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Abstract. We show that a cubic graph is %-tough if and only if it is equal to K4 or
K3 x K3 or else is the inflation of a 3-connected cubic graph.

1. Introduction

All graphs considered will be finite and without loops or multiple edges. We
shall use ¢(G) to denote the number of components of a graph G. In [C], Chvétal
defined a graph G to be t-tough for some positive real number ¢, ifte(G—S) < |8|
for all vertex cut-sets S of G. In addition he defined the toughness of G, 1(Q),
to be the largest value of ¢ such that G is t-tough, putting t( K,) = oo. He went
on to relate t(G) to various other graph invariants and to discuss relationships
between t(G) and the existence of Hamilton cycles and k-factors. In particular
in [C, Section 6] he considered the toughness of regular graphs. He showed that
if G is k-regular and not complete then $(G) < k/2 and asked for which values
if k and n there exists a k/2 -tough k-regular on n vertices. He showed that if k
is even then such a graph exists for alln > k+ 1. On the other hand for k£ odd
and n large he suggested that such graphs may exist only for n = 0 (mod k).
He verified this for k = 3 by proving:

Theorem 1.1. [C, Corollary 6.2] A necessary and sufficient condition for the
existence of a g—-tough cubic graph with n vertices is either n = 4o0orn=0
(mod 6).

The main purpose of this note is to extend Theorem 1.1 by characterizing the %—-
tough cubic graphs. We shall also show that Theorem 1.1 does not extend to odd
k > 5 by constructing an infinite family of %-tough k-regular graphs with n ver-
ticesandn# 0 (mod k). A similar construction was independently discovered
by L.L. Doty [D].

The complexity of determining the toughness of an arbitrary graph was con-
sidered by Bauer, Hakimi and Schmeichel [BHS] who showed that for any fixed
positive rational t, it is an N P-hard problem to determine if a graph is t-tough. In
contrast we note that our characterization easily gives rise to a polynomial algo-
rithm for determining whether a cubic graph is %-tough.
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2, Characterization of %-tough cubic graphs

Our characterization uses the concept of the inflation of a graph G. This was
defined in [C] as the graph G* such that V(G*) is the set of all ordered pairs
(v,e) where v € V(G) and e is an edge of G incident with v, and (vy, e;) is
adjacent to (v2, ez) in G* if they differ in exactly one coordinate. Inflations can
be used to construct graphs of known toughness by using:

Theorem 2.1. [C, Theorem 5.11 Let G # K, be a graph without isolated
vertices. Then t(G*) is equal to one half the edge-connectivity of G.

‘We shall also need a result Chvétal used to prove Theorem 1.1 concerning vertex
colouring. A vertex colouring of a graph is balanced if each colour class has the
same size.

Theorem 2.2. [C, Theorem 6.1 No 3 -fough cubic graph has an unbalanced
3 -colouring.

We are now ready to give our characterization.

Theorem 2.3. Let G beacubic graph. Then G is %-tough ifandonlyif G = K4,
K> x K3, or G is the inflation of a 3 -connected cubic graph.

Proof: It follows from Theorem 2.1 thatif G = K4, K, x K3, 0r G is the inflation
of a 3-connected cubic graph then G is %-tough. Hence suppose that G is a %-
tough graph other than K4 or K3 x K3. We shall use Theorem 2.2 to show that
each vertex of G must belong to a triangle.

Suppose to the contrary that some vertex v; belongs to no triangle of G. Let
N(v1) = {vz2,v3,v4} and let H be the graph obtained from G — {v1,v3,v3,v4}
by adding a new vertex u and joining u to each vertex of N(v;) for2 < i < 4.
Thus dy(u) < 6, and since G is 3-tough, G — {v2,v3,vs} has at most two
components. Thus H — u is connected. We shall adopt the proof of Brook’s
Theorem given by Lovasz in [BM] to show that H is 3-colourable. We first notice
that we can find v, w € V(H) —u such that uv, vw € E(H) anduvw ¢ E(H). If
this were not the case then, since H —u is connected, we musthave V.(H) = {u}u
Ny (u) and thus [V(H)| < 7. Hence [V(H)| < 10. Using Theorem 1.1 we
deduce that |[V(G)| = 6, and since v; belongs to no triangles in G, that G = K3 3.
This contradicts the hypothesis that G is -;—-tough and hence the vertices v and w
existas required. If H — {u, w} were disconnected then G—{v; , v3, v4, w} would
have three components, contradicting the hypothesis that G is %-tough. Thus H —
{u, w} is connected and we may order the vertices of H as 1,3, ..., T,, where
T) = 4, T2 = w, Ty = v and each vertex z; is adjacent to a vertex z; for 1 < i <
J < m (this can be done by ordering V(H) — {u, w} in non-increasing order of
distance from v).

Now we may 3-colour H by colouring z; and =, with colour 1, then colouring
the remaining z; in order using any available colour from {1,2, 3}, noting that
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each z; for i < m — 1 has at most two previously coloured neighbours so may
be coloured and that z,, = v has two neighbours z; and z; of the same colour so
may also be coloured. This 3-colouring of H — u can be extended to two different
3-colourings of G by colouring vz, v3 and v4 with colour 1 and then colouring v,
with either colour 2 or colour 3. Clearly these two 3-colourings of G cannot both
be balanced, contradicting Theorem 2.2.

Thus, each vertex of G belongs to a triangle. Since G is cubic and i--tough
(and hence 3-connected) and G # Ka, it follows that any two triangles must be
disjoint and thus the set of triangles of G are a 2-factor of G. Contracting each
triangle to a single vertex we obtain a cubic graph F' such that G is the inflation
of F. To complete the proof we note that by Theorem 2.1 the toughness of G is
one half the edge-connectivity of F'. Thus F is 3-edge connected and since F is
cubic it must also be 3-connected. [ |

3. Construction of 5-tough, k-regular graphs

To construct -z--tough, k-regular graphs on = vertices with n # 0 (mod k) we
shall use:

Theorem 3.1. [MS, Theorem 10] Let G be a non-complete graph containing
no induced K, 3. Then t(G) is equal to one half the connectivity of G.

We shall say that a graph is essentially k-edge connected if it has no edge cut
containing fewer than k edges and leaving at least one edge on both sides of the
cut.

Construction 3.2: Let & be an odd integer greater than three and putk = 2m+ 1.
Let G be an essentially k-edge connected bipartite graph with bipartition V(G) =
AU B where each vertex of A has degree m + 1 and each vertex of B has degree
m+2. Thus |A| = (m+2)sand |B| = (m+1)s for some integer s. The line graph
of G is k-connected and K 3-free so by Theorem 3.1 is %-tough and k-regular
with n = (m + 1)(m + 2)s vertices. Choosing s coprime to k gives n Z 0
(mod k). As an explicit construction for the bipartite graph G' we may proceed
as follows. Suppose m is odd, m = 2p+ 1. Let A = (%, A;, B = U3, B where
|Bi|=p+1forl <i<2s,|Ax|=p+1forl <i<g sand |Azi—1| =p+2 for
1< i< s Joinz € A;toy € Bj ifand only if j = i — 1 or ¢ where subscripts
are read modulo 2 s.
A similar construction to 3.2 has been given by Doty [D].

4. Problems

W.D. Goddard and H.C. Swart [GS, Conjecture 3.3] have conjectured that a k-
regular graph is -tough if and only if it is k-connected and K 3-free. This con-
jecture is true for k = 3 by Theorem 2.3. Also note that k-connected, K 3-free
graphs are T-tough by Theorem 3.1.
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We suggest the following weaker problem.
4.1 Isit true that every i’i-tough k-regular graph contains a triangle?
We also raise the following problem for graphs which are not necessarily regular.

4.2 Does there exist a constant ¢ such that every ¢-tough graph contains a trian-
gle?

Note that in [C, Conjecture 2.6] Chvatal conjectures the existence of a constant ¢

such that every t-tough graph is pancyclic.
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