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Abstract. A correspondence between decompositions of complete dirccted graphs
with loops into collections of closed trails which partition the edge set of the graph and
the variety of all column latin groupoids is establishcd. Subvaricties which consist of
column latin groupoids arising from decompositions where only certain trail lengths
occur are examined. For all positive integers m, the sct of values of n for which the
complete directed graph with loops on a vertex set of cardinality n can be decomposed
in this manner such that all the closed trails have length m is shown 1o be the set of all
nfor which m divides n?

1. Introduction

In recent years a great deal of work has been done on decompositions of com-
plete undirected graphs such that the edge sct of the graph is partitioned. Under
certain conditions it is possible to associate various types of algcbras with these
decompositions; for example sce [4], [6], [7] or [8].

Necessary and sufficient conditions for the existence of an cdge partitioning
decomposition, into closed trails of length m, of the complete undirected graph
have been given in [5]. Such decompositions with the added restriction that there
are no repeated vertices in the closed trails are called m-cycle systems and have
been studied extensively, see [7]. Analogous decompositions of directed graphs
(usually referred to as Mendelsohn designs) have also attracted much attention,
see [2].

In this paper we examine decompositions of complete directed graphs with
loops into collections of closed trails which partition the edge set of the graph
and the variety of algebras associated with them. In the case of graphs with loops
we must decompose into closed trails (and not cycles) because repeated vertices
cannot be avoided. This problem has been considered previously in [1] and (3]
but in both these papers closed trails of length three only are considered.

We write closed trails as cyclically ordercd m-tuples (z1,z2, ..., Zm) of ver-
tices and refer to these m-tuples as m-circuits. An m-circuit (z1,%2,...,Zm)
equivalently consists of the cyclically ordered m-tuple (z122, 2223, ..., ZmT1)
of edges. Of course, the m-circuit, (z1, Z2, ..., Tm) is cqual L0 any cyclic permu-
tation of itself.
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Definition 1.1. An L -circuit directed looped system (or L-circuit DLS) of order
n is a pair (V,C) where V (|V| = n) is the vertex set of the complete directed
graph with loops D, and C is a collection of circuits whose lengths make up the
set L, with the property that each edge of D,, occurs exactly once in C.

Example 1.2:
(1) IfV ={1,2}and C = {(1),(2),(1,2)} then (V,C) is a {1,2 }-circuit
DLS of order 2.
(2 1fv={1,2,3}andC = {(1,1,2),(2,2,3),(3,3,1)} then (V,C) is a
{3}-circuit DLS of order 3.
3) Ifv ={1,2,3}and C = {(1,1,2,2,3,3,1,3,2)} then (V,C) is a
{9 }-circuit DLS of order 3.

We note at this point that infinite order L-circuit DLS’s are well defincd and
indeed an infinite L-circuit DLS may contain circuits of infinitc length, in which
case oo € L.

2. The Algebra of a DLS

In this section we will examine the correspondence between the class of an DLS’s
and the variety V of algebras A = (A, x, o) satisfying the identitics

(1) (axb)ob=aand

(2) (aobd) *xb=a.

Given any L-circuit DLS (V, C) we define binary operations x and o by a*b = ¢
ifand only if the edge ab is immediately followed by the cdge bcin C and aob = ¢
if and only if the edge ba is immediately preceeded by the edge cb in C.

Conversely, if we are given an algebra satisfying these two identities we can
reconstruct the DLS by stipulating that the edge ab is followed by the edge b( ax*b).
Since (bo a) * a = b, the edge ab is preceeded by the edge (b o a)a.

If we consider * to be “multiplication” and o to be “right division” then it is
clear that the variety V is the class of all column latin groupoids. Given any b and
cin A there exists an e, namely a = cob, suchthataxb = (cob) *b = c, by identity
(2). Also this a is unique since if a; x b = a; * b then (a; *b) ob = (a3 xb) o b
and so by identity (1), a; = a2. We always take * to be “multiplication” and o to
be “right division” though clearly this choice is arbitrary.

We call the algebra corresponding to an L-circuit DLS an I-clgpd (short for
L-column latin groupoid) and we refer to the circuits of the DLS corresponding
to a clgpd simply as the circuits of the clgpd. If |[I,] = 1, say I, = {m} then we
usually write just m-clgpd instead of {m}-clgpd.

Example 2.1:
(1) The clgpd
* 1 2
1 2 2
1 1
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is a 4-clgpd and contains the single 4-circuit (1,1,2,2).

(2) The clgpd
* 1 2 3
1 2 1 3
2 1 3 2
3 3 2 1

is the 3-clgpd corresponding to the {3 }-circuit DLS of Example 1.2 (2).

We introduce some convenient notation. Define a sequence of words Wi(z, y)

by

WO ( I, y) =T

Wi(z,y) =y

Wa(z,y) =z *y

Wi(z,y) =y*(z*y)
and inductively define W;(z,y) = Wi—2(z,y) *W;_1(z,y) so thatif you start at
z of the edge zy and count ¢ vertices to the right in the circuit containing zy you
arrive at the vertex Wi(z, y). Clearly, if there is a ¢ such that Wy(z,y) = = and
Wis1(z,y) = y then the circuit containing y has finite length equal to the smallest
such ¢t and moreover its length must divide any such ¢.

3. Methods of Constructing m-CLGPDS

Definition 3.1: Let G, be the groupoid we get by defining a binary operation *
on the set of elements of Z,, by a xb=2b—a+1 (mod n).

Lemma 3.2. If n is odd then G, is an n-clgpd and if n is even then G, is a
2n-clgpd.

Proof:
a; *b=ay *b (mod m)

—2b—a1+1=2b—az+1 (mod n)
—a; = a2 (mod n)
Hence, G,, is a clgpd of order n.
Now let ¢ be any circuit in G, let ab be any edge in ¢ and supposc ¢ has Iength
t. Then W;(a,b) = a and Wi (a,b) = b. Now, it is casy to show (by induction)
that Wy(a,b) = o + t(b— o) + X512 (mod m).

Wi(a,b) =a—a+t(b—a)+ t(,tz—l)

—t(b—a)+ t(tz"l) =0 (mod n)

—2t(b—a) +t(t—1) =0 (mod 2n)

=q (mod n)
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t(t+ 1)
2

=b (mod m)

Wia(a,b) =b—a+ (t+ 1)(b—0a) +
t(t+ 1)
2

=b (mod n)

—b+t(b—a)+

t(t; D =0 (mod n)

—2t(b—a)+t(t+1) =0 (mod 2n)

—t(b—a) +

Hence,

t(t—1)=t(t+1) (mod 2m) —t2 —t=12+¢ (mod 2n)
—2t=0 (mod 2n)
—1t=0 (mod n)

Now, for any a and b, Wy(a,b) = a+ n(b—a) + X% = g+ %220 (mod 7).
Hence, if n is odd then for any a and b, Wy (a,b) = a and so G, is an n-clgpd.
If n is even then we have, for any a and b, Wa,(a,b) = a + 2n(b — a) +
2 22”‘1 = a (mod n). Hence, t divides 2n and so we must have t = nort =
2n. Ift = nthen Wp(a,b) = a. Thatis,a+ X% = ¢ (mod n) — %=1l = o
(mod n) - n—1=0 (mod 2), which is not true and so there are no circuits
of length n. Hence, G,, is an 2 n-clgpd. [

Lemma 3.3. If (z,a2,03,...,am,) and (z,by,b3,...,bn,) are two circuits of
a clgpd then we can replace these two circuits with (z,az,0a3,...,am,, T, b2, b3,
«..,bm,) and what we get is still a clgpd.

Proof: This is clear since exactly the same edges are covered. 1

We call the process in the above lemma linking the two circuits together. Hence,
any two circuits can be linked provided they are not vertex-wise disjoint. Con-
versely, we can separate any circuit which has a repeated vertex into two circuits
and we still have a clgpd.

Lemma 3.4. The direct product G x H of an L, -clgpd G = (G, *,0) with an
Ly-clgpd H = (H,*,0) is an L-clgpd where L = {lem(l;, )|, € L1l €
L, }.

Proof: Let(g1,h1) and (g2, h2) be any two elements in G x H. Then the circuit
containing the edge (g1, h1) (g2, h2) has length ¢ where ¢ is the smallest positive
integer such that Wy ((g1, h1),(92, h2)) = (g1, h1) and W1 ((g1, h1), (92, h2)) =
(g2,h2). Thatis, Wi(g1,92) = g1, Wee1(91,92) = g2, Wi(hi, h2) = hy and
Wis1(h1h2) = h,. Clearly these conditions are satisfied simultaneously if and
only if ¢ is a multiple of both I; and I, where [; is the length of the circuit of G
containing g; g2 and Iy is the length of the circuit of H containing hih,. Hence,
t=lem(l;, ) wherely € Ly and lp € L.
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Conversely, let t = lem(ly,l) where !y € L) and I € Ly and let g; g2 be an
edge in a circuit of G of length [; and h1 h2 be an edge in a circuit of H of length
l,. Then the circuit of G x H containing the edge (g1, h1) (g2, h2) will be of
length ¢. [ |

4. The Spectra of m-CLGPDS

For given m, the spectrum of m-clgpds is defined to be the set of values of n for
which there exists an m-clgpd of order n. A necessary condition for the existence
of an m-clgpd of order n is that m divides n?, since the total number of edges
in the graph is n* and each m-circuit consists of m edges. For any given integer
m we define m’ to be the smallest positive integer whose square is divisible by
m. Hence, the necessary condition for the existence of an m-clgpd of order n
becomes n=0 (mod m').

For any positive integer m (m > 3) let m = p{"p5? ... pf" qﬂ' q‘g2 ..qP where
{p1,p2,.-+,Pt,q1,92,...,qu} isasetof t + u distinctprlmes {a1,02,...,0¢}
is a set of ¢ even integers greater than or equal to 2 and {£;, 52, .. ., ﬁ,,c} is a set

of u odd integers greater than or equal to 1. Then it is clear that m' = pFL Py
%, %—‘ Bl
Pt a1 .

In thls secuon we will show that for m > 3 the above nccessary condition is
sufficient. That is we will show that foranm >3 andalln= 0 (mod m') there
exists an m-clgpd of order n. Clearly, the only 1-clgpd is of order 1 and there are
no 2 -clgpds since there can not be a 2-circuit containing the edge aa. The circuit
(a, a) is a 1-circuit (a), and (a, a, b, ...) has length at least 3.

We first construct for each m > 3, an m-clgpd of order m’. We break the
constructions into the four cases

(1) misodd,

2 m=2",

(3) m = 2%mg with mo odd and k > 1 and
(4) m = 2mo with mo odd.

(1) Let m be odd. In this case m' is odd. The m’-clgpd G,» (see Lemma 3.2)
consists of the m', m/-circuits (0,0,1,...),(1,1,2,...), ....,(m' = 1,m' —
1,0,...).

If we write m as a product of primes as above then it is easy (o see that & =

o A1-1 -1
p# . p?L ql'l’_ f"_ and that m' = BLLZ=4 and so if we link together (as per
Lemma 3.3) the cucuits of Gy, Z at a time we will get a collection of g1¢2 ... gt
m-circuits which hence form an m-clgpd of order m/. It is clear that we do not
need to link disjoint circuits during this process if we link the first I together and
then the second 2, and so on (the first entry in any circuit is the same as the third
entry in the next When they are written in the natural order as above). Example 1.2
(3) is obtained from Example 1.2 (2) by linking its circuits together in this manner.
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@)Letm=2".Ifr=2sthenm' = 2%and if r = 2s+ 1 then m' = 25*1, We
show that given a 22¢-clgpd of order 2* we can construct a 22¢*!-clgpd of order
25*1 and that given a 22°*! clgpd of order 2°*! we can construct a 22%*2 clgpd
of order 251, ,

A 225-clgpd of order 2° defined on the set § = {1,2,...,2°} consists of a
single 224-circuit. Let this circuit be (z1, 2, ..., Tn) and consider the collection
C consisting of the two 2 m-circuits with entries chosen from S x {a, b} shown
below

((zl,a),(zz,a),(z;;,a),...,(zm_l,a),(:cm,a),

(zlib))(zZIb)l(IS)b)’"‘l(zm—lib))(xm)b))

((I],G),(Z’Z,b},(ﬂ?3,a),...,(zm__l,a),(l‘m,b),
(zlxb))(12)0'))(373)b)1°°'1(zm—l|b))(mm)a))

It is straight forward to check that every ordered pair of elements occurs exactly
once at distance 1in C. Hence, C gives us a 22%*!-clgpd of order 2°*!.

A 22%*1 _clgpd of order 2%*! consists of two 22*! circuits. Since these two
circuits can not be vertex-wise disjoint (if they were disjoint then either one of
the circuits would form a 222*!-clgpd of order less than 2%*! by itself which is
impossible) we can link them together to form a 22%*2-clgpd of order 2°*!.

Since there exists a 4-clgpd of order 2 (see Example 1.3 (1)) we can deduce
from the above results that for all m = 27 with » > 1 there exists an m-clgpd of
order m'.

(3) Let m = 2¥mg with mo odd and k > 1. In this case m' = (2¥)'mj. But
we know there exists a 2 -clgpd of order 2 ¥ and an m -clgpd of order m{, and so
the direct product of these two clgpds is a m-clgpd of order m'.

(4) Let m = 2mo with mo odd. In this case m' = 2mj. Let G be an mo-clgpd
of order mj with underlying set G = {1,2,..., mg}. We define a collection C
of 2 mg -circuits on G X {a, b} as follows. For each mg-circuit (z1, z2,...,Zm,)
of G let the two circuits shown below be in C.

((a:l,a),(:vz,a),(:r3,a),...,(zmo_l,a),(mmo,a),
(Ilsb))(IZ)b))(I3)b))'°';(m‘mo—l'b)x(z'mo;a))

((I],G),($2,b),($3,a),--.,(Imo_l,b),(mmo,b),
(zhb),(zba-):(zihb),---:(zmo—lxa):(zmoyb))

Itis straight forward to check that each ordered pair occurs exactly once at distance
1in C. Hence C gives us an m-clgpd of order m'.

This completes the construction for all four cases and hence for all positive
integers m > 3. We now show that the existence of an m-clgpd of order m/
ensures the existence of an m-clgpd of order nfor alln=0 (mod m').
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Lemma 4.1. If there exists an m-clgpd of order m then for all positive integers
k there exists a m-clgpd of order kn.

Proof: Let G be an m-clgpd of order n with underlying set G. We construct a set
C of m-circuits with entries chosen from the set G x K where K = {1,2,...,k}.
First, suppose m is even. For each m-circuit (z1, 72, ..., zn) of G and for each
i1and; in K let

((.'1:1,i)(zz,j),(z3,'i),...,(:r,,._l,i),(a:m,]')) eC

Now, consider any edge (p,a)(q,b). The edge (p,a)(q,b) occurs only in the
circuit ((z1,1),(x2,7),...,(zm,J)) where (zy,z3,...,T,) is the circuit con-
taining the edge pq and if p = z; where tisodd theni = e and j = bandifp = z;
where tiseventheni=band j = a.

Now, suppose m is odd. Let - be a binary operation such that (K, -) is a quasi-
group. For each m-circuit (z;,z2,...,Zm) 0f G and for each 7 and j in K let

((zlxi)s(121j))(z3ai):°°'s(zm—1)j)1(zm:'i ])) ecC

Again, consider any edge (p, a)(gq,b). Let(z;,z2,..., T,) be the circuit con-
taining the edge pg. If p # zp—1 Or ., then, as for the m even case, (p,a)(q,b)
occurs only once. If p = z,,_; then (p, a)(g, b) occurs only in ((z1,%),(z2,7),
eeey (Tm=1,7),(Tm,1-7)) where j = a and 7 is the unique member of X such that
i'j =b. pr =Tm meﬂ(P, a)(q)b) occurs Only in((zl ) 1’)) (Zij)) LRXE (IEm_l ’]) )
(Zm,4-7)) wherei = b and j is the unique member of K such that:-j = a. Hence,
C gives us an m-clgpd of order kn. |

We can deduce the following theorem from the above constructions.

Theorem 4.2. For all positive integers m > 3 the spectrum of m-clgpds is the
set of all m such that m divides n*. Equivalently, the complete directed graph
with loops on a vertex set of n elements can be decomposed into a set of closed
trails of length m which partitions the edge set of the graph if and only if m
divides 2.

5. Subvarieties and Restrictions on L

In this section we examine subvarieties of ¥V whose members contain circuits all
of whose lengths divide a positive integer m > 3.

Deflnition 5.1. For each positive integer m we define the subvariety Vp, of V
by the identity Wy, (z,y) = .

Lemma 5.2. If G is an L-cigpd where each | € L divides m then G € Vn,.

Proof: Let zo and z; be any two elements in G and let (zo,z2,..., ;) be the
l-circuit of G which contains the edge zoz1. Then, since [ divides m, we have
Wa(zo,z1) = 30. Hence, G € V. |
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Lemma 5.3. If G € V,, then G is an L-clgpd where each | € L divides m.

Proof: Let zoz; be an edge in any circuit of G and suppose this circuit has length
l.Letm=tl+rwhere) <r<l—1thenzy = W (z0,71) = Wy (x0, 21).
Also, 11 = Wp(z1,z0 * 1) = Wi(z1,70 * 1) = Wee1(z0, z1). Hence, if
r # 0 then zox; must occur twice in this circuit which is impossible and so we
must have r = 0 and [ divides m. 1

These last two theorems tell us that V,, consists precisely of those clgpds in
which each member of L divides m. We note that the varicty V,, is generated by
the class Cy, of all m-clgpds. In factif H € V,, and G € C,, thenG x H € C,,
by Lemma 3.4.
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