Maximal k-Multiple-Free Sets of Integers

Joseph Y- T. Leung and W- D. Wei

Department of Computer Science and Engineering University of Nebraska-Lincoln Lincoln, NE 68588 - 0115 U. S. A.

Abstract. Let k be an integer greater than one. A set S of integers is called k-multiple-free (or k-MF for short) if $x \in S$ implies $kx \notin S$. Let $f_k(n) = \max\{|A|: A \subseteq [1, n] \text{ is } k$ -MF}. A subset A of [1, n] with $|A| = f_k(n)$ is called a maximal k-MF subset of [1, n]. In this paper, we give a recurrence relation and a formula for $f_k(n)$. In addition, we give a method for constructing a maximal k-MF subset of [1, n].

A set S of integers is called double-free if $x \in S$ implies $2x \notin S$. Let [a, b] be the set of integers between a and b, both inclusive, and let

$$f(n) = \max\{|A|: A \subseteq [1, n] \text{ is double-free}\}.$$

E.T.H. Wang [3] gave a recurrence relation and a formula for f(n). The former is

$$f(n) = \left\lceil \frac{n}{2} \right\rceil + f\left(\left\lfloor \frac{n}{4} \right\rfloor \right) \text{ and } f(1) = 1, \tag{1}$$

where [] and [] are the ceiling and floor functions, respectively. The latter is

$$f(n) = \frac{2n}{3} + \frac{1}{3} \sum_{i \ge 0} b_i - d, \tag{2}$$

where b_i are the coefficients in the base 4 expansion of n:

$$n = \sum_{i>0} b_i 4^i, \quad 0 \le b_i \le 3, \tag{3}$$

and

$$d =$$
 the number of b_i that are equal to 2 or 3. (4)

Research supported in part by the ONR grant N00014-91-J-1383, in part by a grant from Texas Instruments, Inc., and in part by a grant from the National Education Committee of the People's Republic of China.

As pointed out by Wang [3], a double-free set is related to a sum-free set [2].

Naturally, the concept of a double-free set can be generalized to a k-multiple-free set. Let k be an integer greater than one. A set of integers is called k-multiple-free (or k-MF for short) if $x \in S$ implies $kx \notin S$. Let

$$f_k(n) = \max\{|A|: A \subseteq [1, n] \text{ is } k\text{-multiple-free}\}.$$

A subset A of [1, n] with $|A| = f_k(n)$ is called a maximal k-MF subset of [1, n]. In this paper, we give a recurrence relation and a formula for $f_k(n)$ as well as a method for constructing a maximal k-MF subset of [1, n]. As it turns out, we were not aware of the work of Lai [1] who has also dealt with the same topic. But the approach and results here are different from the ones in [1] and [3].

We first prove the following lemma.

Lemma 1. There exists a maximal k-MF subset of [1,n], A, such that

$$\left[\left|\frac{n}{k}\right|+1,n\right]\subseteq A. \tag{5}$$

Proof: Let B be a maximal k-MF subset of [1, n]. If $\left[\left\lfloor \frac{n}{k} \right\rfloor + 1, n\right] \subseteq B$, then we are done. Thus, we may assume that there is an $x \in \left[\left\lfloor \frac{n}{k} \right\rfloor + 1, n\right]$, but $x \notin B$. Observe that kx > n and, hence, $kx \notin B$. There are two cases to consider.

Case 1: $x \not\equiv 0 \pmod{k}$.

In this case, $x \neq ka$ for any $a \in B$. Thus, $\hat{B} = B \cup \{x\}$ is a k-MF set. But $|\hat{B}| = |B| + 1 > |B|$, a contradiction to the maximality of B.

Case 2: $x \equiv 0 \pmod{k}$.

In this case, we have $x = k^c b$ for some $c \ge 1$ and $b \ne 0 \pmod{k}$. Consider the set $\hat{B} = B - \{k^{c-1}b\} \cup \{x\}$. \hat{B} is a k-MF set and $|\hat{B}| \ge B$. Thus, \hat{B} is a maximal k-MF subset of [1, n] with $x \in \hat{B}$.

Repeating the above procedure, we will eventually obtain a maximal k-MF subset of [1, n] with $\left|\left|\frac{n}{k}\right| + 1, n\right|$ being its subset.

Based on the above lemma, we can give a recurrence relation for $f_k(n)$, as shown in the next theorem.

Theorem 1. For any positive integers n and k > 1, we have

$$f_k(n) = n - \left\lfloor \frac{n}{k} \right\rfloor + f_k\left(\left\lfloor \frac{n}{k^2} \right\rfloor\right) \text{ and } f_k(1) = 1.$$
 (6)

Proof: Let A be a maximal k-MF subset of [1, n]. By Lemma 1, we may assume that $\left[\left|\frac{n}{k}\right| + 1, n\right] \subseteq A$. Since

$$k\left(\left\lfloor \frac{n}{k^2}\right\rfloor + 1\right) \ge \left\lfloor \frac{n}{k}\right\rfloor + 1$$
 and $k\left\lfloor \frac{n}{k}\right\rfloor \le n$,

we know that $\left[\left\lfloor \frac{n}{k^2}\right\rfloor + 1, \left\lfloor \frac{n}{k}\right\rfloor\right] \cap A = \emptyset$, and, hence, $A - \left[\left\lfloor \frac{n}{k}\right\rfloor + 1, n\right]$ is a maximal k-MF subset of $\left[1, \left\lfloor \frac{n}{k^2}\right\rfloor\right]$. Therefore, we have

$$|A| = \left| \left[\left\lfloor \frac{n}{k} \right\rfloor + 1, n \right] \right| + f_k \left(\left\lfloor \frac{n}{k^2} \right\rfloor \right) = n - \left\lfloor \frac{n}{k} \right\rfloor + f_k \left(\left\lfloor \frac{n}{k^2} \right\rfloor \right).$$

The next theorem gives a method for constructing a maximal k-MF subset of [1,n]. For the purpose of stating the next theorem, we introduce the following notation: Let

 $\hat{A} = \bigcup_{i>0} \left[\left\lfloor \frac{n}{k^{2i+1}} \right\rfloor + 1, \left\lfloor \frac{n}{k^{2i}} \right\rfloor \right]. \tag{7}$

Note that [a, 0] is the empty set when a > 0, and that the union in (7) is finite.

Theorem 2. For any positive integers n and k > 1, \hat{A} , as defined in (7), is a maximal k-MF subset of [1, n].

Proof: The proof is by induction on n. By definition, the maximal k-MF subset of [1,1] is $\{1\}$ which can also be expressed as $\left[\left\lfloor\frac{1}{k}\right\rfloor+1,\left\lfloor\frac{1}{1}\right\rfloor\right]$. Thus, the basis of the induction holds. Assuming that the induction hypothesis holds for all positive integers less than n, where n > 1, we wish to prove that it also holds for n.

Let A be a maximal k-MF subset of [1, n]. By Lemma 1, we may assume that A satisfies (5). Moreover, from the proof of Theorem 1, we may assume that

$$A = \left[\left\lfloor \frac{n}{k} \right\rfloor + 1, n \right] \cup A_1, \tag{8}$$

where A_1 is a maximal k-MF subset of $\left[1, \left\lfloor \frac{n}{k^2} \right\rfloor\right]$. By the induction hypothesis, we may assume that

$$A_1 = \bigcup_{i>0} \left[\left\lfloor \frac{\left\lfloor \frac{n}{k^2} \right\rfloor}{k^{2i+1}} \right\rfloor + 1, \left\lfloor \frac{\left\lfloor \frac{n}{k^2} \right\rfloor}{k^{2i}} \right\rfloor \right].$$

Since $\left|\frac{\lfloor \frac{n}{k^l} \rfloor}{k^j}\right| = \lfloor \frac{n}{k^{j+l}} \rfloor$, we have

$$A_1 = \bigcup_{i \ge 0} \left[\left\lfloor \frac{n}{k^{2i+3}} \right\rfloor + 1, \left\lfloor \frac{n}{k^{2i+2}} \right\rfloor \right]. \tag{9}$$

Combining (8) and (9), we obtain

$$A = \left[\left\lfloor \frac{n}{k} \right\rfloor + 1, n \right] \cup \left\{ \bigcup_{i \ge 0} \left[\left\lfloor \frac{n}{k^{2i+3}} \right\rfloor + 1, \left\lfloor \frac{n}{k^{2i+2}} \right\rfloor \right] \right\}$$
$$= \bigcup_{i > 0} \left[\left\lfloor \frac{n}{k^{2i+1}} \right\rfloor + 1, \left\lfloor \frac{n}{k^{2i}} \right\rfloor \right] = \hat{A}.$$

Theorem 2 gives a construction for a maximal k-MF subset of [1, n]. The following theorem gives the cardinality of such a subset. Let the base k expansion of n be

$$n = a_m k^m + a_{m-1} k^{m-1} + \ldots + a_1 k + a_0, \tag{10}$$

where $0 \le a_i < k$ for each $0 \le i \le m-1$, and $0 < a_m < k$.

Theorem 3. For any positive integer n with (10) as its base k expansion, we have

$$f_k(n) = \frac{1}{k+1} \left(kn + \sum_{i \ge 0} (-1)^i a_i \right). \tag{11}$$

Proof: By Theorem 2, we have

$$\begin{split} f_k(n) &= |\hat{A}| = \sum_{i \geq 0} \left(\left\lfloor \frac{n}{k^{2i}} \right\rfloor - \left\lfloor \frac{n}{k^{2i+1}} \right\rfloor \right) \\ &= \sum_{i \geq 0} (-1)^i \sum_{j \geq i} a_j k^{j-i} \\ &= \sum_{j \geq 0} a_j k^j \sum_{i \leq j} \left(\frac{-1}{k} \right)^i \\ &= \sum_{j \geq 0} a_j \frac{k^{j+1} + (-1)^j}{k+1} \\ &= \frac{1}{k+1} \left(kn + \sum_{i \geq 0} (-1)^i a_i \right) \,. \end{split}$$

Corollary. When k = 2, we have

$$f_2(n) = \frac{2}{3}n + \frac{1}{3}\sum_{i\geq 0} (-1)^i a_i.$$
 (12)

It is not difficult to see that Wang's formula (2) can be simplified to (12). The following theorem, which is an immediate consequence of (11), shows the validity of a conjecture proposed by W. Janous in a letter of June 29, 1988, to E. Wang.

Theorem 4.

$$f_k(n) = \frac{k}{k+1}n + O(\log n), \quad n \to \infty.$$

Acknowledgment

The authors would like to thank Professor E.T.H. Wang and an anonymous referee for helpful comments.

References

- 1. H. Lai, k-multiple-free sets, Ars Combinatoria (to appear).
- 2. W.D. Wallis, A.P. Street, and J.S. Wallis, *Combinatorics: room squares, sum-free sets, Hadamard matrices*, in "Lecture Notes in Math., vol. 292", Springer-Verlag, New York, 1972.
- 3. E.T.H. Wang, On double-free sets of integers, Ars Combinatoria 28 (1989), 97–100.