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Abstract. A connected balanced bipartite graph G on 25 vertices is almost vertex
bipancyclic (i.e. G has cycles of length 6,8, ...,2n through each vertex of G ) if it
satisfies the following property P(n): if z,y € V(G) and d(z,y) = 3 then d(z) +
d(y) > n+ 1. Furthermore, all graphs except Cs on 2n (n > 3) vertices satisfying
P(n) are bipancyclic (i.e. there are cycles of length 4,6,...,2 nin the graph).

1. Introduction

Throughout this paper, we consider only simple undirected graphs. Notation fol-
low Y.P. Liu [1] unless otherwise specified.

With G = (A, B; E) we denote the bipartite graph G with edge-set £ and
vertex-set V = AU B, where A and B are the two sides of G. If [A| = | B] then
we say that G is a balanced bipartite graph. If G is a bipartite graph on 2z vertices
with cycles of all even lengths 4,6, ...,2n then we say that G is bipancyclic. If
G has cycles of length 6,8,...,2n through any given vertex then we call G
almost vertex bipancyclic.

We use ¢(G) and §( G) to denote the number of edges and the minimum degree
of vertices in the graph respectively. The valence of a vertex v € V' is written as
d(v) and the distance between two vertices z and y is written as d(z,y). For
U C V we use N(U) to denote the set of vertices v € V \ U such that v is
adjacent to some vertex in U.

A balanced bipartite graph G is said to have the property P(») if G is connected
and,

foru,veV,d(u,v)=3 = d(u)+d(v)>n+l

It is known that Fan’s condition on general 2-connected graphs:
d(u,v) =2 = max{d(u),d(v)}>n/2

ensures the pancyclicity of the graph (with three exceptions) ([2], [3]).
As one can check, for bipartite graphs, only K, , and K, , — e (delete edge e
from K, ,) satisfy Fan’s condition. So Fan and Tian-Shi’s theorem do not apply

to bipartite graphs.
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There are some suﬂ?cient conditions which guarantee the bipancyclicity of bi-
partite graphs, for example (see {6]), Moon-Moser’s condition [4]: £(G) > n(n—
1) + 1, and Mitchem-Schmeichel’s condition [6): §(G) > (n+ 1) /2. In addition,

We have following | :

Theorem A. (Enm’n’gcrand Schmeichel, [S]): Let G be a hamiltonian bipartite

graph on2n vertices. Ife(G) > n? /2, then G is bipancyclic.

In this note we give a new sufficient condition which is parallel to Fan’s con-
dition, that is: ifG(;é Cs) is a balanced bipartite graph on 2n (n > 3) vertices
satisfying P(n) thean is bipancyclic. As we shall see in section 3 that Moon-
Moser’s theorem and Mitchem-Schmeichel’s theorem can be treated as corollaries
of our result. '

Furthermore we show that every bipartite graph satisfying P(n) (n > 2) is
almost vertex bipanc&clic. The method we use in proving this theorem is similar
to Cai Xiao-tao’s method in [7].

2, Hamiltonian Bip]artite Graphs

Ifue Ajve B,('u,v) ¢ Eandd(u) + d(v) > n+ 1 then we add a new
edge (u,v) to G and continue doing this until we at last come to the graph G, to
which no new edge | be added as above. Call G the biclosure of G. Clearly
G is Hamiltonian if and only if G is Hamiltonian. We show that if G satisfies
P(n) (n > 3), then|G is a balanced, complete bipartite graph K, ,,hence G is
Hamiltonian.

Theorem 2.1, For*@ balanced bipartite graph G = (A, B; E) of order 2n(n >
3) if G satisfies P([n), thenG = Ky y.

Proof: We pmve[lhe following five statements first.

(2.1) IfU C A (or B) then [N(U)| > |U|, where the identity holds if and
only if U = A (or B).

In fact, if U = A, from the connectedness of G, we see that N(4) = B, ie.
IN(U) |={U|= % If U C A, we show that [N(U)|>|U|. Suppose |U|= r,
IN(D)|= s. If N(U) = B, then clearly N(U)| >|U|. 1f N(U) # B, since G
is connected, there exists by € B~ N(U),s € A — U,b € N(U),a; € U such
that a, bab, is a path joining a; and b, and (a1,b1) € E, thus d(a;, b1) = 3. By
P(n), we have d (by) + d(a1) > n+ 1. Butd(b) < n—r,d(a1) < s, thus
n—r+s>n+1/S0s>r+ 1,ie [N(U)|> U]

2.2 LetS =’{v € Gld(v) > (n+ 1)/2}, then N(S) induces a complete
bipartite subgraph of G.

For u € N(S), without loss of generality, suppose u € A, then there exists a
vertex, say v € S/N B such that (u,v) € E. By (2.1), [N(N(v))|>|N(v)|>
(n+ 1)/2. For egchw € N(N(v)), either (u,w) € Eord(u,w) = 3. If
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d(u, w) 3,thend(u)+d(w) > n+1by P(n). Inbothcases, (u, w) GE(G)
Thus d (u) SIN(N()|> (n+1)/2, where d(u) is the valence of u in G. From
above, we see that each vertex « € SU N(S) has valence no less than (n+ 1) /2
in G. By definition of G, we arrive at (2.2).

From (2.2), if |S U N(S)[2n, then G & K, ,,, Theorem 1 holds. Therefore, we
just need to consider the case when [SU N(S)KK 2n.

2.3) Let SUN(S)= A UB,, A1 CA, BiCB. ThenbothA; NS
and B N S are not empty.

IfBC S,since) e, d(v) = Y ,cpd(u) and |A| = | B|, then we have some
vertex v € Asuch thatd(v) > (n+1)/2.SovE€ A1 NS # ¢.

IfB ¢ S,supposeu € Bandd(u) < (n+1)/2. Since G is connected, there
exists some vertex, say v € A, which satisfies d(u,v) = 3. By P(n),d(u) +
d(v) > n+ 1. Thend(v) > (n+1)/2,v € SNA,. Hence A1 NS ¥ ¢.
Similarly, BiNS # ¢ .

24) A= (n+1)/2,|Bi]> (n+ 1) /2.

From (2.3), A1 NS # ¢,if v € A1 N S, then by the definition of S, we
know d(v) > (n+ 1)/2, then, of course, |B1| > (n+ 1) /2. Similarly [4;] >
(n+1)/2.

2.5) Ifv e V(@) \ (SUN(S)), then d(v) > (n+ 1)/2.

In fact, suppose v € A, thenfromv ¢ S, d(v) < (n+ 1)/2. Also by
connectedness of G, we have some vertex u € B such that d(v,u) = 3. By
P(n),d(u) + d(v) > n+ 1. Thusd(u) > (n+ 1)/2. Fora!bitraryz_e B,
we have d(z) >|A,| by (2.2), where clearly |A;|> d(u). Sod(z) + d(v) >
d(u)+d(v) >n+land(z,v) € E(@). Therefore v is adjacent to each vertex
of By in G. As aresult, from (2.3), d(v) >|Bi|> (n+ 1)/2.

Finally from (2.1) to (2.5) abqyc we see that J(u) >(n+1)/2forallv €
V(G) = AUB. This implies G & Ky 5. [ |
We present below an obvious corollary without proof.
Corrollary 2.1. For a balanced bipartite graph G = (A, B; E), if G satisfies
P(7), then G is Hamiltonian.

We close this section by the following remark: we have examples showing that
the inequality in P(n) can not be replaced by d( u)+d(v) > n ormax{d(u),d(v)}
> (n+ 1) /2. So, in this sense we can say that Theorem 2.1 is best possible.
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3. Vertex Bipancyclicity
Theorem 3.1 SupposeG = (A, B; E) is a bipartite graph on2 n vertices with the
property P(n)(n> 4). For arbitrary = € A,y € B, if G has a path P 34(z,y)
with2k(k > 4) vaﬂl.ces linking x andy , thenG alsohas apath P 3;_2(z,y).
Proof: Suppose P3i(z,y) = (1,2,...,2k) (wherez =1,y = 2k, k> 4).
Letdi(v) = |[N(v) \ Po(z,9), d2(v) = {u € N(v) | 1 S u < 8} and
d3(v) =[{u € N(v)' |9 < u < 2k}. Thus d(v) = d1(v) + d2(v) + d3(v).
By contradiction, suppose G has no P ;_»(z, y). We prove the following twelve
assertions: ’PO

() d(1)+d(4)+d(5) +d(8) >2n+2.

Since G hasno Py4_ (z, y), we see that (1,4), (5,8) ¢ E. Thatis, d(1,4) =
d(5,8) = 3. By P(n),d(1) + d(4) > n+ 1, d(5) + d(8) > n+ 1. So (1)
holds.

() dr(4) =dp(5)=2.

(3) d(+ d;(S)‘i <n—k, di(4)+d1(8) <n—k.

In fact, if { € V(G) \ Pu(z,y) and (1,§) € E, then (5,1) ¢ E, since
otherwiseGhang,ﬁ_z(z,y) =(1,1i,5,6,...,2k),acontradiction. Sod; (1) +
d1(5) < n— k. Similarly d,(4) + d1(8) < n— k.

From (1), (2) and’ 3), we get

(
@) dz(l)+dz(8L+d3(1)+d3(4)+d3(5)+d3(8)22k—2fork24.
If k = 4, then (4) becomes d2(1) + d2(8) > 6. Since (1,4),(5,8) ¢
E, we deduce that (1,6),(1,8),(3,8) € E. But then we have Ps(z,y) =
(1,6,5.4,3.8), a contradiction. So Theorem 3.1 holds while k = 4. We assume
k > 4 afterwards. |

5) d3(1)+d3(41g k—3, d3(5)+ds(8) < k—3. Furthermore, if (4,9) ¢
E,thend3(1) + d3(4) < k—4;if (5,10) ¢ E, thend3(5) + d3(8) < k—4.

In fact, for9 < i< 2k,if (1,7) € E,then(4,i+1) ¢ E. Since otherwise we
get Py _a(z,9) =$l,i,i—l,...,4,i+l,...,2k),acontradiction. Sods(1) +
d3(4) < k-3. If(l4'9) ¢ E, then among k—4 vertices 9,11,...,2k—1, there
are at least d3 (1) vertices that are not adjacent to vertex 4. So d3 (1) + d3(4) <
k—4.

If(5,1) € Efqrsomeeveni(lo < 1 < 2k), then (8,1 + 1) ¢ E. Since
otherwise (1,2,3,4,5,4,i—1,...,9,8,i+1,i+2,...,2k) wouldbea P;_»
in G, a contradiction. Hence, among k — 6 vertices 13,15,...,2k — 1 there are
at least d3(5) — lTvertices that are not adjacent to vertex 8. This gives d3(5) +
dy(8) < k-3.

If (5,10) ¢ E|, then together with (8,11) ¢ F and (8,9) € E we have:
d3(8) < 1+ (k —’6) — (d3(5) —1),ie.,d3(5) + d3(8) < k—4.

© (1,8)€E,|(4,9 ¢E.
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From (4) and (S5) we have d; (1) + d2(8) > 4.1f(1,8) ¢ E, then together with
(1,4),(5,8) ¢ Eand dy(1) + d2(8) >4 ,weget(1,6),(3,8) € E. Butin
this case G has Py;_>(z,y) = (1,6,5,4,3,8,9,10,...,2k), a contradiction.
So(1,8) € E.

If (4,9) € E, then G has Py;_(z,y) = (1,8,7,6,5,4,9,10,...,2k),a
contradiction. This conflict implies that (4,9) ¢ E.

(M) (5,10) € E, (3,8) ¢ E.

If (5,10) ¢ E, together with (4,9) & E, we have d3(1) + d3(4) + d3(5) +
d3(8) < 2k — 8 by (5). From this and (4) we obtain d» (1) + d2(8) > 6. This
would again force (1,6),(1,8),(3,8) € E, which then gives P;;_3(z,y) in G,
a contradiction. So (5,10) € E.

If(3,8) € E, noticing that (5, 10) € E, we get P4 _»(z,y) = (1,2,3,8,7,
6,5,10,...,2k), a contradiction. So (3,8) ¢ E.

8 (1,6)eE.

By (6) and (5) we have d3(1) + d3(4) < k —4,d3(5) + da(8) < k-3.
Furthermore by (4), we get d2(1) + d2(8) > 5. But (1,4),(5,8) ¢ E and
(3,8) € Eby (7),thenda (1) + d2(8) > 5 holds only if (1,6) € E.

® @2,D¢E.
If otherwise (2,7) € E,then(1,8,7,2,3,4,5,10,...,2k) would be a path
Pa-2(z,y), a contradiction.

From above we get
(10) dy(s) =2 foralli=3,4,7 and8.

(11) da3(3) + d3(4) + da(7) + d3(8) > 2k —6.

From (1,8) € E and Pi(z,y) we have P,(3,8) = (3,2,1,8). Since
(3,8) ¢ Ethen d(3,8) =3. Of course d(4,7) =3. By P(n), we have d(3) +
d(8) > n+1, d(4)+d(7) >n+1. Asin(3), wealsohaved; (3)+d;(7) < n—k
and d; (4) + d1(8) < n— k. From these four inequalities and (10) we get (11).

(12) Forany 10 < i < 2n,if(3,i) € Ethen(4,i+ 1) ¢ E; if (7,i) € E
then(8,i+1) ¢ E.

Infact,ifboth (3, 1) and (4, i+1) € E,thenGhas Py »(z,y) = (1,6,7,...,
1,3,4,i+1,...,2k), a contradiction. If both (7,5) and (8,i+ 1) € E , then G
has Py;_(z,y) =(1,2,3,4,5,10,11,...,4,7,8,...,i+ 1,i+ 2,...,2k),a
contradiction. So (12) holds.

Now we are ready to prove the theorem. By (6), (4,9) ¢ E. Then from (12), we
deduce thatd3 (3) +d3 (4) < k—4. By the assumption that G has no Py 2(z,y),
we see that (7,10), (8, 11) ¢ E. Thus alsoby (12), d3(7) +d3(8) < k—4. Sum
up the above two inequalities we see that d3 ( 3) +d3 (4) +d3 (7) +d3 (8) < 2k-8,
a contradiction to (11).

This final conflict implies that Theorem 3.1 holds. ]
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Theorem 3.2. LetG'; = (A, B; E) be a graph of order 2n with the property
P(n),n> 4. Ifeis zfn edge of G such that G has a Hamilton cycle through it,
then G also has cycles of lengths 6,8, ...,2(n — 1) through it. Hence, G has
cycles of lengths 6,8 , . ..., 2n through any given vertex of G.

Theorem 3.3. IfG =: (A, B; E) is a graph of order2n with property P(n) (n >
3), thenG is bipancyclic unless G = Ce.

Proof: Supposer:sagraphofordeIanimpmpenyP(n)(n2 3).Ifn=3,
and G # Cs, then iulseasytocheck that G is bipancyclic. Now assume n > 4.
By Theorem 3.2, G has cycles of lengths 6,8,...,2n, 50 it suffices to show that
G has at least a cycle of length 4. By Theorem 2.1, G has a Hamilton cycle, say,
(1,2,...,21, 1).IftJorsomei(l < i < 2n),(4,i+3) € E, where theaddition is
taken module 2, then apparently G has acycle of length4. If (i, i+3) ¢ E forall
1<i< 2n,thend(f,i+ 3) = 3. By P(n),wehaved(f) +d(i+3) > n+1,
foralls from 1t 2n Thend(1l) + d(2) + ---+ d(2n) > n(n+ 1). Thus
£(G) > n(n+ 1)/2 | Hence by Theorem A, G is bipancyclic. 1

Now we list two theorems that can be treated as corollaries of the Theorem
above.

Corrollary 3.1. ([4), [5]and [6]) LetG be a balanced bipartite graphon2n( > 4)
vertices. Ife(G) > fn(n— 1) + 1, then G is bipancyclic..

Proof: We show that in this case, G has no vertices z € A andy € B such
that (z,y) ¢ E(G)/andd(z) + d(y) < n+ 1. Otherwise at the extremal case,
e < d(z)+d(J)+(n—l)(n—l) < n+l+(n—=1)(n—1) = n(n-1+2,ie.,
&(G) < n(n—1) +/1, acontradiction. Thus G satisfies P(n). By Theorem 3.3,
@ is bipancyclic. 1

Corrollary 3.2. ((4], [5] and [6]) LetG be a balanced bipartite graph of 2 (> 4)
vertices. If6(G) > (n+ 1) /2, thenG is bipancyclic.
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