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Abstract. Let X be a graph and let (X ) and /(X ) denote the domination number
and independent domination number of X , respectively. We show that for every triple
(m,k,m),m >5,2 < k < m,n> 1, there exist m-regular k-connected graphs X
with &/(X) — a(X) > n The same also holds form = 4 and k € {2,4}.

1.Terminology and Introduction

By X(V,E) we denote a graph with vertex-set V(X) and edge-set E(X).
Graphs considered in this paper are undirected and contain neither loops nor mul-
tiple edges. We say that two paths are disjoint if they have at most their end-
vertices in common. A subset D C V(X) is a dominating set if every vertex
w € V(X)\D is adjacent to at least one vertex v € D. The domination number,
a(X), is the smallest number of vertices in a dominating set of X . If a dominating
set I is independent we call I an independent dominating set. The independent
domination number, o/ (X), is the smallest number of vertices in an independent
dominating set of X. Obviously o/ > « holds for all graphs. By Hym, m > 3,
1 < k < m, we denote the class of k-connected, m-regular graphs. We say that
o —ais unbounded for Hy, if for every integer n > 1 there isagraph X € H km
such that o/(X) — a(X) > nholds.

It is well known that o/ — o is unbounded for H; 3 and H, 3 (seeeg. [1]). In
[1] it was also conjectured that o/ — « is bounded for H3 3 which was shown to be
wrong in [4]. In this paper we prove that o — « is unbounded for all Hy gy, m > 5,
2 < k< m,for Hy 4 and for Hy 4.

The method we use involves the concept of covering graphs which we explain
in the sequel:

Let X; and X, be graphs and let f denote a homomorphism from X; onto X5.
By S(v), v € V(X,), we denote the star consisting of v and all edges incident
to v. If f(S(v)) is isomorphic to S(v) for allv € V(X,), we call f a covering
map and X, a covering graph of X,.

In [2], p. 127, the following construction of a covering graph of a graph X with
respect to a group G is given: Each edge [u, v] € E(X) givesrise to two 1-arcs,
[u,v] and [v,u]. By A(X) we denote the set of 1-arcs and by ¢ : A(X) —
G we denote a mapping such that p([u,v]) = (¢([v,u]))~! forall [u,v] €
A(X). The covering graph X=X (G, ) of X withrespectto G is defined on
the vertex-set V(X) = G x V(X) and two vertices (g1, 1), (g2,v) € V(X) are
adjacent in X if and only if [u,v] € A(X) and g; = g1p([u,v]).
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2.The result

Besides covering graphs Menger’s Theorem (see e. g. [3]) is crucial for the proof
of our result:

Theorem 2.1. The minimum number of vertices separating two nonadjacent ver-
tices = and y is the maximum number of disjoint paths connecting x and y.

Theorem 2.2. The difference o/ — « is unbounded for every Hgm, m > 5,
2< k< m,andfor Hy4 and Hq 4.

Proof: Let X = Ky for some m > 4 and let V(X) = {u1,...,um} U
{v1,...,vn} and E(X) = {[uj,v] | 1 < j < m, 1< 1l < m}. Wenow
construct covering graphs of X which are contained in Hy ,,,2 < k < m, respec-
tively, such that the difference between their independent domination numbers are
domination numbers is arbitrarily large (with the exception of H3 4). Thereby we
distinguish two cases:

Case 1: kis even. _

In this case we construct a covering graph X of X with respect to the cyclic group

= (a | a? = €), ¢ > 2, where p is given by

o([y,v]) = p([v,u]) = eif [u,v] € {[ur,v,] |7 < m—gors <m-— ;}
and

p([u,v]) =a,p([v,u]) =a~" if [u,v] € {[ur,v,] |'r>m—§ and s>m—-2k-},

IfY, V(Y) = V(X), now denotes that subgraph of X which contains all those
edges of X which are mapped onto e by ¢, then X consists of q palrw1se disjoint
coples of Y which are connected by edges corresponding to e and ¢~ . Clearly
X is m-regular. We now show that X is also k-connected.

To do that we first mention that the a!,0 < I < ¢ — 1, act as automorphism on
X as follows:

a!(h,z) = (a'h,z)

forall (h,z) € V(X). This implies that Z, acts transitively on the set of copies
of Y in X. Hence we denote the copies of Y in X by Y;,0 < 1 < ¢— 1, where
Y = ol(Yo). _

Letp = £. The graph X contains p disjoint cycles K;,m —p+1 < j < m,
which are given by

K; = [(e,47),(a,v)] UP} Ul(a,u7),(a®,v)]U---U P}
Ul(e* ", u;),(e,v)1U P}
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where
-P} = [(al, 'U]) ) (al, uj—m+p): (al, vj-m*-p)’ (al)uj)]

for0 <l<q—1.
This immediately implies that between any pair Y;,Y;, 7,8 € {0,..,9—1},
there are k disjoint paths with endvertices (a',tm—p+1), ...,(a7, tm),

(af’ vm—p+l): sees (ar) vm) and (aa’ um—p+1)) cees (as’ um)’ (aa,vm—pi'l)s s
(a®,vy), respectively.

In the sequel we show that no pair of nonadjacent vertices (a’, z), (a%,y) €
V(Y1),0 < I < g — 1, can be separated by less than k vertices. Because of
Theorem 2.1 and the above defined action of the o’ on X it is sufficient to show
that every pair of nonadjacent vertices (e, z), (e,y) € V(Yp) is connected by at
least k disjoint paths. In fact it turns out that those vertices are always connected
by m disjoint paths, not depending on k.

By K[ (e,u;),(a",2)] C K;j, m—p+1 < j < m, we denote that subpath of
K; which connects (e, u;) and (a”, z),7 € {0, 1,...,g—1},and contains (a, v;)
as its second vertex. K;[(e,v;),(a",z)] C K; denotes that subpath of K; which
connects (e, v;) and (a", z) but contains (a1, u;) as its second vertex.

Case 1.1: z,y € {u1,...,ump}orz,y € {v1,...,vm—p}.
Without loss of generality we can assume that z = u; and y = u,. The disjoint
paths B;, 1 < ¢ < m, are given by

Bi = [(eyul))(eyvi)’(e)u’Z)]

Case 1.2: 1 € {u1,...,Um—p} ¥ € {Umpt1,---,Um} OL T € {V1,...,Vmp},
yE {”m—pd-l: )”m}-
Without loss of generality we assume that z = u; and y = u,,. The m disjoint are
now given by
B;=[(e,u1),(e,v5)(e,up)l forl <i<m—p
and by
B; = [(e,u1),(e,v:)] U K;[(e,v:),(a,v)] U[(a,v;),(e,tum)]

form—-p+1<i<m.

Case 1.3: 2 € {tm—p+1,..-,Um}, ¥ € {Umptl ..., Um}.
Without loss of generality we assume that £ = u,, and y = v,,. The m disjoint
paths are now given by

Bi=1[(e,um),(e,vi),(e,u5),(e,vm)]ifl <i<m—p
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and by

Bi= Kil(e,u),(a® ", u)]U (", w), (€,vm)]
form—-—p+1<i<m.
Case 14: 2,y € {Um—pt1,- - Um} OTT,Y € {Um—p+1,--+,VUm}.

Without loss of generality we assume that £ = tiy,_p+1 and y = . The m disjoint
paths are given by

Bi = [(e’um—p'fl):(e:vi):(e)um)]
forl1 <1< m-—pandby
B;= [(eA)um~W1)s(a)vi))(e)u’m)]

form—-p+1<i1<m.

We finally show that no pair of vertices (e, z) € V(Yp) and (a",y) € V(Y;),
r€{1,...,q — 1} can be separated by less than k vertices. Let S C V(X)bea
set of at most k — 1 vertices. Then we know from the above that there are vertices
(e,w) € V(Yo) and (a",v) € V(Y;) which are connected by a path in X\S,
since at least one of the k paths contained in the cycles K;,m —p+ 1 < j < m,
still exists in X\S. Cases 1.1-1.4, together with Theorem 2.1, show that (e, z)
as (a",y) and (a",v), are also connected in X\S. Hence (e, z) and (a",y) are
connected in X\8S.

From the action of the elements of Z, on X it now immediately follows no pair
of vertices of X can be separated by less than k vertices.

Let D = {(a},u1),(a},v1) | 0 < 1 < ¢ — 1}. Clearly D is a dominating
set of X. Hence a(f ) < 2¢. Each Y] also contains two subsets, namely V}* =
{(@ u1),...,(a" um—p) } and V’ = {(a},v1),...,(a!,vm—p)}, Whose vertices
are only adjacent to vertices of ¥;. Since m — p > 2 each dominating set of X
must contain at least two vertices of every Y;. So a(X) = 24.

To show that o/ (X) - o X) grows if we enlarge g, we first consider the case
m > 5. We also mention that superscripts of a and subscripts of Y are taken
modulo ¢ in the sequel.

Since k is even, m — p > 3 holds if m > 5. If an independent dominating set
I now contains a vertex of V}* or V", then it clearly contains all vertices of V" or

1Y, respectively. Hence, if I contains only two vertices of Yy, 7 € {0,...,g—1},
then it must contain a vertex (a7, u;) andavertex (a™,v;),1 € {m—p+1,...,m}.
Suppose (a”, vn,,) € I. Then none of the vertices (a™!, u;) can be contained in
I. Hence the vertices of V,¥_; are either contained in I or they are dominated by
a vertex of V% ;. In both cases | I N V(Y;_1) |> 3 holds. So | (V(¥;-1) U
V(Y;)) NI |> 5 holds for every r € {0,...,g — 1} and every independent
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dominating set I. This immediately implies that o/(X) — a(X) grows if we
enlarge q.

Letm = 4. If k = 2 the same arguments as above can be used, since m — p =
m — 1 = 3 in this case.

Let m = k = 4. Again we consideraY;,r € {0,...,g — 1}. Assume that I
now contains at least one of the vertices (a”,u3), (a”,u4), (a”,v3) or (a",v4),
say (a",v4). Since (a",v4) and (a”, v3) are adjacent to the same vertices, the set
I then contains both of these vertices. But then (a”,v;) and (o, v2) are still not
dominated by I. So I also contains the vertices (a”, v1) and (a”,v2) or (a”, u3)
and (a", u4), respectively.

Hence [INV(Y;)| = 2 can only hold if (a”,u;) and (a", u2) or (a’,v;) and
(a",v2) are contained in I, respcctively Assume that (a",u1), (a",u2) € I.
If now |I N V(Y;)| = 2 holds, then (a”, u3) and (a", us) must be dommated
by (a™!,v3) and (™', vs). But as we have seen above, this implies that |T N
V(Yy+1)] = 4 holds. Hence o/(X) — a( X) again grows if we enlarge q.

Case 2: k is odd.

In this case the proof is a little bit more involved since we have to construct our
covering graphs in a different way to obtain k-connected graphs. Here we con-
struct X with respect to the group G = {a1) x (a2) where {(a;) and (e, ) are cycllc
groups of order ¢ > m with generators a; and a;, respectively. Also p = "‘
The mapping ¢ is now given by

p([u,v])=p([v,u])=e forall [u,v] € {[uy,v5] |rT<m —p—1 ors<m — p}
p(lu,v])=a1,p([v,u]) =7 if [u,v] € {[uy,vs] |r>m —pand s>m —p}

and
e([u,v])=a2,p([v,u]) =a;! if [u,v] € {[uy,v,] | r=m—pand s>m—p}.
LetY, V(Y) = V(X), now again denote the graph Wthh contains all those

edges of X which are mapped onto e by . In this case X consists of ¢* disjoint
copies of Y and all g € G act as automorphisms on X where

g(h,z) = (gh,x)

for all vertices (h, z) € V(X). This again implies that G acts transitively on the
copies of Y in X. Hence we denote those copies by Yy, g € G, and first again
show that no two subgraphs Yy, , Y, g1,92 € G can be separated by less than k
vertices. Because of the action of the g € G on X it is again sufficient to show
that Y, can not be separated from any Y, h € G, by less than k vertices. Again
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we have p disjoint cycles K;, m —p+ 1 < j < m, defined as in Case 1 with a;
instead of a. In addition we have a cycle K,_p,

Km-p=[(€,tm—p),(a2,9m)] UPi U[(a2, tm—p),(a3,vm)1U...
UP1UL(a] ™, tmp), (e, vm)1 U Py

where the P;,0 < I < ¢ — 1, denote the paths

}Jl = [(alZ:vm))(alZ)ul),(alZ)vl)s(O'IZ)um—p)]

respectively.
Let W;,0 < I < g, denote the subgraphs

q-1

Wi = Y-
z=0

Since we have chosen ¢ > m no pair of subgraphs W,, W, r,s € {0,...,q¢ —
1} can be separated by less than k vertices, as they are connected by the disjoint
cycles a1 (Km—p)-

Let § C V(X) now denote an arbitrary set which contains k — 1 vertices. We
first show that no Yy, g € {as,..., a‘{'l} can be separated from Y, by S. If the
vertices of S are not all contained in the cycles Kj, m —p+ 1 < j < m, then
clearly X \S contains a subpath of at least one of the K; which connects vertices
of Y, and Y. If all vertices of S are contained in the K; then it can happen that all
connections between Y, and Y, inside W, are interrupted in X \S. But this implies
that S does not contain any of the vertices (b, um—p), b € {e,a1,..., a‘{"‘ }. Hence
a path from (e, um—p) via W) 10 (g, um—p) € Y, still exists in X \S.

Using essentially the same arguments it is now obvious that Y, is connected to
eachY;, h € G,in X \S. Because of the action of the elements of G on X itis
then clear that no pair of different copies of Y in X canbe separated by less than
k vertices. On the other hand it is also clear that e.g. X \{(e, tm—p)s-... (e, um),
(e, Ym—p+1, ---» (€,vm) } is disconnected, which means that the graphs X are at
most k-connected.

Hence it remains to show that also each pair of nonadjacent vertices (g, ),
(g,9) € V(X) is connected by at least & disjoint paths. As in Case 1 we can
restrict this part of the proof to nonadjacent vertices (e, z), (e,y) € V(Y.) and it
again turns out that these vertices are always connected by m disjoint paths, not
depending on k.

By K},0 <1< ¢g—1,wedenote thecycles ab (K;), m—p+1 < j < m. Now
K}[(ahal,u;),(a}af, z)] denotes that subpath of K} which connects (a} a7, u;)
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and (a}a$,z), 7,5 € {0,1,...,¢ — 1} and contains (a}a]*',v;) as its second
vertex. K}[(a}a],v;),(aba1,2)] is that subpath of K}, connecting (a}a], v;)
and (a}a{, z), which contains (a}a]™!,u;) as its second vertex. By Kl_, we
denote the cycles a',(K m-p), 0 < 1 < ¢ — 1, and the subpaths we use in the
sequel are defined analogously to the above.

Case2.1: z,y € {u1,...,Um—p-1}Or T,y € {v1,...,Um—p}.
We obtain the m disjoint paths as in Case 1.1.

Case2.2: z=tum_p,y € {U1,...,Um—p-1}
Without loss of generality we assume that y = u;. Then

Bi = [(e;um—p)a(e)vi))(eyul)]
for1 <1< m-—pand

Bi=[(e,tm-p),(az2,%)1UK}![(a2,),(azal,v;)]
Ul (a2a},v:),(a}, tm-p), (a}, vm—p), (@}, u;)]
U K,-[(a’i,ug),(e,v,')] U [(exvi')n(e,ul)]~

form—p+1<i<m

Case 2.3: z € {u1, ey Umep-1}, Y € {tm—pt1,. e tm}.
Without loss of generality we assume that z = u, and y = u,,. Then

B = [(e,u1),(e, ), (€, um)]
forl1 <i< m-—pand
Bf= [(elul))(e;vi)] UK?[(C,‘U,‘),(G],U;‘)] U [(aljvi))(e)um)]

form—p+1<i<m.

Case24: z=tm_p,Y € {Um—pt1,.. ., Um}.
We set y = u,,. Then

Bt' = [(eyum—p)i(etvi))(enum)]
forl1 <1< m-—pand

B; = [(e,um-p),(a2,v%)]1 U K] [(az,v),(a2a}, )]
Ul(az2a},v),(a}, umyp),
(a1, Viemep) s (a, Ui_map) , (0l , )]
U K [(al,v:),(a1,v)1 U [(a1,), (e, tm)]

125



form—p+1<i<m.

Case 2.5: T = Ump, Y € {Umpt1,.-+,Vm}
Without loss of generality we set y = vp,. Then

Bi = [(e)um—p))(esvi)t(e)ui)a(esvm)]
fori1<i<m-p-1,
Bmep =[(€, tm_p), (€, Um—p), (€, um)] U K& [(&,um), (0], tim)]
U[(al—l:u‘m))(e:vm)]s
Bi =[(e, tm—p),(a2,v)1 U K} [(az2,v),(az0}, v:)]

Ul(a2a},v),(a}, um—p), (al,vm-p), (al,uy)]
UK2[(ad,u),(ad ™, u)TUL(ad ™, 1), (e,um)]

form—p+1<i<m-—1and
Bm = K3, l(€,ump), (€, vm)]

Case 2.6: z,y € {Um—p+1,--+,Um}-
Letz = u,,_; and y = u,,. Then

Bi' = [(e!um—l)s(e)vt'))(e)um)]
forl1 <1< m-pand
Bi = [(e,um_l),(al,vg),(e,um)]

form—p+1<i<m.

Case 2.7: 1 € {Umpil,eorUm}r ¥ € {Vmptl,- ey Um}
We set ¢ = u,, and y = v,. Then

Bi = [(e,u,,,),(e,v,'),(e,u,;),(e,vm)]
fori<i<m-p-—1,

Bm—p = [(e,um), (e, ”m—p) , (e, “m—p] U Kg._p[(e. um—p) y(e,vm)]

and
Bi=[(e,um), (a1,v)1U K2 [(a1,v),(a!™, )1 U[(al ™", 1), (e, um)]

form—p+1<i<m.
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Case2.8: z € {v1,...,Vm—p} ¥ € {Vm—p+1,...,Um}.
Weset z = v; and y = vy,,. Then

B; = [(e,v1),(e,ui),(e,vm)]
forl<i<m-p-1,
Bmp=1[(e,11),(e, ump) 1 UKS_,[(€,tm—p),(e,vm)]
and
= [(e,v1),(e,u) T UK [(e,u),(al ™, u)TU(af™, 1), (&, vm)]

form—-—p+1<i<m.

Case 2.9: z,y € {Um—pt1,...,Um}.
We set £ = vy, and y = v,,,. Then

B! = [(elvm—l)s(etui))(e)vm)]
fori1<i<m-p-1,
B‘m—p = [(e, vm-l)’(ag_lsum—p), (e,vm)]

and
Bi=[(e,vm-1),(a{", 1), (e, vm)]
form—p+1<i<m.

The proof that no pair of nonadjacent vertices of X can be separated by less
than k vertices can now be done analogously to Case 1.

To show that the dxfference between the independent domination number and
the dommann number of X again grows with g, we first mention that X consists
of q copies of Y in this case. Analogously to Case 1 this implies that a( X ) =
2¢2.

Letm > 6. Since k is odd it is clear that m—p—1 > 3 holds in this case. Hence
each Yy, g € G contains two disjoint subsets, namely {(g, u1),...,(g, ¥m—p-1)}
and {(g,v1),...,(g, vm—p) }, with cardinality at least three, which are only ad-
jacent to vertices of Y,. Hence, if an independent dominating set I of X con-
tains one of those vertices, then it contains at least 3 vertices of Y;. If I contains
only 2 vertices of some Y, then these vertices must therefore be contained in
{(9,¥m-p),---,(9,um)} and {(g, Vmp+1),...,(g,vm) }, respectively. But if I
contains at least one vertex (g, z) € {(g, ¥m-p), ..., (g, ty) } thenit cannot con-
tain the vertices (h, m—p+1), ..., (h,vm), Wwhere h = ga; and/or h = ga, . Hence
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I contains at least 3 vertices of Yj,. As in Case 1 it is now clear that the difference
between o/ (X) and a(X) grows if we enlarge q.

Let m = 5. If k = 3 then we have the same situation as above. Let now
k = m = 5. If I contains a vertex of {(g,v1),(g,v2),(g,v3)} then we again
know that it contains more than 2 vertices of Yy. If I contains one of the ver-
tices (g, v4), (g, vs) then it must contain both of them, since they are adjacent
to the same vertices of X. But if I contains these two vertices, then the vertices
(g,v1),(g,v2) and (g,v3) are still not dominated. Hence I must in addition
contain at least one of the vertices (g,us),...,(g,us) or the vertices (g,v;),
(g,v2), (g, v3) themselves. In both cases I again contains more than two vertices
of Y,. So, if I contains only 2 vertices of Yy, then it can only contain vertices of
{(g,u1),...,(g,um)}. Since the vertices (g, u1) and (g, u2) are not dominated
in this case, these two vertices must be contained in I. If I now also contains one
of the vertices (g,u3), (g, us4),(g,us), then I again contains at least three ver-
tices of Y. If it does not contain any of these vertices, then they must be adjacent
to a vertex of I, which means that I contains the vertices (h, v4) and (h,vs) for
h = ga; and h = ga,. But from the above we know that then I contains at least
three vertices of each Yj,. This again implies that the difference between o/( X)
and a(f ) grows if we enlarge q. [ |

We emphasize that also in the case m = 4,k = 3 the method of the above
proof is sufficient to show that o/(X) > «(X) but not to show that o — « is
unbounded for H3 4. Clearly we also cannot obtain 1-connected m-regular graphs
by constructing covering graphs as we did in this proof. Nevertheless we do not
think that H; ,, and H3 4 are classes of graphs for which o/ — « is bounded.

Conjecture 2.3. o — « is also unbounded for all H\ m, m >4, and for H3 4.
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