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"The notion of an edge-graceful graph is that of distinct integer labels on the
edges of a graph inducing distinct integer labels on the vertices of the graph,
where each vertex label is a modular sum of the labels on all incident edges.
Several classes of graphs have been shown to be edge-graceful and of particular
interest is Lee’s conjecture [5] that all trees of odd order arc edge-graceful.
While by no means proving this conjecture, we introduce a variation of edge-
gracefulness which for trees of odd order implies edge-graccfulness. Such a tool
gives an alternate proof of the edge-gracefulness of regular spider graphs and
extends the known domain for classes of edge-graceful trees, as well as being
an interesting notion in its own right. Finally, we give several algorithms which
when applied to edge-graceful graphs generate new edge-graceful graphs.

For the graph G with vertex set V(G) and edge set E(G) with p = |V(G)]
and g = |E(G)], let (¢,€*) be a funclion pair which assigns integer labels to the
edges and vertices; that is, £ : F(G) — Z and ¢ : V(G) — Z. Following Lo
{6}, define G as edge-graceful if there is a function pair (€, £°) such that £ is onto
{1,...,¢4} and £ is onlo {0,...,p - 1}, and

e (v) = ( Z £(uv)) mod p.

wve B(G)
Let .
{:i:l,...,:!:é}, if ¢ is even,
Q=
-1
{O,i:l,...,ir’T}, il ¢ is odd,
{:i:l,...,:l:l—;}. il pis even,
l? —_

{0,:1:],.‘.,:!:?—%—1}, if p is odd.

1"This work was complcted while both authors were Fulbright Scholars in the Mathematics
Department at the University of Botswana in Gaborone, Botswana, during the 1990-1991
academic year.
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Dropping the moldula.rity operator and pivolting on symmetry about zero,

define a graph G as a super-edge-graceful graph if there is a function pair (¢,2%)
such that £ is onto q and £* is onto P, and

&(v) = z {(nv).

uve B(G)

Furthermore, if (£,£7) is a super-edge-graceful function pair for G, and If is a
subgraph of G, thenithe restriction of €* to H, denoted €}, is defined as

Gr(v) = > f(uv).

uvell

As an example of a super-edge-graceful graph, consider the hexagon with a
Star of David inscribed therein, denoted CZ, following the notation of [3]. With
the edges labeled 1 to +6, as indicated below, the vertices are labeled 1 to
+3.

Figure 0.1: A Super-Edge-Graceful Labeling of C3.

In certain instahces, super-edge-gracefulness imiplies edge-gracefulness, as
the following theoremn makes precise.
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Theorem 1. Jf G is a super-edge-graceful graph and

— | —1modp, ifqisecven,
7= 0 mod p, ifq is odd,

then GG is also edge-graceful.
Proof: Let (¢£,£) be a super-edge-graceful function pair for (7. Define an
edge-graceful function pair (yi, u*) for G as follows. Let

_J q+1, ifqiseven,
"1 ¢ ifqisodd.

In either case, note that » = 0 mod p. Define

a e(u ,)’ ]f Z( ) > O,
p(uv) = { c(uv)l"' v if E(zz) <o

For both ¢ being odd or even, p is clearly onto {1,...,¢}. Now
o) = (Zuuez((:)/‘("")) mod p
= (Zt(uu)>0£(u0) + Ez(uu)go(f(‘“’) + 1)) mod p

= (Ztuny>0 L0) + 2 gguuy<o E(uv)) mod p = €*(v) inod p,

which means that y* is onto {0,1,...,p~1}. D

Corollary 2. Super-edge-graceful irees of odd order are edge graceful.
Proof: ‘The corollary follows by noting that ¢ + 1 = p for all trees. O

However super-edge-gracefulness does not in general imply edge-gracefulness.
Lo [6]) showed that a necessary condition for a graph to be edge-graceful is that

p divides
2 pp-1)
(4 44+ ==5—).

Thus no cycle of even order is cdge-graceful. But the cycle of order eight,
(s, is super-edge-graceful, as shown in the figure below. Furtherinore €3 is
not. edge-graceful by Lo’s condition, but is super-edge-graceful as already illus-
trated. Whether edge-gracelulness of a graph imnplies super-edge-gracelulness is
an open question. Lest one think that every graph is super-edge-graceful, note
for example that Cy and Cs are not super-edge-graceful.

The definition of super-edge-gracefulness yiclds simple proofs showing that
certain graphs are super-edge-graceful and thus, by Theorewmn 1, are also edge-
graceful. For example we have
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Figure 0.2: A Super-Edge-Graceful Cycle.

Proposition 3:] A Growing Trec Algorithm. Lel T be a super-edge-
graceful iree with 21 edges. If any 2 edges arc appended Lo the same verlez of
T, then the new tree is also super-edge-graccful.

Proof: This follaws by noting that the new edges can be labeled £(n + 1)
leaving the original vertex labels unchanged, with two new vertex labels of
*(n+1). 0O ' )

The following rc?ult with respect to edge-gracefulness was shown in [3]. The
easiness of its super-edge-gracefulness proof, however, shows the power of the
concept.

Corollary 4. If G is a non-trivial tree with only onc verlez of even degree,
then G is supcr-edgg-graceful.

I'roof: Fvery tree as described in the hypothesis can be constructed by
slarting with Py, which is super-edge-graceful, and successively appending two
edges 1o a vertex of the tree under construction, which by the above proposition
gives a super-cdge-graceful tree al cach stage of the iteration. O )

We now begin iPur proof of the main result thal spiders are super-edge-
graceful, and show how this result. easily increases the sct of proven edge-graceful
trees. A spider gru}vh is a tree with a corc vertex ¢ of degree at least 2 and all
other vertices of (Ie'grcc at most 2. (Unless it is a path, a spider has a unique
core vertex.) A spider is regular if the distance from the core vertex Lo each

end vertex is the same. The path from the core Lo any end or exterior vertex
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is called a leg of the spider. Small [7], whose proof was simplified by Cabaniss,
el. al, [3], showed that regular spiders of odd degree are edge-graceful, using a
fairly complicated (non super-edge-graceful) pair of algorithms. Using two fairly
simple algorithms we give an alternate proof of this theorem. Before doing so,
we illustrate the algorithms.

The Shuttle Algorithm. Consider the regular spider with 6 legs of length
7. Arrange the necessary edge labels as the sequence

S ={21,~1,20,-2,19,-3,...,2,-20,1,-21).

Index the legs as L to L. Represent the edges of each leg, with exterior vertices
on the left and the core on the right, as a succession of blanks to be labeled.

Li={- - - - _ _ )}
Ly={- - - — . _ .},
Lai={- - = — - - .}

with L4, Ls, Lg similarly represented. As a shuttlecock being shunted back and
forth on a loom, enter the terms of S in the blanks, proceeding first to the right
on Ly, then to the left on Ly, then to the right on L3, and so on, resulting in

Li={21 -1 20 -2 19 -3 18)

Ly={-7 15 —6 16 -5 17 -4)
Ly={14 -8 13 -9 12 -10 11},

with Ly, Ls, Le being the inverses of Ls, Lo, Ly, respectively, (that is, Ly = — L3,
and so on), and so the spider is successfully vertex labeled as can be easily
verified.

The Shoelace Algorithm. Consider the regular spider with 7 legs of length
6. From the edge labels +1 to +21, remove the multiples of 7, and arrange the
remaining integers into two alternating sequences:

S ={20,-19,18,-17,16,-15,13,-12, 11,-10,9,-8,6,-5,4,-3,2, -1},
T'={1,-2,3,-4,5-6,8,~9,10,-11,12, —13, 15,-16,17,~18,19, —-20)}.
Index the legs as Lo to Lg. Ly is labeled with the non-zero multiples of 7.
Lo={21 -7 14 -14 7 -21}.

Insert the terms from S and 7' into the blanks of Ly, La, Ly following a
shoclace path connecting the extreme unlabeled blanks of the legs as in the
figure below, alternating between S and T until all blanks have labels.

That is, inserting the first 6 terms of S leaves the following,.

1.1] = {20 B l5}
L:={16 _ _ _ _ —19}
La={18 . _ _ _ -7}
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Figure 0.3: A Shoelace Pattern.

Inserting the first 6 terms of T leaves the following.

’ Li={20 -1 _ _ 6 -15)

L,={16 =5 _ _ 2 -19)
Ly={18 -3 _ _ 4 -17})

Inserting the next 6 terms of S leaves the following.
8

| Li={20 -1 13 -8 6 -—15)
Ly={16 -5 9 -12 2 -19}
j Ly={18 =3 11 —10 4 -17)

Then let L4, Ls, Lg be the inverses of Ly, Ly, Ly. The spider is thus successfully
vertex labeled as dan be easily verified.

Theorem 5. Fvery reguler spider with an even number of edges is super-
edge-graceful. ’

Proof: Consid?r first spiders with an even number of legs. Let 2k be the
number of legs; letI n be the length of cach leg. Let

’S: {kn,—Lkn—1,-2kn-2,...,—kn}

be the sequence of 2kn terms.
Then
'V:{kn kn—1,kn—-2,kn-3,...,—kn}

is the sequence obtained by including the first and last terms of S and by finding
sums of adjacent terms of S. Let Sj,1 < j € 2k, be a partition of S, where S}
is the first n terms of S, S, is the next n terms of S, but in reverse order, S3 is
the next n terms,i‘ S4 is the next n terms in reverse order, and so on. Interpret

S; as the edge labeling of a leg of the spider, with the edge labels proceeding
j 3
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from the exterior to core as we proceed from left to right along the sequence.
Therefore all 2k legs of the spider are edge labeled.

The core vertex is thus labeled 0. Let V; be the n vertex labels as induced
by Sj; (we exclude the last term of S; from V;). To see that no duplicate
vertex label occurs, note that the first term of each S; is a different non-zero
multiple of n. Let V; be the first n terms of V, V5 be the next n terms of
V, and so on. Note that the term —kn is not used in this partition of V.
Then the interior vertex labels of V; correspond with the last n — 1 terms of
V; (although the correspondence may be in reverse order). Since these interior
vertex labels are distinct integers, none of which are multiples of n, then no
duplication occurs within the set of interior vertex labels. Therefore this spider
is super-edge-graceful.

Now consider spiders with an odd number of legs of even length. Let m =
2k + 1, be the number of legs. Let 2n be the length of each leg. For 1 < i <
n, 1 <j<k, let

{ a;j = m(i - l) + 7,

b,',j =mi-— j,
be an enumeration of the positive integers from 1 to mn, excluding the integer
multiples of m.

Define edge labelings along k legs L;j, 1 < j < k, as follows, where the integer
sequence from left to right are the labels of the edges from an exterior edge to
the core. If j is odd let

njy =015, bno1j,—a2j,.. ., b j,—a, 5}

Ly = {ba
= {mn—j—jmn-1)-j,-m—j...,m—j-m(n-1)-j},

giving rise to the vertex labels, from exterior vertex to the core, but not including
the core,

{mn —jmn—2j,m(n—1)-25...,m(2—n) - 2j}

-,
I

{vl_,-,vz_j,...,vz,,,j}.
If j is even let
IJj = {an,J)_bl;y"n l]y_b"]l" sy 5, =~ n]}
= {mn-D+j-m+jmn-2)+j....j-mn+j},

giving rise to the vertex labelings,

Vi = (mn—1)+jmmn—-2)+2j,mn~3)+2j4,...,m(—n) + 25}
= (1)1'1' V2,504, 02,,,1'}.
For cach j,1 < j <k, let L_; = —Lj, the inverse leg of the spider, giving
rise to the inverse vertex labels, V_; = —V;.
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Finally, define the edge labels along the last leg, L,, using multiples of m.

Lo = {mn,-m,m(n-1),-2m,...,m,—mn},

giving rise to the verlex labels of

Voi= {mn,m(n - 1),m(n - 2),...,—mn}.

Note that mn is an exterior vertex label and that —mn is the corc label.

It is clear that all edge labels from %1 to +km have been used. It remains
to show that the vertex labelling uses all values from 0,+1, to £km. First of all,
note that for each V;} —k < j < k, except for the exterior vertex label, all vertex
labels beleng to that equivalence class modulo m containing —2j (if j is either
a positive odd intege{r or a negative even integer) or 2j (if j is either a negative
odd integer or a nonnegative even integer). Since 0,25, where 1 <j < k are
distinct integers modulo m, then among all interior vertices in all m arms there
are no duplicate verT.ex labels.

Hence it remains to show that no exterior verlex label duplicates another
vertex label. The k’positive vertex labels (omitting Ly, whose two end labels
duplicate no other vertex label) are m(n — 1) + j, when j is even and mn — j
when j is odd. ’

Clearly, no extetior vertex labels are the same for different cven j’s or for
different odd j's. Setting m(n — 1) + jo = mn — j, for some jp and j, yields
jo+Jj1 = m, but jo+j1 < 2k < m. So there are no duplicates among the exterior
vertices with positive label. The same argument applies for the exterior vertices
with negative labels.

To see that no exterior vertex label duplicates an interior label observe that

for 1 <€ jo,Jj1 Slcar+dn22
’(*) V1§, > Usj, and vy, > —vau_1 j,.

Since interior ve}rtex labels along Vj, decrease from the positive value vq j, to
the negative value 92, j,, then in order for an exterior vertex label to duplicate
an interior vertex label, by (*) that duplicate label occurs either at a vertex
adjacent to an cxte;rior vertex or adjacent to Lhe core for any n > 1.

Consider the exterior verlex label m(n — 1) + jo where jg is even. The two
possible duplicate alues are Lhe phrases m(n — 2) 4+ 27, or inn — 2j, for some
j1. In either case, equating m(n — 1) + jo with each phrase results in a parity
contradiction on mj.

Similarly, for tTe exterior vertex label mn — jo where jj is odd, equating
mn — jo with each |phrase results in a parily contradiction, this time on jo.

Thus the vertex labels include all values from 0,+1, to mn, and hence

these spiders are super-edge-graceful. O

|
Corollary 6: §xnall’s Theorem. Every regular spider wilh an even num-

ber of edges is edgT-grace]ul.

|
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Proof: Apply Corollary 2 and Theorem 5. O

Corollary 7. Let T be a irce oblained from a regular spider of odd order by
appending 2n vertices, 2 al a lime where each time the 2 have a common parent.
Then T is super-edge-graceful, as well as edge-graceful.

Proof: This follows immediately from Theorem 5 and repeated application
of Proposition 3. O

Many of the trees in Corollary 7 were not previously known to be edge-
graceful. lHlence one advantage of a super-edge-graceful labeling over an arbi-
trary edge-graceful labeling is that when edges are appropriately appended to
trees, then the new trees are also super-edge-graceful, and the edges remaining
from the old trees need not be relabeled!

The super-edge-graceful concept is interesting from the standpoint that while
no tree of even order is edge-graceful as follows from Lo’s condition, some of
these graphs are super-edge-graceful, as shown in the next proposition.

Proposition 8. Forn > 2, lel Ty, be the tree which has ezactly 2 adjacent
vertices of degree n + 1 and all other vertices of degree 1. T, is super-edge-
graceful for alln > 2.

Proof: Since Ty, has 2n + 2 vertices, the edges must be labeled from 0, £1,
to £n. Call the vertices of degree n+ 1, u and v. Label the edge between u and
v with 0. If n is even, label two edges incident to u with n and 1, and label two
edges incident to v with —n and —1. If n is odd, label three edges incident to
u with —1,2,n, and label three edges incident to v with 1,~2, —n. Label the
other edges incident to u with inverse pairs, +(n — 1), +(n — 2),..., and label
the other edges incident to v with the remaining labels. In either case u and v
have labels 4(n + 1), and the remaining vertices have the labels {+£1,...,%n},
which means that these graphs are super-edge-graceful. O

The remainder of this paper is a collection of algorithms, which when applied
to super-edge-graceful graphs yield new super-edge-graceful graphs.

Proposition 9: Insertion of an Edge Algorithm. If G is super-edge-
graceful and q is even and u,v are nonadjacent vertices of G, then inserling the
edge uv inlo G resulls in a super-edge-graceful graph.

Proof: Label edge uv with 0, and note that no vertex labels hiave changed,
making the new graph super-edge-graceful. O

With this proposition it is easy Lo prove the following about paths and cycles,
two graph classes shown to be edge-graceful in [6].

Corollary 10. P, and Cy,yy are super-cdge-graceful for alln > 1.

Proof: Panyy is a regular spider with 2 legs of length n. Thus it is super-
edge-graceful. Now join the 2 end vertices with an edge labeled 0, and thus
Cant1 is super-edge-graceful. O

Proposition 11: A Vertex Fusion Algorithm. Let (£,£%) be a super-
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edge-graceful function pair for G. Let S = {u,v,w} or S = {u,v} be a sel of
verlices in G such that
. 1 - - 1 £l
rw="2 re=-=, rw=o,
o | P P
e(u)=§| e(v)=_§

Lel F be the graph (or multi-graph) oblained from G by identifying the ver-
lices of S with one of its members. Then F is super-edge-graceful.

Proof: To define a super-edge-graceful function pair (u,4*) on F let p=¢
on GN F. For oth r edges in F, choose u in S; define p(zu) = £(zz) if zz
isin E(G) and z is|in S. Provided no two elements of S are adjacent or are
adjacent to the same vertex, p is well-defined. Otherwise i is a multi-valued
edge function, labeling loops and multiple edges. In either case, it is clear that
u* is onto P, since Tither S = {u,v,w}, in which case

W) =)+ ) + £ (w) =0,
or § = {u,v},in wh‘ich case

W= W) =00

|
|

For example, successively identifying the labeled inverse pairs of vertices for
the spider with 7 legs of length 6 (see the example given for the shoelace algo-
rithm) results in the following succession of super-edge-graceful graphs. That
is, identify the verl]ices with labels {0,+21}, denoted by larger nodes in part i
of the figure below, resulting in ii. Identify the verlices with labels {0, £20},
resulting in iit. Allowing multiple loops, we can continue identifying vertices
in the manner indicated. After a total of 6 iterations the super-edge-graceful
butterfly in iv results from folding up the spider! (The four loops in iv have
been moved out of’ the clutter at the core via Proposition 15.)

Proposition 1!2: A Vertex Fission Algorithm. Lel (iy, Gy be subgraphs
of G with super-edge-graceful function pair (£,£*) and w be a verlez of G such
that G = Gy UG, Gy NG3 conlains no edge incidenl lo w, both G, and Gy
contain al leasl one edge incident to w, and

. p+1 .
’ ﬂG.(U)) = T’ = —eag(w).

Rename w in G, 'with a new verler u, renaming the graph as Gs. lLel I’ =
GaUG3. Then F'ts super-edge-graceful.
Proof: Immediate. O

|
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Figure 0.4: The Metamorphosis of a Super-Edge-Graceful Butterfly.

Corollary 13. Let 51,53 be disjoint spider graphs each with an cven number
of legs all of the same odd length. Then S, US; is @ super-edge-graceful graph.

Proof: Let S be the regular spider having 2m legs all of length 2n+ 1, where
m > 2,n > 0. Let S have the edge labeling of Theorem 5. On the first leg of
S, the edge incident to the core is labeled (2n 4 1)m —n. On the inverse of the
second leg of S, the edge incident to the core is labeled n + 1. Let S) be the
spider formed by these two legs along with any number of pairs of inverse legs,
so that its core is labeled (2n + 1)m + 1. Let S, be the spider formed by the
remaining legs so thal its core is labeled —((2n + 1)m + 1). By Proposition 12,
S) U Sy is super-edge-graceful. O

Corollary 14. Ps, and Pg,-» are super-edge-graceful for all n > 1.
Proof: By Corollary 13, 2P, _; is super-edge-graceful, since Pgn_1 is a spider
with 2 legs, each of length n. By Proposition 9, insert an edge labeled 0 between
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the two paths to forrﬁ Pan_2, which is thus super-edge-graceful.
To see that Pg, is Fuper—edge-graceful, label the 4n—1 edges of Py, according
to the sequence ’

{4n—-1,-1,4n-2, —2}, ...,—n+l,4dn—n,n, —4dntn+1,n+1, —4dn+n+2,...,—2n}.

As before, label anotlher copy of Py, with the inverse sequence, insert an edge
labeled 0 between tpese two paths. The resultiﬁg path Ps, is super-edge-

graceful.O ,

order greater than 6is an open question. We thank the referee for pointing out
the algorithm showing that Pg, is super-edge-graceful.

To consider two additional super-edge-graceful graph generating algorithms,
let v be a cut—verte:ql of G with V1, V4, ..., Vi being the vertex sets of the com-
ponenis of G\{v}. Then a cul-vertez decomposition (Gy,G2,v) is the pair of
subgraphs Gy, G, where G is induced by the union of some collection of the V;

with {v} and G, is 't'nduced by the union of the remaining V; with {v}.

The next proposition which follows immediately from the definitions shows
how to cut a graph)into two pieces and paste it together so that the resulting
graph is as super-edge-graceful as the original. (The next two propositions also
have edge-graceful a%nalogs.)

Proposition 1?: A Cut & Paste Algorithm. Let (G,G2,v) be a cut-
verlez decomposition of G which has a super-edge-graceful function pair (£,2*)
with £ (v) = 0. In Gy rename v as the new verlez w, and let z be any verter
in Ga. Regard Gy,Gy as disjoint graphs using the labels already assigned. The
graph whichk results|from identifying w and z is super-edge-graceful.

Determination oflthe super-edge-gracefulness of the remaining paths of even

Corollary 16. |[Lel T} be a non-trivial tree with only the rool of even degree.
Form tree Ty by replacing cach edge of T\ with a path of n > 1 edges. Then T,
is super-edge-graceful.

Proof: T must have an even number, say 2k, of edges. As in the proof
of Corollary 4 there is a super-edge-graceful labeling of T) using, successively,
+1,%2,...,+k onfpairs of edges with a common parent. In the super-edge-
graceful labeling of the spider with 2k legs of length n the legs are partitioned
into inverse pairs. Use these inverse pairs of legs to form T, with its super-edge-
graccful labeling ilﬂ“ the sanie way that Ty was labeled. Thus by Proposition 15,
Ty is super~edge-gr’aceful. o

Corollary 17, Lel Ty be a non-trivial tree with no vertez of even degree.
Replace each edge of Ty with a path of 2n edges, n > 1, forming trce Ty. Then
T3 is super-edge-graceful.

Proof: T\ has|an odd number, 2k + 1, of edges. It can be formed from
the spider with 2II‘ + 1 legs of length 1 by moving pairs of edges successively

as in Corollary 16' Consider the spider with 2k + 1 legs of length 2n which is
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labeled as in Theorem 5. By successively moving inverse legs we obtain T3 and
a super-edge-graceful labeling of it. O

Proposition 18: A Pruning & Grafting Algorithm. Let F and G
be graphs with the same paramelers p and q. Lel (Gy,G3,v) be a cul-vertex
decomposition of G, which has a super-edge-graceful function pair (£,€') with
£5,(v) = 0. Let (G2, G3,v) be a cut-vertez decomposition of F. Let (s, 1*) be a
function pair for Gy such that p*(u) = ZquE(G;) p(uw) and

#(E(G3)) = U(E(Gh)) and p*(V(G3)) = €*(V(G1)).

Then F is super-cdge-graceful. .

In the words of pruning and grafting, G, is pruned from G, and Gy is grafied
in, resulting in F'.

Proof: To define a super-edge-graceful function pair (¢, ") for F, let

[ te), ifee EB(Gy),
9(e) —{ ue), ifee B(Gy)

. _ [‘(‘u), if v € V(G )’
¢"(v) = { u*(v), ;fv € V(Gz)-

It is clear that (¢, $*) is a super-edge-graceful function pair for F.O

Corollary 19: A Customized Spider Leg. Let G be a regular spider
with 2k + 1 legs of length 2n. Let H be any super-edge-graceful tree of order
2n+1. Let F be the graph formed by pruning a leg of G and grafting in II. Then
I is super-edge-graceful.

Proof: Let Lg be the leg of G labeled with multiples of 2k 4 1 as given in
Theorem 5. Note that Lg is the path Pau41, and one super-edge-graceful la-
beling of P41 results from dividing each edge label of Lo by 2k + 1. That is,
if (¢,£°),(X, A*) are the super-edge-graceful function pairs for G, Py, 4, respec-
tively, then

£, =(2k+ 1)) and £, = (26 + 1)A".

Let (¢, ¢") be a super-edge-graceful function pair for //. In order to use Propo-
sition 18 to show that F is super-edge-graceful we need to define an appropriate
function pair (g, p*) for H. For each cdge e in I define pu(e) = (2k + 1)¢(e).
It is clear that y* gives the appropriate vertex labels and hence by Proposition
18, ' is super-edge-graceful. O

For example let G be the spider of figure 4(i). Let G be a leg of the spider,
G be the spider with 6 legs, and G; be the tree with 7 vertices, super-edge-
graceful labeled on its edges as indicated. The vertex v is the enlarged node on
all the graphs G1,G3, G3. Apply Corollary 19. Then G, U Gy is a super-edge-
graceful graph.
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Figure 0.5’: A Super Leg for a Super-Edge-Graceful Spider.

|

Readers interest‘éd in the general problem of labeling the edges of a graph
through ¢ so as to induce a labeling of the vertices of the

with the integers 1 i
graph are referred to [1], [2], and [5]), where the notions of magic graphs and

gracefully weighted graphs are developed.

|
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