Degree Factors of Line Graphs

Tsuyoshi Nishimura

Akashi College of Technology Uozumi, Akashi 674 Japan

Abstract. Let G be a simple graph, a and b integers and $f: E(G) \to \{a, a+1, \dots, b\}$ an integer-valued function with $\sum_{e \in E(G)} f(e) \equiv 0 \pmod{2}$. We prove the following results: (1) If $b \geq a \geq 2$, G is connected and $\delta(G) \geq \max[b/2 + 2, (a+b+2)^2/(8a)]$, then the line graph L(G) of G has an f-factor; (2) If $b \geq a \geq 2$, G is connected and $\delta(L(G)) \geq (a+2b+2)^2/(8a)$, then L(G) has an f-factor.

1. Introduction.

In this paper, we consider only finite undirected graphs without loops or multiple edges. Let G be a graph with the vertex set V(G) and the edge set E(G). The line graph L(G) of G is a graph defined by V(L(G)) = E(G), $E(L(G)) = \{(e, f): e, f \in E(G), e \neq f, \text{ and } e, f \text{ have an endvertex in common}\}$. The number of edges in G incident with a vertex v is called the degree of v and denoted by $\deg_G(v)$. In particular, for a vertex of a subgraph H of G, we denote the degree of v by $\deg_H(v)$. Further, $\delta(G)$ denotes the minimum degree of G. For a proper subset A of V(G), G-A denotes the subgraph of G obtained from G by deleting the vertices in G together with the edges incident with them. If G and G are disjoint subsets of G of G denotes the number of edges that join a vertex in G and a vertex in G and a vertex in G obtained here will be found in [1].

Let f be an integer-valued function defined on V(G), and a and b integers such that $1 \le a \le b$. An f-factor of G is a spanning subgraph F_1 of G such that $\deg_{F_1}(v)$ for all $v \in V(G)$. Further, a spanning subgraph F_2 of G such that $a \le \deg_{F_2}(v) \le b$ for all $v \in V(G)$ is called an [a, b]-factor of G.

In this paper, we consider f-factors and [a, b]-factors, and give sufficient conditions for the existence of such factors in the line graph of a graph G.

We prove

Theorem 1. Let G be a connected graph, a and b integers such that $2 \le a \le b$ and $f: E(G) \to \{a, a+1, \ldots, b\}$ a function such that $\sum_{e \in E(G)} f(e) \equiv 0 \pmod{2}$. Suppose that

$$\delta(G) \ge \max \left[\frac{b}{2} + 2, \frac{(a+b+2)^2}{8a} \right].$$

Then L(G) has an f-factor.

Theorem 2. Let G be a connected graph, a and b integers such that $2 \le a \le b$ and $f: E(G) \to \{a, a+1, \ldots, b\}$ a function such that $\sum_{e \in E(G)} f(v) \equiv 0 \pmod{2}$. Suppose that the minimum degree $\delta(L(G))$ of the line graph L(G) of G satisfies

$$\delta(L(G)) \geq \frac{(a+2b+2)^2}{8a}.$$

Then L(G) has an f-factor.

As for [a, b]-factors, we have

Theorem 3. Let G be a graph and a and b integers such that $1 \le a < b$. If $\delta(G) \ge a/2 + 1$, then L(G) has an [a, b]-factor.

Theorem 4. Let G be a graph and a and b integers such that $1 \le a < b$. Suppose that

$$\delta(L(G)) \ge \begin{cases} a & \text{if } b \ge 2a, \\ \frac{(2a+b+2)^2}{8b} - 1 & \text{if } b \le 2a - 1. \end{cases}$$

Then L(G) has an [a,b]-factor.

In proving Theorem 1 and Theorem 2, we use the following well-known criterion for the existence of an f-factor:

Theorem A. (Tutte [6]). Let G be a graph and $f: V(G) \to N$ (the set of natural numbers) an integer-valued function such that $\sum_{v \in V(G)} f(v) \equiv 0 \pmod{2}$. Then G has an f-factor if and only if

$$\theta_G(S,T) := \sum_{v \in S} f(v) + \sum_{v \in T} (\deg_{G-S}(v) - f(v)) - h_G(S,T) \ge 0$$

for all disjoint subsets S and T of V(G), where $h_G(S,T)$ denotes the number of components C of $G-(S\cup T)$ such that $\sum_{v\in C} f(v) + e_G(C,T) \equiv 1 \pmod 2$. Moreover, whether G has an f-factor or not, we have $\theta_G(S,T) \equiv 0 \pmod 2$ for any disjoint subsets S, T of V(G).

Likewise, proofs of Theorem 3 and Theorem 4 depend upon the following criterion for the existence of an [a, b]-factor:

Theorem B. Lovász [3]). Let a and b be integers such that $1 \le a < b$. Then a graph G has an [a,b]-factor if and only if

$$\gamma_G(S,T) := b|S| + \sum_{v \in T} \deg_{G-S}(v) - a|T| \ge 0$$

for any disjoint subsets S, T of V(G).

2. Numerical results.

In this section, we prove two numerical results.

Lemma 5. Let a and b be integers such that $2 \le a \le b$ and x, y, and z nonnegative integers. Let A = (a/2)x + y(y+z-b/2-1). Suppose $x+y+z \ge M$: $= \max\left[\frac{b}{2} + 2, \frac{(a+b+2)^2}{8a}\right]$. Then we have $A \ge 0$. Further, if in addition $(x+y)z \ne 0$, then we have $A \ge 1$.

Proof: Let a, b, x, y, and z be integers satisfying the hypotheses of the lemma. If y < a/2, then since M > b/2 + 2, we have

$$A = \frac{a}{2}x + y\left(y + z - \frac{b}{2} - 1\right) \ge yx + y\left(y + z - \frac{b}{2} - 1\right)$$

$$\ge y\left(M - \frac{b}{2} - 1\right) \ge y$$

$$> 0.$$
(1)

If y > a/2, then since $x \ge M - y - z$ and $M \ge (a + b + 2)^2/(8a)$, we have

$$A \ge \frac{a}{2}(M - y - z) + y\left(y + z - \frac{b}{2} - 1\right)$$

$$= \left(y - \frac{a}{2}\right)z + \left[y - \frac{(a+b+2)}{4}\right]^{2}$$

$$> 0.$$
(2)

Suppose that $(x+y)z \neq 0$. If y=0, then we have $x \neq 0$ and $z \neq 0$. Hence, we have $A \geq (a/2)x \geq 1$. Therefore, we may assume $y \geq 1$ and $z \geq 1$. If $y \leq a/2$, then, by (1), we clearly have $A \geq 1$. Suppose y=(a+1)/2. If b>a, then we have $A \geq z/2+(b-a)^2/16>1/2$ by (2). And if b=a, then $A \geq y(y+z-b/2-1)=y(y+z-a/2-1)\geq (a+1)/4>1/2$. Now, since 2A is an integer, these mean $A \geq 1$. Therefore, we may assume that $y \geq a/2+1$. Then we get $A \geq z+[y-(a+b+2)/4]^2 \geq z \geq 1$.

Lemma 6. Let a and b be integers such that $2 \le a \le b$ and x_1, x_2, z_1 , and z_2 nonnegative integer, and y_1 and y_2 positive integers. Let $A = (a/2)x_1 + y_1$ $(y_1 + z_1 - b/2 - 1)$ and $B = (a/2)x_2 + y_2 (y_2 + z_2 - b/2 - 1)$. Suppose that

$$x_1 + x_2 + y_1 + y_2 + z_1 + z_2 \ge \frac{(a+2b+2)^2}{8a} + 2.$$

Then the following inequalities hold:

$$(A-1)y_2 + (B-1)y_1 \ge 0 \text{ if } z_1 \ne 0 \text{ and } z_2 \ne 0,$$
 (3)

$$(A-1)y_2 + By_1 \ge 0 \text{ if } z_1 \ne 0 \text{ and } z_2 = 0,$$
 (4)

$$Ay_2 + (B-1)y_1 > 0 \text{ if } z_1 = 0 \text{ and } z_2 \neq 0,$$
 (5)

$$Ay_2 + By_1 \ge 0$$
 if $z_1 = 0$ and $z_2 = 0$. (6)

Proof: Let $a, b, x_1, x_2, y_1, y_2, z_1$ and z_2 be integers satisfying the hypothses of the lemma. We regard y_1 and y_2 as constants and x_1, x_2, z_1 and z_2 as variables. Thus, we regard A, B and the left-hand sides of the desired inequalities as polynomials of degree 1 in x_1, x_2, z_1 and z_2 .

Case 1: $y_1 < a/2$ and $y_2 < a/2$.

In A, the coefficient of x_1 , which is a/2, is greater than or equal to that of z_1 , which is y_1 . Therefore, by replacing x_1 by 0 and y_1 by $x_1 + y_1$, we may assume $x_1 = 0$. Similarly, we can assume $x_2 = 0$ in B. Then, whether z_1 or z_2 is 0 or not, we have

$$(A-1)y_2 + (B-1)y_1 = y_1y_2(y_1 + y_2 + z_1 + z_2 - b - 2) - (y_1 + y_2)$$

$$\geq \frac{y_1y_2}{8a} [(a+2b+2)^2 - 8a(b+1)] - 1 + (y_1-1)(y_2-1)$$

$$= \frac{y_1y_2}{8a} (a-2b-2)^2 - 1 + (y_1-1)(y_2-1)$$

$$\geq \frac{1}{8a} [(a-2b-2)^2 - 8a] \geq \frac{1}{8a} [(a+2)^2 - 8a]$$

$$> 0.$$

Case 2: $y_1 \le a/2$ and $y_2 \ge (a+1)/2$ (or $y_1 \ge (a+1)/2$ and $y_2 \le a/2$).

In this case, by the symmetry of A and B, we may only consider the case where $y_1 \le a/2$ and $y_2 \ge (a+1)/2$. In any of the desired inequalities, the coefficient of x_2 is smaller than those of x_1 , x_1 , and x_2 . Consequently, we may assume $x_1 = 0$ and $x_1 = x_2 = 1$ in proving (3), $x_1 = x_2 = 0$ and $x_1 = 1$ in proving (4), $x_1 = x_1 = 0$ and $x_2 = 1$ in proving (5), $x_1 = x_1 = x_2 = 0$ in proving (6). We first prove (3) and (5) under these new assumptions. Using the trivial inequality $x_1 = x_2 = 0$, we find that the values of the left-hand sides of (3) and (5) are at least

$$y_1y_2\left(y_1-\frac{b}{2}-1\right)+y_1\left[\frac{a}{2}x_2+y_2\left(y_2-\frac{b}{2}\right)-1\right].$$

Now, by the assumption, we have $x_2 \ge (a+2b+2)^2/(8a) - y_1 - y_2$. Therefore, the value of the above expression is at least $y_1 \phi(y_1, y_2)$, where

$$\phi(y_1, y_2) = y_2 \left(y_1 - \frac{b}{2} - 1 \right) + \frac{a}{2} \left[\frac{(a+2b+2)^2}{8a} - y_1 - y_2 \right] + y_2 \left(y_2 - \frac{b}{2} \right) - 1$$

$$= y_1 \left(y_2 - \frac{a}{2} \right) + y_2^2 - y_2 \left(b + \frac{a}{2} + 1 \right) + \frac{(a+2b+2)^2}{16} - 1.$$

Also

$$\phi(y_1,y_2)$$

$$\geq \phi(1, y_2) = y_2^2 - y_2 \left(b + \frac{a}{2} \right) + \frac{(a+2b+2)^2}{16} - \frac{a}{2} - 1$$

$$\geq \frac{(a+2b+2)^2}{16} - \frac{a}{2} - 1 - \frac{1}{4} \left(b + \frac{a}{2} \right)^2$$

$$= \frac{1}{4} (2b-a-3).$$

If $b \ge a+1$ or $a \ge 3$, then $2b-a-3 \ge 0$. Further, if a=b=2, then $\phi(1,y_2) \ge (y_2-2)$ $(y_2-1) \ge 0$. Thus, $\phi(y_1,y_2) \ge 0$. This proves (3) and (5). Similarly, we find that the values of the left-hand sides of (4) and (6) are at least

$$y_1y_2\left(y_1-\frac{b}{2}-1\right)+y_1\left[\frac{a}{2}x_2+y_2\left(y_2-\frac{b}{2}-1\right)\right].$$

Since $x_2 \ge (a+2b+2)^2/(8a)+1-y_1-y_2$ in (4) and (6), the value of the above expression is at least $y_1 \phi(y_1, y_2)$, where

$$\phi(y_1,y_2)=y_1\left(y_2-\frac{a}{2}\right)+y_2^2-y_2\left(b+\frac{a}{2}+2\right)+\frac{(a+2b+2)^2}{16}+\frac{a}{2}.$$

Also, we have $\phi(y_1, y_2) \ge \phi(1, y_2) \ge (a+2b+2)^2/16 - (b+a/2+1)^2/4 = 0$. This proves (4) and (6).

Case 3:
$$y_1 \ge (a+1)/2$$
 and $y_2 \ge (a+1)/2$.

In this case, without loss of generality, we may assume $y_1 \le y_2$ by the symmetry of A and B. Then, in any of the desired inequalities, the coefficient of x_2 is smaller than or equal to those of x_1 , x_1 , and x_2 , and the rest of the proof goes exactly the same way as in Case 2.

3. Proofs.

In this section, we prove Theorems. But, we omit the proofs of Theorem 3 and Theorem 4 because they are essentially the same as, and much easier than, those of Theorem 1 and Theorem 2, respectively.

Proof of Theorem 1: Let a,b,G, and f be as in Theorem 1. Let S and T be disjoint subsets of V(L(G)) (= E(G)), and set $U = L(G) - (S \cup T)$. What we want to show is $\theta_{L(G)}(S,T) \geq 0$, where $\theta_{L(G)}(S,T)$ is as defined in Theorem A. If $S \cup T = \emptyset$, then we have $\theta_{L(G)}(S,T) = 0$. Therefore, we may assume $S \cup T \neq \emptyset$. Now, note that

$$\theta_{L(G)}(S,T) \ge a|S| + \sum_{e \in T} \deg_{L(G)}(e) - b|T| - e_{L(G)}(S,T) - h_{L(G)}(S,T). \tag{7}$$

We denote the sets of edges incident with $v \in V(G)$ and contained in S, T and U by S_v, T_v and U_v , respectively. Then we clearly have the following:

$$|S_v \cup T_v \cup U_v| = \deg_G(v) \text{ for } v \in V(G), \tag{8}$$

$$\sum_{v \in V(G)} |S_v| = 2 |S|, \sum_{v \in V(G)} |T_v| = 2 |T|, \sum_{v \in V(G)} |U_v| = 2 |U|, \tag{9}$$

$$\sum_{e \in T} \deg_{L(G)}(e) = \sum_{v \in V(G)} \left[\deg_{G}(v) - 1 \right] |T_{v}|, \tag{10}$$

$$e_{L(G)}(S,T) = \sum_{v \in V(G)} |S_v| |T_v|.$$
 (11)

Inserting (8), (9), (10), and (11), into (7), we obtain

$$\begin{split} \phi_{L(G)}(S,T) \\ & \geq \sum_{v \in V(G)} \left[\frac{a}{2} |S_v| + \left(\deg_G(v) - \frac{b}{2} - 1 \right) |T_v| - |T_v| |S_v| \right] - h_{L(G)}(S,T) \\ & \geq \sum_{v \in V(G)} \left[\frac{a}{2} |S_v| + |T_v| \left(|T_v| + |U_v| - \frac{b}{2} - 1 \right) \right] - h_{L(G)}(S,T) \,. \end{split}$$

Set

$$\lambda(v) := \frac{a}{2} |S_v| + |T_v| \left[|T_v| + |U_v| - \frac{b}{2} - 1 \right], \ v \in V(G).$$

For each component CofU, let R_C be the set of vertices $v \in V(G)$ such that $C \cap U_v \neq \emptyset$. Then for any two distinct components C_1, C_2 , we have $R_{C_1} \cap R_{C_2} = \emptyset$. Suppose that there exists a component C of U such that $S_v \cup T_v = \emptyset$ for all $v \in R_C$. Then R_C forms a component of G. Since G is connected, this means $R_C = V(G)$, so U = L(G), which contradicts the assumption that $S \cup T \neq \emptyset$. Thus, for each component C of U, R_C contains a vertex v with $|S_v \cup T_v| |U_v| \neq \emptyset$. From these observations, it follows that the number k of vertices v of G with $|S_v \cup T_v| |U_v| \neq \emptyset$ is at least $h_{L(G)}(S,T)$. Hence, we have $\theta_{L(G)}(S,T) \geq \sum_{v \in V(G)} \lambda(v) - k$. Therefore, in order to prove $\theta_{L(G)}(S,T) \geq 0$, it suffices to show $\lambda(v) \geq 1$ (resp.0) for all vertices $v \in V(G)$ such that $|S_v \cup T_v| |U_v| \neq 0$ (resp. $|S_v \cup T_v| |U_v| = 0$). But this readily follows if we apply Lemma 5 with $x = |S_v|, y = |T_v|$ and $z = |U_v|$. This completes the proof of Theorem 1.

Proof of Theorem 2: Let a and b be integers such that $2 \le a \le b$ and G a connected graph satisfying the hypotheses of Theorem 2. Then, the condition on the minimum degree of L(G) is equivalent to requiring

$$\deg_G(u) + \deg_G(v) \ge \frac{(a+2b+2)^2}{8a} + 2 \tag{12}$$

for all vertices $u, v \in V(G)$ with $uv \in E(G)$.

Let S and T be disjoint subsets of V(L(G)) (= E(G)) and $U, S_v, T_v, U_v, \lambda(v)$ and R_C as in the proof of Theorem 1. We want to show $\theta_{L(G)}$ (S,T) = $\sum_{v \in V(G)} \lambda(v) - h_{L(G)}$ (S,T) ≥ 0 . We may assume $S \cup T \neq \emptyset$ by the same reason in the proof of Theorem 1. For convenience, we set

$$\lambda_0(v) = \begin{cases} \lambda(v) - 1 & \text{if } |S_v \cup T_v| \, |U_v| \neq 0, \\ \lambda(v) & \text{otherwise.} \end{cases}$$

Now, let k be the number of vertices v of G with $|S_v \cup T_v| |U_v| \neq 0$. Then, k is at least $h_{L(G)}(S,T)$ from the properties of R_C observed in the proof of Theorem 1. Therefore, in order to prove $\theta_{L(G)}(S,T) \geq 0$, it suffices to show $\sum_{v \in V(G)} \lambda_0(v) - k \geq 0$, which is equivalent to $\sum_{v \in V(G)} \lambda_0(v) \geq 0$.

Let us consider the following subsets of V(G):

$$P: = \left\{ v \in V(G) : |T_v| \neq 0 \text{ and } \deg_G(v) < \max \left[\frac{(a+b+2)^2}{8a}, \frac{b}{2} + 2 \right] \right\},$$

$$Q: = \left\{ v \in V(G) : |T_v| \neq 0 \text{ and } \deg_G(v) \ge \max \left[\frac{(a+b+2)^2}{8a}, \frac{b}{2} + 2 \right] \right\},$$

Since easy calculation shows $(a+2b+2)^2/(8a)+2 \ge 2 \max[(a+b+2)^2/(8a), b/2+2]$, P is an independent set by (12). Applying Lemma 5 with $x=|S_v|$, $y=|T_v|$, and $z=|U_v|$, we have $\lambda_0(v)\ge 0$ for all vertices $v\in Q$. Further, we also have $\lambda_0(v)\ge \lambda(v)-1\ge 0$ (resp. $\lambda_0(v)=\lambda(v)\ge 0$) for all $v\in V(G)-(P\cup Q)$ such that $|S_v|\ne 0$ (resp. $|S_v|=0$). For each $u\in Q$, let T_u' denote the set of those edges in T_u whose endvertex which is different from u lies in P. Then we have

$$\begin{aligned} \theta_{L(G)}(S,T) \\ &\geq \sum_{v \in V(G)} \lambda_0(v) \geq \sum_{v \in P \cup Q} \lambda_0(v) \geq \sum_{v \in P} \lambda_0(v) \\ &+ \sum_{u \in Q} \frac{|T_u'| \lambda_0(u)}{|T_u|} = \sum_{\substack{v \in P, u \in Q \\ uv \in T}} \left[\frac{\lambda_0(v)}{|T_v|} + \frac{\lambda_0(u)}{|T_u|} \right]. \end{aligned}$$

Applying Lemma 6 with $x_1 = |S_v|$, $y_1 = |T_v|$, $z_1 = |U_v|$, $x_2 = |S_u|$, $y_2 = |T_u|$, and $z_2 = |U_u|$, we see that each term in this last expression is nonnegative. This completes the proof of Theorem 2.

4. Examples.

Finally, we show that the condition in Theorem 1 is almost the weakest possible (Example 1 and Example 2). Further, we construct an example which shows that

the condition on the value of the minimum degree of L(G) in Theorem 2 cannot be weakened (Example 3).

Example 1: Let a be an odd integer, b an even integer such that a < b and b/2 + $2 > (a+b+2)^2/(8a)$. Let G be a (b/2+1)-regular graph of order 4n (n is a sufficiently large integer) such that G has a 1-factor F. Define a function f: E(G) $\rightarrow \{a, a+1, \ldots, b\}$ by

$$f(e) = \begin{cases} a & \text{if } e \in E(F), \\ b & \text{if } e \in E(G - E(F)). \end{cases}$$

Then we have $\sum_{e \in E(G)} f(e) = 2na + nb^2 \equiv 0 \pmod{2}$. Now, we consider the line graph L(G) of G. Set $S = \emptyset$ and T = E(G - E(F)). Then, by the definition of an f-odd component for L(G), we have $h_{L(G)}(S,T) =$ 4n/2 = 2n. Further, we have

$$\theta_{L(G)}(S,T) = 4n \left[\frac{b}{2} \left(\frac{b}{2} + 1 - \frac{b}{2} - 1 \right) \right] - 2n = -2n (\leq -2).$$

Therefore, L(G) has no f-factor by the f-factor theorem, but we have $\deg_G(v) \ge$ b/2+1 for all $v \in V(G)$.

Example 2: Let a and b be nonnegative integers such that a is even, $a \le b$, $a+b \equiv$ 2 (mod 4) and $(a+b+2)^2/(8a) \ge b/2+2$, and set $\ell = \lceil (a+b+2)^2/8a \rceil$ p = (a+b+2)/4. Let G be a connected $(\ell-1)$ -regular graph with a sufficiently large even order 4n such that G can be decomposed into one p-factor H and $(\ell - p - 1)$ 1-factors F_i . We define an integer-valued function f as follows:

$$f(e) = \begin{cases} a & \text{if } e \in E(\cup F_i), \\ b & \text{if } e \in E(H). \end{cases}$$

Then we have $\sum_{e \in E(G)} f(e) = 2n(\ell - p - 1) \ a + 2npb \equiv 0 \pmod{2}$. Consider the line graph L(G) of G. Let $S = E(\bigcup F_i)$, and T = E(H). Then we have

$$\begin{split} \theta_{L(G)}(S,T) &= 4n \left[(\ell-p-1)\frac{a}{2} + p\left(p - \frac{b}{2} - 1\right) \right] \\ &\leq 4n \left[\left(\lceil \frac{(a+b+2)^2}{8a} \rceil - 1 \right) \frac{a}{2} - \frac{(a+b+2)^2}{16} \right] \\ &\leq 4n \left[\left(\frac{(a+b+2)^2}{16} \frac{2}{a} - \frac{1}{(a/2)} \right) \frac{a}{2} - \frac{(a+b+2)^2}{16} \right] \\ &= -4n. \end{split}$$

Therefore, L(G) has no f-factor, but we clearly have $\deg_G(v) \ge \lceil (a+b+2)^2/(8a) \rceil - 1$ for all $v \in V(G)$.

Example 3: Let a and b be positive even integers such that $a \equiv 2 \pmod{4}$ and a < b, and let q = (a + 2b + 2)/4 and set $p = \lceil (a + 2b + 2)^2/8a \rceil - q - 1$. Further, let r be an integer such that $r \ge p + q$ and $r \equiv 1$ or 2 (mod 4). We define graphs G(p, q, r). The vertex set of G = G(p, q, r) is defined as follows:

$$\begin{array}{c} V(G) = X \cup Y \cup Z, \\ Y = \bigcup_{i=1}^{p+1} Y_i, \quad Z = \bigcup_{i=1}^{p+1} \left(\bigcup_{j=1}^q C_{ij} \right) \end{array}$$
 (disjoint union)

where

$$X = \{a_1, \ldots, a_{p+1}\}, \quad Y_i = \{b_{i1}, \ldots, b_{iq}\},$$
$$C_{ij} = \{c_{ij}^{(1)}, \ldots, c_{ij}^{(r+1)}\}.$$

The adjacency in G is defined as follows:

$$N_G(a_i) = (X - \{a_i\}) \cup Y_i, \quad N_G(b_{ij}) = \{a_i\} \cup \{c_{ij}^{(1)}\},$$
$$\langle C_{ij} \rangle_G = K_{r+1}, \quad N_G(c_{ij}^{(1)}) = \{C_{ij} - c_{ij}^{(1)}\} \cup \{b_{ij}\},$$

where $N_G(v)$ is the set of neighbors of a vertex v in G, $\langle S \rangle_G$ is the subgraph of G induced by $S \subset V(G)$ and K_n denotes the complete graph with n vertices. Moreover, we set

$$S = \{a_i a_j : 1 \le i < j \le p+1\}$$

$$T = \{a_i b_{ij} : 1 \le i \le p+1, \ 1 \le j \le q\}.$$

Define an integer-valued function f as follows:

$$f(e) = \begin{cases} a & \text{if } e \in S, \\ b & \text{otherwise.} \end{cases}$$

Note that $h_{L(G)}(S,T) = (p+1)q$ and

$$\sum_{e \in V(L(G))} f(e) = a \frac{p(p+1)}{2} + b(p+1)q \left[\frac{r(r+1)}{2} + 2 \right] \equiv 0 \pmod{2}.$$

Then we have $\min(\deg_G(u) + \deg_G(v); u, v \in V(G), uv \in E(G)) = [(a + 2b + 2)^2/8a] + 1$, but

$$\begin{split} \theta_{L(G)}(S,T) & \leq \sum_{v \in X} \lambda(v) + \sum_{v \in Y} \lambda(v) - h_{L(G)}(S,T) \\ & = (p+1) \left[\frac{a}{2} p + q \left(q - \frac{b}{2} - 1 \right) \right] + (p+1) q \left(1 - \frac{b}{2} \right) - (p+1) q \\ & = (p+1) \left[\frac{a}{2} \left(\left\lceil \frac{(a+2b+2)^2}{8a} \right\rceil - q - 1 \right) + q(q-b-1) \right] \\ & \leq (p+1) \left(\frac{a}{2} \left(\frac{(a+2b+2)^2}{8a} - \frac{1}{a/2} \right) - \frac{(a+2b+2)^2}{16} \right) \leq -(p+1). \end{split}$$

This shows that G(p, q, r) has no f-factor.

For values of a and b not considered in Example 1 and Example 2 (resp. Example 3), we do not know whether the condition of Theorem 1 (resp. Theorem 2) is the best or not. However, for each pair of integers a, b with $2 \le a < b$, similar constructions yield infinitely many examples which show that if we replace the condition for the minimum degree of G (resp. L(G)) by the condition

$$\delta(G) \ge \max\left[\frac{b}{2}, \frac{(a+b+2)^2}{8a} - 2\right]$$

$$\left(\text{resp. } \delta(L(G)) \ge \frac{(a+2b+2)^2}{8a} - 2\right),$$

the theorem is no longer true.

We have a similar situation concerning the sharpness of the condition in Theorem 4, but we shall not go into details.

Acknowledgement.

The author would like to thank Professor Yoshimi Egawa for his helpful comments.

References

- 1. M. Behzad, G. Chartrand, and L. Lesniak-Foster, "Graphs and Digraphs", Prindle Weber and Schmids, Boston, 1979.
- 2. M. Kano and N. Tokushige, *Binding numbers and f-factors of graphs*, J. Combin. Theory. Ser. B **64** (1992), 213–221.
- 3. L. Lová sz, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970), 391-416.
- 4. T. Nishimura, Regular factors of line graphs, Discrete Math. 85 (1990), 215-219.
- 5. T. Nishimura, Regular factors of line graphs II, Math. Japonica 36 (1991), 1033-1040.
- 6. W.T. Tutte, The factor of graphs, Canad. J. Math. 4 (1952), 314-328.
- 7. W.T. Tutte, A short proof of the factor theorem for finite graphs, Canad. J. Math. 6 (1954), 347–352.