— L) r(fin) = r(fi) + ki
for1 < i < s, where 1 < ki < 2% — 1; iv) f, is an odd constant, and hence
r(f,) = 1. Butthen we have N = M(f) > M(fo) > 2M(fi)+1 2> --- >
25 M(foe1) +2°°24 ...+ 1 > 22 — 1, which implies that s < log, (N + 1).
Hence we have r(f) = r(fo) =r(fo) + ki + kp + -+ -+ ks < s(2'-1D+1<
(2t —1)log,(N+ 1)+ 1. Sor(n,N) < (2* —1)logy(N + 1) + 1. Onthe
other hand, consider the labeling f = (a1,...,a,) 0f Cy, suchthat M(f) = 1 and
a;i=1 ifandonlyifi!s 1 (mod 2*) for1 < i < n. Then we have r(f) = 2°.
This completes the proof of Theorem 3.5. |
To give a global lower bound for »(n, N'), we need a preliminary result. Given
any labeling f = (a1,632,...,02,) Of Cz,, define f = (a1,...,a2,), where g; =
M(f) —a;for1 < § < 2s. Clearly, we have m(f) = 0 and r(f) = r(f).
Moreover, if m(f) = 0, then M(f) = M(f). Then we have the following:

Lemma 3.6. Given ‘?ny Ilabeling f of C,, such that m( f) = 0, there exists a
labeling g of C, With' the following properties. i) m(g) = 0, i) v(g) = r(f)+1
if f is convergent; and iii) 2 M (f) < M(g) < 3(s— 1) M(f).

i
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4. The Case n=4
Whenn = 0 (mod
orem 3.7. Notice th:
r(2%q,N) = r(2%,
be also a lower boun

4), we will show a better bound than that given in The-
t r(n,N) > r(m,N) if m | = (in fact we guess that

if t > 2). Hence any lower bound on (4, N) would
for r(n,N) whenn=0 (mod 4).

For k > 3, note that the equation

has a unique positive
checked that < py
pa=.543689012 for c
the integer n nearest z
n-tuple f = (ay,...,
a labeling of C,), we

zk-l

+.+z2+z=1

3
real solution, which is denoted by p;. In fact it can be
+1 < pr < 1 forany k > 3. We will use p to denote

onvenience. For any real number z, we use [z] to denote
(if z+ L is an integer, then define [z] = z + }). Givenany

a,) over the set of real numbers (hence f is not necessarily

also define I(f) = (Ial —az|,|a2 — a3}, ...,|as — a1]).

In particular, if we let
observed that I(gy,)
of C, by real num

gn = (p™',...,P2,Ps, 1), then Professor Rick Luttmann
T=0n for n > 3. This implies that if we label the vertices
> Gn "would be divergent. In fact, it was proved in [9] that

ga is essentially the only divergent 4-tuple over the set of real numbers. Hence

by Corollary 3.4, it is natural to believe that for a given natural number N and

n= 2’ g "([p(“-n|N],---:

[p2 N1,[p.N1, N) has a large convergence rate,

which was also noticed in [2] for the case n = 4. For the rest of this section, we

will study the num!
Let fo = (0,0,1
define
fe

Assume fi = (ag, b

let o = max{|zx], |y,

The following lemma

Lemma 4.1.

{

,ck,dk) for each £ > 0. Then we can see that dy = a +
by + ¢y, for each k. Assumep dy = ap + Tg, pPdy =
k| |2k|} for all k£ > 0. Then by Equation (3) we have

r(4,N).
D, fi=0,1,13),  =(0,1,2,3),and for k > 3,

fes + fra fk=0 (mod 3)
fe-3 + 2 fr—2 otherwise.

b + yi, pdi = ¢ + 2, and

Tr+yr+2,=0 forallk>0 )]

summarizes some of the properties of the sequence { fi}.

i) Lot f, = (0,ai,ax + by, dy), then I(f}) = fi foreachk > 0;

ii) Foreachk >1,

we have

(Ck—1 — Gk—1,Ck—1 + k1,851 + 2be_1 + Ck_1,011

+2 b;;_:l
%‘(Ck-}

+2b;1

S

+ 3ck-1) ifk=1 (mod 3)
— Gk—1,Ck—1 + Gk—~1,8k-1 + 2bg_1 + Ck-1,0k-1
+ 3ck_1) otherwise
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which implies that
m(4,N) 2 7(

Similar to the above
when M(f3:) < N <
when M(fage1) <N

Theorem 4.2 implies
1.706 log,(N+1)+1.

=3k+3>
h = —log;p

log, (N + 1) +2.443,

proof, we have r(4,N) > —3-log, (N + 1) + 1.526
M(fsen), andr(4,N) > 5108 (N + 1) +2.044
< M( fak+2)- This completes the proof of Theorem 4.2.

thatifn=0 (mod 4),thenwehaver(n, N)>r(4,N) >
5. For any natural number N, if M(fi) < N < M(fi+1)

forsome k > 0, we guess thatr(4, N) = k+4, which would imply that the bound

given in Theorem 4.2 1§ essentially optimal.

5. The Casen= 6

We will need the following result of Euler (¢.g., see [1], p. 19):

Lemma 5.1, If |t| <

o0
TJ(1+t=

k=0
Applying Lemma 5.
Corollary 5.2. If 0 <

Proof: Notice that ’;”—_:
implies that

(-]
H(l +tz*

k=0

Letgo =(1,3,1,3,

labeling of C¢ for evel

1 and |z] < 1, then

tkok(k=1)/2
1-22)...(1 —z%)°

b = 14T
=1+ oy

1 we have the following:
ct< 1,0 <z<1,andtz/(1 —3?) <1,then

= 1+t — a2
14 ta*) < ——— 2
g( tz)<l—ta:—z2

;‘; > -,—_";::r for any natural number k. Hence Lemma 5.1

t =/ tz \F_ 1+t—2?
’<l+l—zg(l—x2) T l-tz—a?’
|
1,3), and in general we define g+ = T'gx, Where g is a
ry k > 0 and
-1 01 0 10
1 01 0 1 O
1 21 0 10
T=11 23 0 10
1 23 -2 10
1 23 -2 30
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Then we can easily check thatw = (V5 — 2, (3 — V/5)/2, (V5 — 1)/2, 1,
3 -V%5 /2, (V5-1) /2) is an eigenvector corresponding to the eigenvalue
A = V5 + 1 of the matrix T

Write g = Mi(w + ;) = (aknakuak:xaknakss akg)s where z; = (zkn Tk,
Tkys The» Ths» The) aNd My = ay, (and hence z;, = 0) for each k > 0. Then
it can be seen that ay, = ay, + ay, + ak, — ak, + ai,. Define ¢ = max {|zy,],
1 <1< 5}. Then we have the following:

Lemma 5.3.

1) r(gs) = v(gx—1) + 1, and hence v(g;) = k + 2 forall k >0;
i) exs2 < cex forall k > 2, wherec= 713457843 ;
ili) M(gy) = My foreach k> 0;
iv) Let g, = (0,ai,,ak, + ag,, 04, + ap, + Qky, Gk, + Gk, + Gk; — Gk, 0k, +
Gk, + ak, — a, + ak), then M(g}) < M(gy) and I(gl) = g; for each
k>0,

Proof: It can be easily checked that i) is true, ¢; = (7 - 3\/5_)/2, and that
Mz = (0% + 5z + 83y, + 94, + T 345) My for every k > 0. Now suppose
€; < € forsome k > 2. Then we have g2 = Miz(e + Tx42) = T2q; =
T?(w + z4) Mk = (A 2w + T2 z;) My, which implies that

T2z — (Sxk, + 8z, + 9y, + T Tp,)w
A2 + 534 + 8xp, + 9y, + Ty,

Tke2 =

Some tedious calculation then shows that €;,2 < ce; wherec = (39-15v5) /()2 -

29¢3) = 713457843, and hence the truth of ii). The truth of iii) and iv) follow
from ii). This completes the proof of Lemma 5.3. [}

We are now ready to prove the main result of this section.

Theorem 5.4. 7(6,N) > 1“{7':,:( A;tll) - L

Proof: The result is clear when N < 39. Hence we will assume N >39 > M,.
Now suppose Mz < N < Mz, for some k > 2. Letg = ghy + N — My,
then 7(g) = r(g3,) = r(g24) + 1 = 2k + 3, and M(g) = N. This implies that
r(6,N) > 2k + 3. _

On the other hand, Lemma 5.3 implies that N + 1 < Mag.z = (A2 + Szguy1 +
82202 +9 3213+ 7 T(2ky5) M2k < (A2 +29€24) My < (A2429¢ L e3) My =
A2(1+ tz*') My, where z = candt = 29¢, />%. Now Corollary 5.2 implies
that

Lad
N+1 <30, TT(1+ 2% < 2.6)%,
k=0
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Therefore, we have

log(N+1)—1log2.6 +3> log(N+1)
log(v5 + 1) = log(vV5 + 1)

This completes the pr I f of Theorem 5.4. |

The idea of constructing a labeling with large convergence rate can be gener-
alized. Let ho = (1, 3 1,3,...,1,3), and in general we define his1 = Taghs,
where g > 3 is odd, h’k is a labeling of Cy, for each k > 0,and T3, = (1;;) isa
matrix of order 2¢ deﬁnedas follows: t1; = —1,and if (4,7) # (1,1), then

6,N)>2k+3>

(0 ifi < jandjiseven

1 ifi < jandjisodd

-2 ifi>j>3andjiseven
3 ifi>j>3andjisodd
2 ifi>j=2

L1 ifi>j =1

tij|= <

Our intuition is that T3, contains a unique eigenvalue )z such that ¢ < Xz4 <
g+ 1, and the norm of every other eigenvalue of T, is at most g + 1. If this is the
case, we would have the following (by some arguments in terms of matrices):

log(N + 1)

2¢,N) >
r( ) 108 Ja;

+C(q),

where C(g) is independent of N'. This would be an improvement of Theorem 3.7.
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