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Abstract. Let G be a simple graph, a and b integers and f: E(G) — {a,a+1,... ,b}
an integer-valued function with Y g o f(€) = 0 (mod 2). We prove the fol-
lowing results: (1) If 5 > a > 2, G is connected and §(G) > max[b/2 + 2,
(a+ b+ 2)? /(8a)], then the line graph L(G) of G has an ffactor; Q) Ifb>a > 2,
G is comected and §( L(G)) > (a+ 2b+ 2)2/(8a), then L(G) has an f-factor.

1. Introduction.

In this paper, we consider only finite undirected graphs without loops or multiple
edges. Let G be a graph with the vertex set V(G) and the edge set E(G). The line
graph L(G) of G is a graph defined by V(L(G)) = E(G),E(L(®)) ={(e, N:
e,f € E(G), e # f,and e, f have an endvertex in common}. The number
of edges in G incident with a vertex v is called the degree of v and denoted by
deg ¢(v). In particular, for a vertex of a subgraph H of G, we denote the degree
of v by deg (). Further, §(G) denotes the minimum degree of G. For a proper
subset A of V(G) , G — A denotes the subgraph of G obtained from G by deleting
the vertices in A together with the edges incident with them. If A and B are
disjoint subsets of V(G), then eg(A, B) denotes the number of edges that join a
vertex in A and a vertex in B. A subset A C V(QG) is often identified with the
subgraph of G induced by A. Definitions and notations not defined here will be
found in [1].

Let f be an integer-valued function defined on V(G), and a and b integers
such that 1 < a < b. An f-factor of G is a spanning subgraph F; of G such
that deg s, (v) for all v € V(G). Further, a spanning subgraph F of G such that
a < degp,(v) < bforallv € V(G) is called an [ a, b] -factor of G.

In this paper, we consider f-factors and [ a, b]-factors, and give sufficient con-
ditions for the existence of such factors in the line graph of a graph G.

We prove

Theorem 1. Let G be a connected graph, a and b integers such that 2 < a <
b and f: E(G) — {a,a+ 1,...,b} a function such thaty ,cpq f(e) =0
(mod 2). Suppose that

Y
8(G) > max [_b_.,.z'M].
2 8a
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Then L(G) has an f-factor.

Theorem 2. Let G be a connected graph, a and b integers suchthat2 < a < b
and f: E(G) — {a,a + 1,...,b} a function such that Y cpc f(v) = 0
(mod 2). Suppose that the minimum degree §(L(G)) of the line graph L(G)

of G satisfies
(a+2b+2)?

(L@ >

Then L(G) has an f-factor.

As for [ a, b]-factors, we have

Theorem 3. Let G be a graph and o and b integers such that 1 < a < b. If
8(G) > a/2+ 1, then L(G) has an [a, b]-factor.

Theorem 4. Let G be a graph and a and b integers such that 1 < a < b.
Suppose that
ifb>2a,

a
b‘(L(G))z{ arb2)? .
2otbD) 1 ifb<2a-1.

Then L(QG) has an [a, b] -factor.
In proving Theorem 1 and Theorem 2, we use the following well-known crite-
rion for the existence of an f-factor:

Theorem A. (Tutte [6]). Let G beagraphand f:V(G) — N (the set of natural
numbers) an integer-valued function such that EveV(G’) f(v) = 0 (mod 2).
Then G has an f-factor if and only if '

06(S,T):= Y f(v) + Y (dega-s(v) — f(v)) — ha(S,T) >0

veS veT

forall disjoint subsets S and T of V(QG), where hg(S,T) denotes the number of
components C of G—(SUT) suchthat y .. f(v) +eg(C,T) =1 (mod 2).

Moreover, whether G has an f-factor or not, we have 0g(S,T) =0 (mod 2)

for any disjoint subsets S, T of V(G).

Likewise, proofs of Theorem 3 and Theorem 4 depend upon the following cri-
terion for the existence of an [ a, b] -factor:

Theorem B. Lovdsz [3]). Let a and b be integers such that 1 < a < b. Then a
graph G has an [ a, b] -factor if and only if
16(S,T):=b|S| + ) deg c—s(v) —a|T| >0
veT

for any disjoint subsets S, T of V(G).
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2. Numerical results.
In this section, we prove two numerical results.

Lemma 5. Let a and b be integers such that 2 < a < band =z, y, and 2
nonnegative integers. Let A = (a/2)z+y(y+2z—b/2 —1). Suppose z+y+2 >
M: = max [-%+2,59*§—‘?L2]. Then we have A > 0. Further, if in addition
(z+y)z2+#0, then we have A > 1.

Proof: Leta, b, z,y, and z be integers satisfying the hypotheses of the lemma. If
y < a/2,thensince M > b/2+ 2, we have

a b b
A—Ez+y(y+z—§—l>2yx+y<y+z—§-—l)
Zy(M—g—l)Zy

> 0.
- Ify >a/2,thensinces > M —y — zand M > (a+ b+ 2)*/(8a), we have

AZ%(M—y—z)+y(y+z—%—l>

2)1? 2

)

>0.

Suppose that (z + y)z # 0. If y = 0, then we have z # 0 and z # 0. Hence,
we have A > (a/2)z > 1. Therefore, we may assumey > 1 and z > 1. If
y < a/2, then, by (1), we clearly have A > 1. Suppose y = (a + 1)/2. If
b > a,then we have A > z/2+ (b —a)?/16 > 1/2 by (2). Andif b = g, then
A>y(y+z—b/2-1)=y(y+z—a/2—-1) > (a+1)/4 > 1/2. Now, since
2 A is an integer, these mean A > 1. Therefore, we may assume thaty > a/2+ 1.
Thenweget A> z+ [y— (a+b+2) /412 > 2> 1. ]

Lemma 6. Let a and b be integers such that 2 < a < b and 1z, 2, 21, and
2z, nonnegative integer, and y, and y, positive integers. Let A = (a [2)z1 + $1
(y1 + 21 —b/2 — 1) and B = (a/2)z3 + y2 (y2 + 22 — b/2 — 1). Suppose that

2
(a+2b+2)?

T1+Tm ittt 8a 2.
Then the following inequalities hold:
(A-Dy +(B-1y1 20ifz #0 and z, # 0, (©))
(A— 1Dy +By1 >0if 2y #0and z, =0, @
Ap +(B-1y1 >0ifz=0and 2, # 0, (&)
Ay + By1 >01if 2, =0 and 2, = 0. ©)
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Proof: Leta, b, z1, T2, y1, 2, 21 and 2; be integers satisfying the hypothses of the
lemma. We regard y; and y, as constants and z; , 3, 2; and 2, as variables. Thus,
we regard A, B and the left-hand sides of the desired inequalities as polynomials
of degree 1 in z;, 3, 21 and 2;.

Casel: y; < a/2 andy; < a/2.

In A, the coefficient of z;, which is a/2, is greater than or equal to that of z;,
which is y; . Therefore, by replacing z; by O and y; by z;1 + y1, we may assume
) = 0. Similarly, we can assume =3 = 0 in B. Then, whether z; or z; is 0 or
not, we have

(A-Dp+(B-Dyi=nypn+yn+za+2—-0b-2)—(y1 +12)
> -y;—”al [(a+2b+2)%—8a(b+ 1)] =1+ (g1 — 1) (32 —1)

=Bl -2b-22 -1+ (n — D(p2 ~ 1)

1 1
25[(a—2b—2)2—8a] 25[(“2)2—8‘;]
>0.

Case2: y1 <af2andy; > (a+1)/2 (ory; > (a+1)/2 andy; < a/2).

In this case, by the symmetry of A and B, we may only consider the case where
y1 <a/2 andy; > (a+ 1)/2. In any of the desired inequalities, the coefficient
of z; is smaller than those of z;, 21, and 2. Consequently, we may assume
g1 = 0andz = 2 = 1 inproving (3), z; = z2 = 0 and z; = 1 in proving
4),z1 = 21 = 0 z2 = 1 in proving (5), z1 = 21 = 2 = 0 in proving (6). We
first prove (3) and (5) under these new assumptions. Using the trivial inequality
A -1 > A-y, we find that the values of the left-hand sides of (3) and (5) are

at least
— .2 —1)+ .‘l + —_ k -1
ny\n 2 /)1 ) T2+ Y2 |92 3 .

Now, by the assumption, we have z; > (a+2b+2)2 /(8a) —y1 —y2. Therefore,
the value of the above expression is at least y; ¢(y1, y2), where

#(y1,92)

_ _k ] L8 (a+2b+2)? + b 1
=nin 2 2 ——__—8(1 1 —92 v2 1/2—2 -

(a+2b+2)2 1

=y1(yz—§)+y%—yz(b+%+l)+ e

Also
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o(n1,12)

_ 2 a\, (a+2b+2)?* a
>dlL,p)=v - (b+2)+—-—16 _2_1
(a+2b+2)?2 a 1 a2
> =g -1-7(6+3)
=%(2b—a—3).

Ifb>a+1lora > 3,then2b—a—3 > 0. Further,ifa = b = 2, then
¢(1,42) > (y2 —2) (y2 — 1) > 0. Thus, $(y1,¥2) > 0. This proves (3) and
(5). Similarly, we find that the values of the left-hand sides of (4) and (6) are at

least
_3_1 + g_g; + .Ii 1
ny2 {n 2 % 7 T2 12 yz—z— .

Sincezz; > (a+ 2b+ 2)2/(8a) + 1 — y; — y2 in (4) and (6), the value of the
above expression is at least y; ¢(y1,y2), where

= a 2 a (a+2b+2)?% @
¢(y1,yz)—y1(y2—2)+y2 yz(b+2+2)+_l6 =3

Also, we have ¢(y1,92) > ¢(1,12) > (a+2b+2)2/16 —(b+a/2+1)2/4=0.
This proves (4) and (6).
Case3: y; > (a+1)/2andy; > (a+1)/2.

In this case, without loss of generality, we may assume y; < y2 by the sym-
metry of A and B. Then, in any of the desired inequalities, the coefficient of xz;
is smaller than or equal to those of x,, 21, and 2, and the rest of the proof goes
exactly the same way as in Case 2.

3. Proofs.

In this section, we prove Theorems. But, we omit the proofs of Theorem 3 and

Theorem 4 because they are essentially the same as, and much easier than, those
of Theorem 1 and Theorem 2, respectively.
Proof of Theorem 1: Leta, b, G,and f be as in Theorem 1. Let S and T" be disjoint
subsets of V(L(@®)) (= E(G)),and setU = L(GQ) — (SUT). What we want
to show is ;¢ (S, T) > 0, where 01,(c)(S,T) is as defined in Theorem A. If
SUT = 0, then we have 01 ( S, T') = 0. Therefore, we may assume SUT # 0.
Now, note that

8 (S, T) > alS|+ > deg (e (€) — BT e (S, T) — by (8, T). ()
ecT
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We denote the sets of edges incident with v € V(G) and contained in S, T and
U by S, T, and U,, respectively. Then we clearly have the following:

IS, UT, UT,| = deg(v) forv € V(G), ®)
S Isd=2181, Y InI=2IT, Y 1Ul=2Ul, o)
veV (@) veV(G) vev(®)
S degu(e) = Y [dega(v) —1]ITul, (10)
e€eT veV(G)
eua(ST) = Y, IS|ITl. an
’ veV(G)
Inserting (8), (9), (10), and (11), into (7), we obtain
$1e)(S,T)
b
> ) [3|sv|+(degc<v)———1) |Tv|—|Tv||Sv|]—hL<a>(s,T)
veV(G) 2 2

a b
> E: [§|S"I+IT"I (IT,,|+|U.,|-'2——1)]—hL(G)(S,T)-
veV(G)

Set
b
Aw):= 2SI+ [|T0|+|U"|—5—1] v eV,

For each component CofU, let R¢ be the set of vertices v € V(G) such that
CNU, # §. Then for any two distinct components C;, C; , we have R, NHg, =
@. Suppose that there exists a component C of U such that S, U T, = @ for all
v € Rc. Then R¢ forms a component of G. Since G is connected, this means
Rc = V(G), so U = L(G), which contradicts the assumption that SU T # 0.
Thus, for each component C of U, R¢ contains a vertex v with |S, UT,| |[Uy| # 0.
From these observations, it follows that the number k of vertices v of G with
ISy UTy| [U,| # 0 is at least hyg)(S,T). Hence, we have Oyq) (S,T) >
Y vevie) M(v) — k. Therefore, in order to prove 0L (S,T) > 0, it suffices to
show A(v) >1 (resp.0) for all vertices v € V(G) such that |S, UT,| [Uy| # 0
(resp. |S, U T| |Uy| = 0). But this readily follows if we apply Lemma 5 with
z = |S,|, y = |Tv| and z = |U,|. This completes the proof of Theorem 1. |
Proof of Theorem 2: Let a and b be integers such that2 < a < band G a
connected graph satisfying the hypotheses of Theorem 2. Then, the condition on
the minimum degree of L(G) is equivalent to requiring

2
(a+2b+2) +2

degg(u) + degg(v) > 3a

(12)
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for all vertices u, v € V(Q) with uv € E(G).

Let S and T be disjoint subsets of V(L(G)) (= E(G)) andU, S,, Ty, Uy, A(v)
and R as in the proof of Theorem 1. We want to show 01.(c) (8,T) = Y ,ev(c)
Mv) = hyg (S,T) > 0. We may assume SUT # @ by the same reason in the
proof of Theorem 1. For convenience, we set

Av) =1 if |S, UTy| [Uy| # 0,
(v) _ otherwise.

Ao (v) ={

Now, let k be the number of vertices v of G with |S, UT,| [U,| # 0. Then, k is
atleast hycy (S,T) from the properties of R¢ observed in the proof of Theorem
1. Therefore, in order to prove d5.q) (S,T) > 0, it suffices to show 3, cv(c)
M(v) — k > 0, which is equivalent to ) cy (g do(v) > 0.

Let us consider the following subsets of V(G):

2
P:= {v € V(G):|T,| # 0 and deg g(v) < max [(_a%:z)_’ ; 2] }

2
Q: = {v € V(G):|T,| # 0 and deg ¢(v) > max [(_«L::__z_)_ %+ 2] }

Since easy calculation shows (a+2b+2)2/(8a)+2 > 2 max[(a+b+2)? /(8a),
b/2 + 2], P is an independent set by (12). Applying Lemma 5 with z = |S,,
y = |T|, and z = [U,|, we have Ao(v) > O for all vertices v € Q. Further,
we also have Mo(v) > Mv) — 1 > 0 (resp. do(v) = M(v) > 0)forallv €
V(@) — (P U Q) such that |S,| # O (resp. |S,| = 0). Foreach v € Q, let T,
denote the set of those edges in T, whose endvertex which is different from u lies
in P. Then we have

0L (S, T)

> Y > D No(w) =) (v

veV(G) veEPUQ veEP

ITldo(w) _ [Aom Ao(u>]
*L T 2 T e
"uv'gT

Applying Lemma 6 with z1 = |S,|, y1 = [T|, 21 = |Us|, 22 = |Sul, v2 = [T,
and z; = |U,|, we see that each term in this last expression is nonnegative. This
completes the proof of Theorem 2. | |

4. Examples.

Finally, we show that the condition in Theorem 1 is almost the weakest possible
(Example 1 and Example 2). Further, we construct an example which shows that
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the condition on the value of the minimum degree of L(G) in Theorem 2 cannot
be weakened (Example 3).

Example 1: Let a be an odd integer, b an even integer such thata < band b/2 +
2> (a+ b+2)2/(8a). Let G be a (b/2 + 1)-regular graph of order4n (nis a
sufficiently large integer) such that G has a 1-factor F'. Definea function f: E(G)
— {a,a+1,...,b} by

a ife € E(F),

fe) = { b ife€ B(G— E(F).

Then we have Y e gy f(€) =2na+ nb? =0 (mod 2).

Now, we consider the line graph L(G) of G. SetS = §and T = E(G—E(F)).
Then, by the definition of an f-odd component for L(G), we have hy(q) (S,T) =
4 n/2 = 2 n. Further, we have

b /b b

e (S,T) = 4n[5 (5 *1-5- 1)] —-2n=-2n(< -2).

Therefore, L(G) has no f-factor by the f-factor theorem, but we havedeg ¢(v) >
b/2+ 1 forallv € V(G).

Example 2: Leta and b be nonnegative integers such thata iseven,a < b,a+b =
2 (mod 4) and (a+ b+ 2)%/(8a) > b/2+2,andsetl = [(a+b+ 2)2/8a]
p= (a+b+2)/4. Let G be aconnected (£ — 1)-regular graph with a sufficiently
large even order 4n such that G can be decomposed into one p-factor H and
(£ - p— 1) 1-factors F;. We define an integer-valued function f as follows:

_ a ifeEE(UE)o
flea) = { b ifee E(H).

Then we have ) cp(q) f(€) =2n(£—p—1) a+2mpb= 0 (mod 2).

Consider the line graph L(G) of G. Let S = E(UF;),and T = E(H). Then
we have

0L()(S,T)

=4n[(£—p—l)%+p<p—-§—l)]

S4n[(r(a+g: 2)2] _ 1> _(_21__ (a+f6+ 2)2]

[((a+b+2)2£ 1 )g (a+b+2)2]
m 6 @ (a/2/2° 16

=—4n
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Therefore, L(G) has no f-factor, but we clearly have degg(v) > [(a + b+
2)2/(8a)] — 1 forallv € V(G).

Example 3: Let a and b be positive even integers such thata = 2 (mod 4) and
a <bandletg = (a+2b+2)/4 andsetp = [(a+2b+ 2)2/8a'| —q—1.
Further, let r be an integer such that > p+gandr = 1 or2 (mod 4). We
define graphs G(p, ¢, 7). The vertex set of G = G(p, g, r) is defined as follows:

v =XUYUzZ,
p+1 (@ 1() } (disjoint union)
Y=ULvi, Z=UZ (Uj=l Cij)

where

X = {(11, ap+1} K {bsl, I'q}s

1 1
{CSJ)’ < S;" )}

The adjacency in G is defined as follows:
Ng(a) = (X — {&:}) UY;, No(by) = {a,} u{c’},
(Ci])G r+l ) NG(C( 1)) {Cil - ij } U {b']})
where Ng(v) is the set of neighbors of a vertex v in G, (S)¢ is the subgraph of

G induced by S C V(@) and K, denotes the complete graph with n vertices.
‘Moreover, we set

S={a0;:1<i<j<p+1}
T={a.-b.-,~:1$i$P+l, IS]SQ}

Define an integer-valued function f as follows:

ifee S,
ﬂ®={: ee.

otherwise.

Note that gy (S, T) = (p+ 1)g and

> fle= )+b( +1)g [l(r—;i)w]zo (mod 2).
ecV(L(G)) :
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Then we have min(deg g(u) + degg(v); v, v € V(G), uv € E(G)) = [(a+
2b+2)2/8a] + 1,but

b (S,T)
< Y MW) + DM — by (S5,T)
veX veEY

=+ 0 [2pra(-5-1)]+@r0a(1-7) -+

2

8a
a [(a+2b+2)? 1 (a+2b+2)?
<(p+1) (5 (——S'a—-— ;/—2> - '—16—) <-(p+ D).

This shows that G(p, ¢, 7) has no f-factor.

For values of a and b not considered in Example 1 and Example 2 (resp. Ex-
ample 3), we do not know whether the condition of Theorem 1 (resp. Theorem 2)
is the best or not. However, for each pair of integers a, b with 2 < a < b, similar
constructions yield infinitely many examples which show that if we replace the
condition for the minimum degree of G (resp. L(G)) by the condition

b (a+b+2)>2
(a+2b+2)? _2)

(reSP- 8(L(G)) 2 8a

the theorem is no longer true.
We have a similar situation concerning the sharpness of the condition in Theo-
rem 4, but we shall not go into details.
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