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ABSTRACT. We introduce a concept of “pseudo dual” pseudo-
graphs which can be thought of as generalizing some of the re-
cent work on iterated clique graphs. In particular, we character-
ize those pseudographs which have pseudo duals and show that
they encompass several natural families of intersection pseudo-

graphs.

1 Clique Pseudographs

The clique graph K(G) of any graph G is the intersection graph of all the
maximal cliques (i.e., inclusion maximal complete subgraphs, which we call
mazcliques) of G. Clique graphs were introduced by Hamelink [10] and
characterized by Roberts and Spencer [25]. Starting with Escalante [5],
several authors have looked at classes of graphs preserved under the clique
graph operator and at iterating this operator, determining classes of graphs
G for which there exist parameters n and p such that K™*?(G) = K™*(G).
Bandelt and Prisner [2] is an excellent survey and consolidation of the
literature.

The cligue multigraph of a graph G is the intersection multigraph of
the maxcliques of G, with the multiplicity of a multiple edge (multiedge)
equal to the number of vertices common to the corresponding maxcliques.
These have been investigated and used in several papers [15,16,17,18,19,20].
Typically, loops have been ignored as adding nothing useful, or at least
nothing essential. In this section we introduce a process of iterating clique
multigraphs in which the loops are essential. Hence we use pseudographs:
multigraphs with parallel loops allowed (constituting special multiedges
called multiloops).
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Suppose M is any pseudograph. For vertices v;, v; € V(M) (allowing
= j) let u(v;,v;) denote the multiplicity of the multiedge joining v; with
vj. By a mazclique of a pseudograph we mean a maxclique, including one
loop at each vertex, in the underlying looped graph gotten by replacing each
multiedge with a simple edge. Thus a maxclique of a multigraph C' contains
exactly one edge (or loop) from each bundle of parallel edges with the same
endpoints in C.
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Let Coy,...,Com, be the maxcliques of M. For each v;, v; € V(M)
(always allowing i = j), put &(v;,v;) = |[{Cok: vi,v; € Cox}|. If M every-
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where satisfies p(vi,v;) > k(v;,v;), then we obtain M (called the residual
pseudograph of M) from M by decreasing each multiedge multiplicity by
k(vi, vj), i.e., simultaneously removing one copy of each of Coz,...,Com,
from M and removing any isolated, loopless vertices created. (See Figure

1)
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Figure 2

Let Cii,...,Cim, be the maxcliques of M. If rM everywhere satisfies

w(vi, vj) > n(v,, vj), we can again decrease each multiplicity by x(v;, v;) and
drop isolated, loopless vertices to obtain the pseudograph r(rM) = r2M.
If this can be repeated until no vertices remain (obtaining mo maxcliques
Co; of M = r°M, m, maxcliques Cy; of rM = r' M, m, maxcliques Cp;
of r(rM) = r2M, etc.), then we call M a reducible pseudograph and call
each C;; a residual cligue of M. For a reducible pseudograph M, let C
be the multiset of all the residual cliques Cj; (0 < 3,1 < j < m;) of M.
Figure 1 shows a reducible pseudograph M, all six of its residual cliques,
and its residual pseduographs »M and r2M; r®M is empty. (The double
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subscripting on the vertices will be explained later.) Figure 2 shows another
example.

The clique pseudograph K(M) of a reducible pseudograph M is the in-
tersection pseudograph of the family C of all the residual cliques of M,
K2(M) is K(K(M)), etc. We let K(M) have vertex set {v};: 0 < i and
1 < j < m;}, where each v}; corresponds to C;; € C from M Figure
2 shows the clique pseudograph of the pseudograph of Figure 1. Fig-
ure 3 shows another reducible pseudograph M and its clique pseudograph
K(M); notice that this K(M) is not itself reducible (since, in rK (M),
1(vda, v82) = 2 < K(vds, v§2) = 3). Therefore the clique pseudograph oper-
ator cannot necessarily be iterated.

S %
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%\ § Co2 = {v2,va,vs}
Cos = {v2,v3,vs}

Ve Cos = {va,vs,ve} V 04

Figure 3

2 Pseudo Duals

In studying iterated clique graphs, it is common to restrict attention to what
are sometimes called clique-Helly graphs: graphs whose families of max-
cliques satisfy the Helly property (i.e., given any subfamily of maxcliques
such that every two members of the subfamily have pairwise nonempty
intersection, there must be some element simultaneously common to all
members of the subfamily). As shown in [6] (see also [2]), the family
of all clique-Helly graphs is preserved under the clique graph operator,
every clique-Helly graph is itself the clique graph of some clique-Helly
graph, and every clique-Helly graph has parameters n and p < 2 for which
K™*P(G) = K™(G). For instance, the four-spoked wheel W is chque-Helly
and K(Ws) ~ Ky, Kz(Ws) K(K4) XK= Ks(Ws) = K4(W5)

i.e., the parameters are n = 2 and p = 1. The octahedron K332 = K3(2),
on the other hand, is not clique-Helly, and iterating the clique graph opera-
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tor produces increasingly large graphs; in fact K(K3(2)) = K22,2,2 = Ky(2),
and in general K(K,()) = K;() where t = 2"~1 (see [22]).

In this section we introduce an analog of clique-Helly for pseudographs
for which the clique-pseudograph operator can be iterated with parameters
n =1 and p < 2 (and so there will be a notion of “dual” as explained
below). Theorem 1 will characterize which pseudographs have such duals.
Corollaries 1, 2, 3 and 4 will show natural families of clique pseudographs
which have duals. (We do not consider the general question of when pa-
rameters n and p exist for a pseudograph, nor how they are determined.)

Additional structure is needed for our pseudograph analog of clique-Helly.
For a reducible pseudograph M, write v; <v; whenever, for every C € C,
v; € C = v; € C. This is easily recognized in the pseudograph since v; <v;
is equivalent to u(v;,v;) = u(vi,v;). (Moreover, v; <v; is equivalent to
w(vs, v) < p(vj,v) for every v € V(M), and so agrees with the notion of v,
“dominating” v; in the underlying graph, as in [2]). Write v; b< v; if both
v; 4v; and v; 4v;. (So v; X v; is equivalent to u(v;,v) = pu(v;,v) for every
v € V(M)). For instance, in the pseudograph in Figure 1, each vy <vjs,
v119v91, and vog D w1a. Let Vo = {vo1, . . .,Von, } contain one representative
vertex from each b<-equivalence class of maximal elements with respect to
the order (V(M),<). Let sM be the induced subpseudograph (V(M)\ Vo)
of M. (In Figure 1, vo;, vo2 and vy are maximal elements; from the p<-
equivalent vertices vz and v;2, we chose o2 to be in Vg, and so v12 occurs in
sM.) Observe that the choice of Vp does not affect whether sM is reducible.

If sM is also reducible, repeat the procedure of the preceding paragraph
for sM. Say this produces V; = {vi1,...,v1n,}, containing one vertex
from each p<equivalence class of maximal elements with respect to the
order (V(sM),). Also, s°M = s(sM) = (V(M)\ {v;;: 0 < i <1 and
1 <j < n;}). As long as s M is reducible, repeat this to form s*+'M, and
take s°M = M. (In Figure 1, s*M is shown for i < 2; s*M is empty for
i>3)

Call a reducible pseudograph M absolutely clique- Helly whenever every
s*M is reducible and the family of residual cliques of every s*M satisfies
the Helly property. If M is absolutely clique-Helly, we write K(M) = M*.
When M = M**, we call M* the dual pseudograph (or the pseudo dual) of
M.

The following theorem characterizes which pseudographs have pseudo
duals and considers a sense in which every r*M and s!M are “duals”.

Theorem 1. A pseudograph has a pseudo dual if and only if it is absolutely
clique-Helly.

Proof: Suppose M is absolutely clique-Helly with V(M) = {v;;: 0 <4 and
1 <j < ny}, the family C = {C;;: 0 <iand 1 < j < m;} of residual cliques,
and V(M*) = {v};: 0<iand 1 < j <m;}asabove. For0<iand1<j <
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ni, put Cj; = ({v3,: vij € Cap}) in M*. Therefore v;; € Cop <= v}, € Cj;.
(This makes the family of all such C;; be the “hypergraph dual” of the
family of all the C,,. We discuss this connection with hypergraph duality
further in Section 4.) By definition of M* = K(M), these CY; are cliques
which (with a loop at each vertex) partition the edge set of K(M) = M*.
Put Cf = {C;: 1 < j < nk} and let C* be the multiset of all Cf;, 0 < i
and 1 < j < m;. (All this notation is illustrated in Figures 1 and 2.) We
first show that these cliques in C* are precisely the residual cliques of M*.

Observe that using multiloops insures that the residual cliques of each
s M are precisely the restrictions of members of C to V(s*M) = {w;;: k <
iand 1 < j < n;}. Therefore v, <va; in s*M if and only if both
k < a;,b; and vg,p, 94ve;b; in M, and this is in turn equivalent to Cia. C
Cisb; In K(M). Thus each vg; being maximal in the order (V(s*M),<)
corresponds to Cy; being an inclusion-maximal member of C;. Whenever
V3 by Vaybgr - - - fOrm a maxclique of r*(M*), then Ca,p,, Casby, - - . will have
pairwise nonempty intersections in M and (since M being absolutely clique-
Helly implies that C satisfies the Helly property) there will be some vertex
of M common to every C,,;,. Since we are starting from a maxclique of
rk(M*), this common vertex will be maximal in the order V(s*M, <) and
so of the form vy;. Therefore, C§; contains every v}, , and so C; consists
precisely of the maxcliques of 7*(M*) and C* is the multiset of residual
cliques of M*.

From here it follows easily that M** = K(M*) = M using the isomor-
phism carrying each CJ; € V(K(M*)) to v;; € V(M), checking that each
B(C3, C2y) in K(M*) equals |C;, N C},| in M* which equals |{i: v}; € C%,
and vg; € C2;} = |{2: vap € Coi and veq € Coi}| = p(vas, vea) in M. (]

A similar argument shows that, for clique-Helly M, each K(s*M) =
r*K(M), i.e., that each (s*M)* = r*(M*). Figure 4 also illustrates the
isomorphism C}; — vi; showing M** = M. Notice that, in Figure 4,
M = M* and so M is self-pseudo-dual. But this example is special in
that the mapping v;; — vJ; is not an isomorphism: p(vo2,v12) = 2 in M
but p(vg,, v32) =0in M*. (This corresponds to there not being an involu-
tory vertex-to-residual-clique mapping, paralleling [9] and [1] for traditional
graph duality; e.g., v1; € C13 but v13 ¢ C11 (v} ¢ Cl3).)

Theorem 1 allows us to parallel other properties of clique-Helly graphs
mentioned at the beginning of this section. If M is absolutely clique-Helly,
then so is K(M) (since K(M) has a pseudo dual, namely M). Also, M
being absolutely clique-Helly implies that M is itself the clique psuedograph
of an absolutely clique-Helly pseudograph (namely M = K(M*)). Also
notice that, for absolutely clique-Helly M, each (r*M)* = sk(M*).

Observe that we have only defined clique pseudographs K (M) where M is
a reducible pseudograph. But it is also natural to consider the intersection
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pseudograph of the family of all the maxcliques of any graph G; we abuse
notation somewhat in the remainder of this section by also denoting this
pseudograph as K(G). If G is not clique-Helly, then K(G) need not even
be reducible: for instance, take G to be the underlying loopless graph of
the multigraph M of Figure 3, making K(M) = K(G).

Corollary 1. The maxclique intersection pseudograph of any clique-Helly
graph has a pseudo dual.

Proof: If G is clique-Helly, then K(G) will be reducible with residual
cliques {C,: v € V(G)}, where each C, consists of those maxcliques of
G which contain v. These residual cliques automatically satisfy the Helly
property. Since the maxcliques of G are incomparable, u(v;,v;) > p(v;, v;5)
holds throughout K(G), making every v; maximal in (V(K(G)),<) and
so sK(G) empty. Therefore K(G) is absolutely clique-Helly and so has a
pseudo dual. In fact, the pseudo dual is the pseudograph built from G by
making each u(u,v) equal to the number of maxcliques of G which contain

{u,v}). O
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3 Examples of Pseudo Duals

We now show that many previously-studied intersection pseudographs do
in fact have pseudo duals. (Actually, the references cited below are to
intersection multigraphs, but by allowing loops they can be easily modified
for the corresponding pseudographs. Only the proofs of the corollaries in
this section require details from the references cited.)

An interval pseudograph is the intersection pseudograph of a family of
subpaths of a path. These are natural modifications of interval graphs
as surveyed in Chapter 8 of [8]; see [18] for specific discussion of interval
multigraphs.

Corollary 2. Every interval pseudograph has a pseudo dual.

Proof: Interval pseudographs are reducible by Theorem 2(1) of [18]. The
family C satisfies the Helly property since the members of correspond to
simplicial vertices of M+ in the proof of Theorem 2 of [18] and so to
subpaths of a path. We also know that sM is an interval pseudograph
since the subpaths-of-a-path representation of sM comes from that of M
by deleting occurrences of each vy;. Hence we can again show that sM
is reducible and its family of residual cliques satisfies the Helly property.
Repeating this as needed shows that M is absolutely clique-Helly. O

Observe that subtrees of a tree also satisfy the Helly property, but that
their intersection pseudographs (corresponding to the “chordal multigraphs”
in [18]) need not have pseudo duals; they need not even be reducible. For
instance, consider V(M) = {v1,v2,v3,v4} and p(v;,v;) as follows:

if i=1landj=2
ifi=j€{1,2}
ifi=j€{3,4}
otherwise

#(vi» 'Uj) =

N W

Then M is chordal but not reducible, since u(v3,v4) = 1in M, yet {v3, vq}
is in two maxcliques of M.

The distinctive feature of intervals (or subpaths of a path) is that they
satisfy both the Helly property and its hypergraph dual conformal property
(i.e., given any set of points and any set of distinguished intervals, if every
two points are in a common distinguished interval, then they must all be in
a common distinguished interval). See Section 4 for more on the connection
with hypergraph duality.

Given any property P of pseudographs (e.g., being an interval pseudo-
graph), call an absolutely clique-Helly pseudograph M a P* pseudograph
whenever M* satisfies P. Call P a selfdual property whenever P and P*
are equivalent. In spite of the preceding comments on intervals satisfying
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both the Helly property and its hypergraph dual, the pseudo dual of an
interval pseudograph need not be interval. (A counterexample is exhibited
in the next paragraph.) Therefore, being interval is not a selfdual prop-
erty. Furthermore, neither “unit interval pseudographs” (i.e., intersection
pseudographs of congruent subpaths of a path) nor “proper interval pseu-
dographs” (i.e., intersection pseudographs of annotations of subpaths of a
path) correspond to selfdual properties. (These are pseudograph versions
of “indifference graphs” which enter the theory of iterated clique graphs in
[13].)

A good deal of interest surrounds the question of when “competition
graphs” (i.e., intersection graphs of out-neighborhoods of acyclic digraphs)
are interval graphs; see for instance [14] and [23]. We can similarly look
at interval competition multigraphs (see [16]), and so pseudographs. If we
discard isolated, loopless vertices (which necessarily exist, corresponding
to “sinks” in the digraph), then interval competition pseudographs have
pseudo duals by Corollary 2. But being an interval competition pseudo-
graph is still not a selfdual property; the interval competition pseudograph
of the at the bottom of page 485 in [24] is a counterexample. However being
interval does confer an advantage to competition pseudographs: If M is an
interval competition pseudograph of a digraph, then M* (whether interval
or not) is the competition pseudograph of the converse of the digraph (i.e.,
what is called the “common enemy” pseudograph of the original digraph).

The intersection pseudograph of the family of all upsets I, = {y: = < y}
of a poset (partially ordered set) is called an upper bound pseudograph. This
generalizes the notions of upper bound graph from McMorris & Zaslavsky
[21] (in which the vertices of the graph are the elements of the posett with
two adjacent whenever they have a common upper bound) and upper bound
multigraphs from [15]. (Warning: rM is defined somewhat differently in
[15].) -

Corollary 3. Every reducible upper bound pseudograph has a pseudo
dual.

Proof: Suppose M is a reducible upper bound pseudograph of a poset
(P, <). The proof of Lemma 3 of [15], modified for pseudographs, shows
the equivalence of the following:

(1) M everywhere satisfies u(v;,v;) > &(v;, v;);
(2) The family of upsets of P satisfies the Helly property;

(3) Each maxclique of the underlying looped graph of M contains a sim-
plicial vertex.

Observe that M is the reducible lower bound pseudograph of the poset P¢
converse to P. The members of C are precisely the residual cliques of M
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(by Theorem 1 of [15] and (1) = (3)) and they correspond to the downsets
Jr = {w: w < =} of P° (by the note three sentences before Proposition 2
in [15]). This set of downsets satisfies the Helly property (by (1) => (2)
applied to P¢), and C also satisfies the Helly property.

Since sM is reducible and is the upper bound pseudograph of the poset
of nonminimal elements of P, the above can be repeated to show that the
residual cliques of sM satisfy the Helly property. Repeating this eventually
shows that M is absolutely clique-Helly. O

Indeed, if M is a reducible upper bound pseudograph of a poset P, then
rM (and sM) are the upper bound pseudographs of (respectively) the non-
maximal (nonminimal) elements of P, and M* is the lower bound pseudo-
graph of P, i.e., the upper bound pseudograph of P¢; in fact, (V(M),<)
(P¢, <). Therefore the family of all reducible upper bound pseudographs is
closed under the clique pseudograph operator K, and so being a reducible
upper bound pseudograph is a selfdual property. (Also, interval upper
bound pseudographs, see section 4 of [15], form a selfdual subcategory of
interval pseudographs.)

As another example, the intersection pseudograph of the family of all
root-to-leaf paths in a rooted tree is called a component-reducible pseudo-
graph (or co-pseudograph). This generalizes the notion of a complement-
reducible graph (or cograph) from [4] and component-reducible multigraph
from [17].

Corollary 4. Every co-pseudograph has a pseudo dual.

Proof: Co-pseudographs are reducible by Theorem 2 of [17] with resid-
ual cliques corresponding to subtrees induced by internal vertices in the
rooted tree representation. Also, C satisfies the Helly property since the
root-to-leaf paths satisfy the nonformal property. Each r*M is also a co-
pseudograph by Corollary 2.1 of [17]. Therefore repeating the above argu-
ment shows that M is absolutely clique-Helly. O

Being a co-pseudograph is not selfdual; Example 2 of [17] is a counterex-
ample. When M is the co-pseudograph of a rooted tree T', the underlying
graph of M* will be the comparability graph of T (but M* is not the
comparability pseudograph of T in the sense of [20]).

4 Connections with Hypergraphs and Simple Graphs

Just as a graph can be viewed as a binary relation (with the unordered
related pairs determining the edges of the graph), a hypergraph is a general
relation (with the related sets determining the “edges,” which we call hy-
peredges of the hypergraph). The dual hypergraph interchanges the roles of
the elements and hyperedges (generalizing the familiar notion of line graph
of a graph). See [3] for a general treatment and [19] for connections with
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multigraphs and pseudographs; [5] also develops intersection graph theory
within hypergraph theory.

Hence when we consider a pseudograph M together with a family of
subgraphs, as we do in Figure 1, we are describing a hypergraph on the
same vertex set with the members of C as the hyperedges. The proof of
Theorem 1 shows that the hypergraph determined by M* (with hyperedges
from C*) is the hypergraph dual of M (with hyperedges from C); i.e., the
vertices of M correspond to the residual cliques of M* and the vertices
of M* correspond to the residual cliques of M. Thus what we are calling
pseudo duality is a special case of hypergraph duality.

But what we are doing is not just hypergraph theory. We are considering
how certain pseudographs (namely, the reducible ones) induce a natural hy-
pergraph (by means of the residual cliques); the hyperedges are completely
determined by the pseudograph structure, rather than being assigned in-
dependently. Hence, we are properly working within pseudograph theory
(although in a manner describe within hypergraph theory).

Theorem 7.4 of [5] (credited to [7]) is an interesting connection be-
tween pseudographs and hypergraphs: Whenever {E;: i € I} is a fam-
ily of subpaths of a path and {F;: ¢ € I} is any family of sets such that
|E; N Ej| = |F; N Fj| for all 4,5 € I, then the two families are isomorphic.
(In other words, an interval pseudograph determines a unique interval hy-
pergraph.) Let Mg and MFr be the isomorphic intersection pseudographs
of the two families. Then each hyperedge E; of the interval hypergraph
corresponds uniquely to a residual clique of Mg, so to a vertex of M, so
to a vertex of the isomorphic pseudograph M}, so to a residual clique of
Mp, and so finally to an Fj; this correspondence is an isomorphism.

Finally, for the reader weary of pseudographs, we observe that a vestige
of pseudo duals exists within “simple graph theory.” Suppose G is any
simple graph and we append a multiloop at each vertex v with u(v,v)
equal to the “clique degree” of v in G (i.e., the number of maxcliques of G
which contain v). In order for this multi-looped graph G to be reducible,
it must be edge-partitionable into maxcliques. This occurs automatically
when each block (i.e., maximal 2-connected subgraph) is complete, and so
by [11] or Theorem 3.5 of [12] whenever G is a block pseudogragh: i.e., the
intersection pseudograph B(H) of all the blocks of some graph H. (The
underlying loopless graph of B(H) is the traditional block graph of H in
12))

Suppose B(H) is any block pseudograph. Then B(H) has a pseudo dual
by Theorem 1, and B(H)* & H. This pseudo duality of B(H) and H
corresponds to the ad hoc construction in the final paragraph of the proof
of Theorem 3.5 in [12] (with the multiloops now keeping track of the non-
cutpoints in the corresponding blocks, as in that proof). This also relates
to Corollary 1, since block graphs are tribally clique-Helly.
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