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Abstract

Let T(m, n) denote the number of m x n rectangular standard Young
tableaux with the property that the difference of any two rows has all
entries equal. Let ';(n) =) 4)n T(d,n/d). We find recurrence relations

satisfied by the numbers T(m,n) and T'(n), compute their generating
functions, and express them explicitly in some special cases.

1 Introduction

For m, n > 1, let T(m, n) denote the number of rectangular m x n integer arrays
A with the following properties:

1. A is a standard Young tableau (that is, its rows and columns are nonde-
creasing and it contains all integers between 0 and mn — 1),

2. the rows of A are additive cosets (that is, the componentwise difference of
any two rows is a vector with all components equal).

For short, we call such an array a coset tableau. Table 1 shows three coset
tableaux with m=n =4.

0 1 2 3 0 1 4 5 0 1 8 9

4 5 6 7 2 3 6 7 2 3 10 11
8 9 10 11 8 9 12 13 4 5 12 13
12 13 14 15 10 11 14 15 6 7 14 15

Table 1: Some 4 x 4 coset tableaux.
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The purpose of tllis paper is to find recurrence relations satisfied by the
numbers T'(m, n), coxﬁpute their generating functions, and, if possible, express
them explicitly as fmﬁctions of m and n. Our original motivation was to show
that T'(p, q) = 2 Whelﬂ p and g are primes.

In Section 2, we prove a theorem describing the structure of coset tableaux.
This theorem leads to recurrence (5) in Section 3, from which we compute
T(m,n) when at leasi one of the parameters is a prime power. We also derive
recurrence relations for T(n) := 3°4, T(d,n/d). In Section 4, we use these
relations to find the jordinary and Dirichlet generating functions for T(m,n)

and T(n), from which we derive some explicit formulae.

2 A structujre theorem

We will index the rovlls and columns of coset tableaux with 0,1,...,m -1 and
01,...,.n-1, respecf;ively. '

If A is a coset tableau, it is clear that agp = 0. Also, either @ = 1 or
a10 = 1; we call A upper in the former case, and lower in the latter. The three

tableaux shown in Tiiible 1 are all upper. Furthermore,
a.-,-La.-o+aoj (for 0<i<m, 0<j<n).

This implies that if A is an m x n coset tableau then its transpose is an n x m

coset tableau. Hence‘ T(n,m) = T(m,n) for all m,n > 1.

Theorem 1 Let m,‘h > 1. Let A be an upper m x n coset tableay, d := ayo,

and0<j<n. Ther‘z
(f) ifj # -1 (modd), then j+1< n and ag j4+1 = Go,j +1,

(i) n=0 (mod 411) ,
(z'if) a;=j (mo' d) (for0<i<m).

Proof: (i) We proceed by induction on j. For j =0, n > 1 and ag; = ago + 1.

Now assume that 0 < j < n, j # —1 (mod d), and that the assertion holds
for all smaller j. Let z := agj. As m > 1, there exists an element of A, say a,t,
such that a,s =z + 1.

If t < j we distinguish two cases. If ¢ # 0 (mod d), then, by induction
hypothesis, ags = ags—1 + 1. Hence a,¢—1 = @50+ G0t — 1 = a5t — 1=z = ayj,
implying that s = 0/and ¢ — 1 = j, in contradiction with ¢ < j.

Ift =0 (mod d), then ¢t +k # —1 (mod dyfor0<k<d-2. Ift+d-2<j
then the induction l:nypothwis applies to all these indices and we have

l

Q0,141 — ao‘: = Qo t42 — 60,041 = .- = G0 t4d—1 — B0,t4+d—3 = 1
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and therefore ag¢4+4-1 = aot + d — 1. It follows that
Gy t4d-1 = 50 + Go,t4d-1 =G0+ a0t +d—1=a+d-1=z+d=ay;,

andso j =t+d—1= -1 (mod d), a contradiction.
If t +d — 2 > j then we can only infer that ag; — ag; = j — ¢{. But now
Jj—t< d-2 and therefore .

(: ] =a.o+ao,-=a,o+ao,+j—t=a.g+j—tg(z+l)+d—2=a1,~—l.

Hence a,j < a;j, implying that s = 0. But then apj = z < z + 1 = ag, in
contradiction with ¢ < j.

So we must have ¢ > j. If t = j then as0 = a,; — @ot = a5t — agj = 1, but
this is impossible as 1 = ag;. Therefore ¢t > j. Now

1=a,,-ao,-=a,o+(aot-ao,1')23+1

so that s = 0 and ag¢—ao; = 1. It follows that ¢ = j+1 and that ag ;41 = agj +1
as desired. Also, as ¢ < n, this proves that j+1 < n.

(#) If n is not divisible by d then we can let j = n — 1 in part (i) to get
n < n, a contradiction.

(i#i) Part (i) implies that each of the sets {a; ja+x |0 < k < d},for0 < i < m,
0 < j < n/d, contains d consecutive integers. As these sets represent a partition
of the set {0,1,...,mn — 1}, we must have a; ;4 = 0 (mod d) for all i and j,
and therefore a;; = j (mod d) for all i and j. O

3 Recurrence relations

For m,n > 1 and mn > 1, let S(m, n) denote the number of upper m x n coset
tableaux. In particular, S(1,n) = 1 for n > 1, while S(m,1) = 0 for m > 1.
Clearly, the number of lower m x n coset tableaux is S(n, m). Therefore

1, fm=n=1
T(""")={ S(m,n) + S(n,m), otherwise - M

Let A be an upper mxn coset tableau with m,n > 1, and d := a39. By Theorem
1(ii), d is a divisor of n. By Theorem 1(i#i), the multiples of d in A are gathered
in columns j with j = 0 (mod d). By deleting all other columns and dividing
the remaining ones by d, we obtain a lower m x (n/d) coset tableau. Since
according to Theorem 1(3), A is uniquely determined by the columns retained,
there is a 1-1 correspondence between these two types of tableaux. Therefore

S(m,n) =Y S(n/d,m) = . 5(d, m). @)
din din
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If we additionally define

then (2) is valid for
that

s(,1):=1, (3)

all m,n > 1 with mn > 1. From (1), (2) and (3) it follows

| T(m,n) =Y_ S(d, m) (4)
din

for all m,n > 1. Considering m as a parameter and applying Mdbius inversion

to (4), we obtain

S(n,m) =Y w(d)T(m, n/d)

din

Together with (1), this implies

1,

fm=n=1

T(m,n) ={ d; j(d)T(m, n/d) + E u(d)T(m/d,n), otherwise (5)

From (5) we can easily prove by induction on k 4 that for p and ¢ prime,

r60)= (*1"). ©)

Proposition 1 Letp be a prime and m,k > 1. Then

Proof: By (5),

T(m

so that

T(m,p*) = Y T(d,p*™").

dlm

p*) ==Y w(dT(m/d,p*) + T(m,p*7"),

dlm
[t 3)

T(m,p*™") = 3 w(d)T(m/d, ")

d|lm

Applying Mobius iljiversion in reverse, we get the desired conclusion. O

In particular, T(m, p) = 7(m), the number of divisors of m.

Proposition 2 Le

m and n be relatively prime, and let p be a prime. Then

T(mn, p*) = T(m, p*)T(n, p*).
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Proof: By induction on k. As T(m, 1) = 1 for any m, the assertion holds for
k=0.
Let k > 0. Then, by Proposition 1 and by induction hypothesis,

‘T(mn,p*) = ET(daPk-l)

d|mn

= Y 3 T(ddyp*")
dy|mdain

= z Z T(dhpk-l)T(dmpk-l)
dijmda|n

= Y T(d,p*) ) T(ds,p*")
d,lm dgln

= T(m, pk)T(nvPh) a
In general, T(m, n) is not multiplicative. For example, T'(6,6) = 14 while
T(2,6) x T(3,6) = 4 x 4 = 16.
Corollary 1 Let py,ps,...,pr be distinct primes, and p a prime. Then
r
ki +k
T(pfps? - --pkr,p¥) = [ ( T ) .
j=1
Proof: This follows from (6) and Proposition 2. O
Now define .
T(n) := Y T(d,n/d).

din

T'(n) is the number of all coset tableaux with n elements; it is obtained from
T(m, n) by convolution. Convolving both sides of (5) one gets

T(n) =2 p(n/d)T(d) (n>2), ]
din .
and from this, by means of reverse Mdbius inversion,
Pn)=)_Td)+1 (n21). (8)
din

dn

We omit the details of the proofs of (7) and (8).

Tables 2 and 3 give some values of T(m, n) and T'(n) computed from (5) and
(7), respectively.
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min 123 45 6.7 8 9 10
1{{ 11111111 1 1
2 1 22 3 2 4 2 4 3 4
3 122 3 2 4 2 4 3 4
4 133 6 3 9 31 6 9
5 1 22 3 2 4 2 4 3 4
6 1 44 9 414 416 9 14
7 122 3 2 4 2 4 3 4
8 1 4 410 4 16 4 20 10 16
9 133 6 3 9 310 6 9
10 1 44 9 414 416 9 14
Table 2: Some values of T'(m, n).

4 Generating functions and explicit formulae

Define Gr as a power series in infinitely many variables:

E
1'P2

b
|

Gr(@1, 22, Y. b3, )= T
; [ ¥

k. I .0 ky k Il
7...,pl'pz’...)zl‘zzz...yl‘y;...’

where {p1,pa, ...} is the set of all primes and the summation is over all pairs of
infinite vectors, k = |(ky,k2,...) and | = (l,l2,...), with non-negative integer
entries, at most finitely many of which are non-zero. Similarly, define

GT(‘zl, T2,...) = ET(pfipg’ .o ) z;“:g’ cee,
t k

Theorem 2 Letl G t and G4 be as above. Then

, 1
GT(’-'lgzz.---'[yhyz.---) = ﬁgl(l—xi)'*'ng.;l(l_yi)—l’ (9)
Gq«’(zl, z3,..) = m-il(.l_l—s:'jz_l . (10)

Proof: The recursion given in Equation (5) implies that

Gr = ZT(p",zL')z"y'
| X§ !

3 (Z L(d)T(p‘. Pld)zhy + Y wdT(*/d, p) zky') -1

Bl \dlp'| dlp*

> (E T(p". P) =1 zky*h 45 T(pb, p')(—l)""z"*"y') -1,
kJd h h

| .



n Tn)|n Tn)|n T)|n T@)| n T(n)
1 1 |21 6 [41 2 |61 2 |8 16
2 2 (22 6 (42 26 |62 6 |82 6
3 2 |23 2 |43 2 |63 16 (83 2
4 4 |24 40 |44 16 |64 64 | 84 88
5 2 (25 4 [45 16 |65 6 {8 6
6 6 |26 6 |46 6 |66 26 [8 6
7 2 |21 8 |47 2 |61 2 |87 6
8 8 [28 16 [48 96 |68 16 | 88 40
9 4 [29 2 |49 4 |69 6 |89 2
10 6 |30 26 |50 16 {70 26 |90 88
11 2 (31t 2 |51 6 |71 2 |91 6
12 16 (32 32 [52 16 |72 152 |92 16
13 2 (33 6 [58 2 (713 2 |93 6
14 6 [3¢ 6 |54 40|74 6 |94 6
15 6 [35. 6 |55 6 [75 16 |95 6
16 16 |36 52 |56 40 [76 16 | 96 224
17 2 |37 2 (57 6 [77 6 |91 2
18 16 (38 6 |58 6 [78 26 |98 16
19 2 (39 6 [59 2 |79 2 |99 16
20 16 |40 40 |60 88 |80 96 |100 52

Table 3: Some values of T'(n).

where 3, is the sum over all infinite vectors A = (hy,hs,...) of zeros and
ones with only finitely many ones, and |h| is the sum of the components of k.
Continuing the derivation given above:

Gr Y (~1)Myt + G Y (~1)Wlgh -1
h h

Gr (ﬁ(l -%)+ ﬁ(l - J":’)) -1,

i=1 i=1

Gr

proving (9). — Equation (10) can be proved similarly using (7). O

Let p1,p2,...,pr be distinct primes. Since Gp(zy,z3,...) is a symmetric
function of the z;, the value of T(p’f‘ pg"' ---pfr) depends only on r and the k;.
Let

o0

— Proky k Epy by k E
G.I-.,,,(zl,zz,...,z,.) = Z T(py'py? - --pir)aiizg® - - -zf .
. k[,kz,...,k'=0
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Now G'f r(.’:l, T3,
lows that

Gy

So, for example, the

and

If we expand these fu

< 2r,0,0,

1
21—1;':1(1 ~zj)—1"
l?ell series of T (cf. [2], Sections 2.16 and 2.17) is

oze) = Gp(z1, 22 . ...), hence from (10} it fol-

,(31.32.---.1‘;’) =

and, for m < n and p, q distinct primes,

'f‘(p”'

Finally, we note
functions

Gpalz) = 75
Gpale9) = T3
172\ Y) = T o — oy + 22y
nctions into power series, we find that for p prime,
T(p*)=2", (11)
m .
ny — —_1\m=k n n+k n+k
SRS il (A i Ll (12)

k=0
hat from (5) it is easy to compute the Dirichlet generating

|

of T(m, n) and T(n):,

and

where { is the Rien
* theory.
For n > 1, let

factors larger than 1,

Dr(nt) = 3 IR
Dyp(s) := éfi?)
respectively. Thenr—;ult is
Dr(st) = T (1)
Dp(s) = 5%(3) -1 (14)

nann zeta function. We refer to [2] or [3] for the relevant

f, denote the number of ordered factorizations of n into

and let f; := 1. Then

Sk

n"l.

Ti- C(S)

(see [1], p. 202). Comparmg this with (14) and using uniqueness of expansion

into Dirichlet series

we see that T'(n) = 2f, when n > 1.
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