A Theorem on *n*-Extendable Graphs

Tsuyoshi Nishimura

Department of Mathematics
Shibaura Institute of Technology
Fukasaku, Omiya 330

Japan

ABSTRACT. A graph G having a 1-factor is called n-extendable if every matching of size n extends to a 1-factor. We show that if G is a connected graph of order 2p ($p \geq 3$), and q and n are integers, $1 \leq n < q < p$, such that every induced connected subgraph of order 2q is n-extendable, then G is n-extendable.

We consider only finite, simple graphs. Let G be a graph with vertex set V(G) and edge set E(G). For $A \subset V(G)$, G[A] denotes the subgraph of G induced by A and $G \setminus A$ is the subgraph of G induced by $V(G) \setminus A$. If A and B are disjoint subsets of V(G), then E(A, B) denotes the set of edges with one end in A and the other in B. Further, for $e \in E(G)$, V(e) is the set of endvertices of e. Let e and e be positive integers with e in e is the set of endvertices having a 1-factor (a perfect matching). Then e is said to be e-extendable if every matching of size e in e extends to a 1-factor. Other terminology and notation not defined here can be found in [1].

In [4], Sumner proved that the following theorem.

Theorem 1. Let G be a connected graph of order 2p, and let q be a integer such that $1 \le q < p$. Suppose for some integer q, every induced connected subgraph of order 2q has a 1-factor. Then G has a 1-factor.

In this note, we prove a similar theorem for n-extendable graphs.

Theorem 2. Let G be a connected graph of order 2p $(p \ge 3)$, and let q and n be integers such that $1 \le n < q < p$. Suppose for some integer q, every induced connected subgraph of order 2q is n-extendable. Then G is n-extendable.

We use the following lemmas in the proof of Theorem 2.

Lemma 3 (Plummer[3]).

- (i) If G is n-extendable, then G is (n-1)-extendable.
- (ii) If G is a connected n-extendable graph, then G is (n+1)-connected.

Lemma 4 (Egawa, Enomoto, and Saito[2]). If $G \neq K_2$ is a connected graph having a 1-factor $F := \{f_k \in E(G) | 1 \leq k \leq p\}$, then there exist two distinct elements of F, say f_i and f_j , such that both $G \setminus V(f_i)$ and $G \setminus V(f_j)$ are connected.

Proof of Theorem 2: We use induction on p-q. First we prove the case p-q=1. Suppose that $G\backslash V(e)$ is n-extendable for every $e\in E(G)$ such that $G\backslash V(e)$ is connected. Obviously, by Theorem 1, G has a 1-factor. Further, by Lemma 4, there exists an edge $e=x_0y_0$ such that $G\backslash V(e)$ is connected. Let $H:=G\backslash V(e)$. Then H is a connected n-extendable graph. Let f_1,f_2,\ldots,f_n be any n independent edges in G. Since H is connected n-extendable graph, if $\{f_1,f_2,\ldots,f_n\}\subset E(H)\cup\{x_0y_0\}$, then we can easily see that G has a 1-factor which contains $\{f_1,f_2,\ldots,f_n\}$ by Lemma 3 (i). Thus we may assume $\{f_1,f_2,\ldots,f_n\}\cap E(V(e),V(H))\neq\emptyset$.

We distinguish two cases.

Case 1. n = 1.

Let $f_1 \in E(V(e), V(H))$. Without loss of generality, we may assume $f_1 = x_0 v$, where $v \in V(H)$. Since H is a connected graph having a 1-factor, H has an edge f which does not have a vertex v as its endvertex such that $H \setminus V(f)$ is connected by Lemma 4 (note that $|H| \geq 4$ from the hypothesis). Now $G[(V(H) \setminus V(f)) \cup V(e)](= G \setminus V(f))$ is connected. Therefore $G \setminus V(f)$ is 1-extendable by the assumption. Then $G \setminus V(f)$ has a 1-factor F_1 containing f_1 . $F_1 \cup \{f\}$ is a 1-factor of G, which contains f_1 . Case 2. $n \geq 2$.

Note that by Lemma 3 (ii), we may assume that H is at least 3-connected in this case. Let $f_1 \in E(V(e), V(H))$ and $\{f_2, \ldots, f_n\} \subset E(H)$. Clearly, $H \setminus V(f_n)$ is connected and also $G[(V(H) \setminus V(f_n)) \cup V(e)] = G \setminus V(f_n)$ is connected. Therefore $G \setminus V(f_n)$ is n-extendable. By Lemma 3 (i), $G \setminus V(f_n)$ has a 1-factor F_2 containing f_i ($1 \le i \le n-1$). Then $F_2 \cup \{f_n\}$ is a 1-factor of G which contains $\{f_1, \ldots, f_n\}$.

Let $f_1 \in E(x_0, V(H))$, $f_2 \in E(y_0, V(H))$ and $\{f_3, \ldots, f_n\} \subset E(H)$, where $x_0y_0 = e$. If $n \geq 3$, then we can show that G has a 1-factor containing $\{f_1, \ldots, f_n\}$ by using the same argument as in the previous paragraph. If n = 2, then since $|H| \geq 6$ from the hypothesis, there exists an edge $f \in E(G)$ such that $H \setminus V(f)$ is connected and $V(f) \cap (V(f_1) \cup V(f_2)) = \emptyset$. Then we can make f do the work of an edge f_n in the case $n \geq 3$. This completes the proof of the case where p - q = 1.

Next we show the case where $p-q \geq 2$. Let G be a connected graph satisfying the condition of Theorem 2. We suppose that the theorem holds for smaller values of p-q. Further, suppose that $G\backslash V(e)$ is connected for some edge e. Let G_0 be an arbitrary induced connected subgraph of $G\backslash V(e)$ with order 2q. Then G_0 is also an induced connected subgraph of G. Since G_0 is n-extendable by the assumption, $G\backslash V(e)$ is n-extendable by the induction hypotheoses. For every edge e, this situation holds whenever $G\backslash V(e)$ is connected. Thus, from the proof of the case where p-q=1, G is n-extendable.

References

- [1] G. Chartrand and L. Lesniak, Graphs & Digraphs, 2nd ed., Wadsworth.
- [2] Y. Egawa, H.Enomoto, and A.Saito, On component factors. Graphs and Combinat. 2 (1986) 223-225.
- [3] M.D.Plumber, On n-extendable graphs. Discrete Math. 31 (1980) 201–210.
- [4] D.P.Sumner, Graphs with 1-factors. Proc. Amer. Math. Soc. 42 (1974) 8-12.